Excursus: Binomial Coefficients and Pascal's triangle


For n,i,in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacYcacaWGPbGaeyicI4SaeSyfHuQaaiilaiaadMgacqGHKjYOcaWGUbaaaa@3FB0@   the binomial coefficient (T n i )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaaaaa@3930@ is introduced using the factorial operator ! :

(T n i )T n! i!(ni)! , MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaeyypa0ZaaSaaaeaacaWGUbGaaiyiaaqaaiaadMgacaGGHaGaaiikaiaad6gacqGHsislcaWGPbGaaiykaiaacgcaaaaaaa@423D@
[5.0.1]

where n!{ 1,  if  n=0 12n,  if  n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacgcacqGH9aqpdaGabaqaauaabaqaceaaaeaacaaIXaGaaeilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaicdaaeaacaaIXaGaeyyXICTaaGOmaiabgwSixlablAciljabgwSixlaad6gacaqGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaeyOpa4JaaGimaaaaaiaawUhaaaaa@54DA@

For n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaicdaaaa@389E@ we calculate n! by successively multiplying the numbers 1,2,,n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaacYcacaaIYaGaaiilaiablAciljaacYcacaWGUbaaaa@3B85@ . In many cases the partition property (n+1)!=n!(n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcacqGH9aqpcaWGUbGaaiyiaiabgwSixlaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaa@4348@ is a valuable tool.

We read

  • (T n i )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaaaaa@3930@ as "n choose i".

  • n! as "n-factorial".


     

Example:  

  • (T 5 2 )T= 5! 2!3! = 12345 12123 = 45 2 =10 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaaI1aaabaGaaGOmaaaacaGGPaGaeyypa0ZaaSaaaeaacaaI1aGaaiyiaaqaaiaaikdacaGGHaGaeyyXICTaaG4maiaacgcaaaGaeyypa0ZaaSaaaeaacaaIXaGaeyyXICTaaGOmaiabgwSixlaaiodacqGHflY1caaI0aGaeyyXICTaaGynaaqaaiaaigdacqGHflY1caaIYaGaeyyXICTaaGymaiabgwSixlaaikdacqGHflY1caaIZaaaaiabg2da9maalaaabaGaaGinaiabgwSixlaaiwdaaeaacaaIYaaaaiabg2da9iaaigdacaaIWaaaaa@6327@

To prove the generalized binomial theorem we need the following properties 1. and 4.

Proposition:  

1. (T n 0 )T=(T n n )T=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaaGimaaaacaGGPaGaeyypa0JaaiikauaabeqaceaaaeaacaWGUbaabaGaamOBaaaacaGGPaGaeyypa0JaaGymaaaa@3F0F@

[5.0.2]

2. (T n 1 )T=n    for  n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaaGymaaaacaGGPaGaeyypa0JaamOBaiaabAgacaqG8dGaaeOCaiaad6gacqGH+aGpcaaIWaaaaa@4108@

[5.0.3]

3. (T n i )T=(T n ni )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaeyypa0JaaiikauaabeqaceaaaeaacaWGUbaabaGaamOBaiabgkHiTiaadMgaaaGaaiykaaaa@3F5D@

[5.0.4]

4. (T n i )T+(T n i1 )T=(T n+1 i )T    for  i>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaey4kaSIaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaiabgkHiTiaaigdaaaGaaiykaiabg2da9iaacIcafaqabeGabaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGPbaaaiaacMcacaqGMbGaaei=aiaabkhacaWGPbGaeyOpa4JaaGimaaaa@4AF8@

[5.0.5]

Proof:  We just calculate every quotient as given by the definition.
1. n! 0!n! = n! n!0! =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbGaaiyiaaqaaiaaicdacaGGHaGaeyyXICTaamOBaiaacgcaaaGaeyypa0ZaaSaaaeaacaWGUbGaaiyiaaqaaiaad6gacaGGHaGaeyyXICTaaGimaiaacgcaaaGaeyypa0JaaGymaaaa@4682@
2. n! 1!(n1)! = (n1)!n (n1)! =n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbGaaiyiaaqaaiaaigdacaGGHaGaeyyXICTaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaacgcaaaGaeyypa0ZaaSaaaeaacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaaiyiaiabgwSixlaad6gaaeaacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaaiyiaaaacqGH9aqpcaWGUbaaaa@4F52@
3. n! i!(ni)! = n! (ni)!(n(ni))! MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbGaaiyiaaqaaiaadMgacaGGHaGaeyyXICTaaiikaiaad6gacqGHsislcaWGPbGaaiykaiaacgcaaaGaeyypa0ZaaSaaaeaacaWGUbGaaiyiaaqaaiaacIcacaWGUbGaeyOeI0IaamyAaiaacMcacaGGHaGaeyyXICTaaiikaiaad6gacqGHsislcaGGOaGaamOBaiabgkHiTiaadMgacaGGPaGaaiykaiaacgcaaaaaaa@5203@
4. n! i!(ni)! + n! (i1)!(ni+1)! MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbGaaiyiaaqaaiaadMgacaGGHaGaeyyXICTaaiikaiaad6gacqGHsislcaWGPbGaaiykaiaacgcaaaGaey4kaSYaaSaaaeaacaWGUbGaaiyiaaqaaiaacIcacaWGPbGaeyOeI0IaaGymaiaacMcacaGGHaGaeyyXICTaaiikaiaad6gacqGHsislcaWGPbGaey4kaSIaaGymaiaacMcacaGGHaaaaaaa@500B@

= n!(ni+1)+n!i i!(ni+1)! MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaSaaaeaacaWGUbGaaiyiaiabgwSixlaacIcacaWGUbGaeyOeI0IaamyAaiabgUcaRiaaigdacaGGPaGaey4kaSIaamOBaiaacgcacqGHflY1caWGPbaabaGaamyAaiaacgcacqGHflY1caGGOaGaamOBaiabgkHiTiaadMgacqGHRaWkcaaIXaGaaiykaiaacgcaaaaaaa@509D@

= n!(ni+1+i) i!(ni+1)! MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaSaaaeaacaWGUbGaaiyiaiabgwSixlaacIcacaWGUbGaeyOeI0IaamyAaiabgUcaRiaaigdacqGHRaWkcaWGPbGaaiykaaqaaiaadMgacaGGHaGaeyyXICTaaiikaiaad6gacqGHsislcaWGPbGaey4kaSIaaGymaiaacMcacaGGHaaaaaaa@4CBB@

= (n+1)! i!(n+1i)! MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaSaaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaqaaiaadMgacaGGHaGaeyyXICTaaiikaiaad6gacqGHRaWkcaaIXaGaeyOeI0IaamyAaiaacMcacaGGHaaaaaaa@45D3@


 

From the condition in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJkaad6gaaaa@397F@ we know that there are exactly n + 1 many binomial coefficients for each n. So we have for

n=0:(T 0 0 )T=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaicdacaGG6aGaaiikauaabeqaceaaaeaacaaIWaaabaGaaGimaaaacaGGPaGaeyypa0JaaGymaaaa@3DF5@

n=1:(T 1 0 )T=1,(T 1 1 )T=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdacaGG6aGaaiikauaabeqaceaaaeaacaaIXaaabaGaaGimaaaacaGGPaGaeyypa0JaaGymaiaacYcacaGGOaqbaeqabiqaaaqaaiaaigdaaeaacaaIXaaaaiaacMcacqGH9aqpcaaIXaaaaa@4344@

n=2:(T 2 0 )T=1,(T 2 1 )T=2,(T 2 2 )T=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaikdacaGG6aGaaiikauaabeqaceaaaeaacaaIYaaabaGaaGimaaaacaGGPaGaeyypa0JaaGymaiaacYcacaGGOaqbaeqabiqaaaqaaiaaikdaaeaacaaIXaaaaiaacMcacqGH9aqpcaaIYaGaaiilaiaacIcafaqabeGabaaabaGaaGOmaaqaaiaaikdaaaGaaiykaiabg2da9iaaigdaaaa@4897@

If we note down these results centered, row by row we are producing Pascal's triangle, the well known scheme which is expanded up to n = 4 below:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

The above properties 1. to 4. are well reflected in Pascal's triangle:

  1. Each row starts with 1 and ends with 1.
     
  2. The second number in each row is the line number.
     
  3. Every row can be read from left to right and vice versa with no difference.
     
  4. Apart from the first and last, every entry in a line is the sum of the two entries above. That means: How far Pascal's triangle might have been constructed, we easily can add a new line without wasting time with the tedious factorials. Let's see how it works in our example:
     
    1 4 6 4 1
    1 5 10 10 5 1

     

Now that the binomial coefficients are at our hand, we easily get concrete binomial formulas from the generalized binomial theorem, take e.g. n = 3 and n = 4:
 

(a+b) 3 = a 3 +3 a 2 b+3a b 2 + b 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacqGHRaWkcaWGIbGaaiykamaaCaaaleqabaGaaG4maaaakiabg2da9iaadggadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaamyyamaaCaaaleqabaGaaGOmaaaakiaadkgacqGHRaWkcaaIZaGaamyyaiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGIbWaaWbaaSqabeaacaaIZaaaaaaa@4936@
 
(a+b) 4 = a 4 +4 a 3 b+6 a 2 b 2 +4a b 3 + b 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacqGHRaWkcaWGIbGaaiykamaaCaaaleqabaGaaGinaaaakiabg2da9iaadggadaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI0aGaamyyamaaCaaaleqabaGaaG4maaaakiaadkgacqGHRaWkcaaI2aGaamyyamaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaamyyaiaadkgadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWGIbWaaWbaaSqabeaacaaI0aaaaaaa@4E92@
 

But there are many more properties to be deduced from the generalized binomial theorem.

Proposition:  

1. i=0 n (T n i )T = 2 n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaaGOmamaaCaaaleqabaGaamOBaaaaaaa@41FF@

[5.0.6]

2. i=0 n (1) i (T n i )T =0    for  n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgaaaGccaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaaGimaiaabAgacaqG8dGaaeOCaiaad6gacqGH+aGpcaaIWaaaaa@4B15@

[5.0.7]

3. i=m n (T i m )T =(T n+1 m+1 )T    for  m<n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaadMgaaeaacaWGTbaaaiaacMcaaSqaaiaadMgacqGH9aqpcaWGTbaabaGaamOBaaqdcqGHris5aOGaeyypa0JaaiikauaabeqaceaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaad2gacqGHRaWkcaaIXaaaaiaacMcacaqGMbGaaei=aiaabkhacaWGTbGaeyipaWJaamOBaaaa@4D25@

[5.0.8]

Proof:  

1.   2 n = (1+1) n = i=0 n (T n i )T 1 ni 1 i = i=0 n (T n i )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCaaaleqabaGaamOBaaaakiabg2da9iaacIcacaaIXaGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGH9aqpdaaeWbqaaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadMgaaaGaaiykaaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaaIXaWaaWbaaSqabeaacaWGUbGaeyOeI0IaamyAaaaakiaaigdadaahaaWcbeqaaiaadMgaaaGccqGH9aqpdaaeWbqaaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadMgaaaGaaiykaaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@57BA@ .

2.   0= (11) n = i=0 n (T n i )T 1 ni (1) i = i=0 n (1) i (T n i )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iaacIcacaaIXaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGH9aqpdaaeWbqaaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadMgaaaGaaiykaaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaaIXaWaaWbaaSqabeaacaWGUbGaeyOeI0IaamyAaaaakiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaaaakiabg2da9maaqahabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaOGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaa@5D05@ .

3.  

i=m n (T i m )T =(T m m )T+ i=m+1 n (T i m )T = [5.0.5] (T m m )T+ i=m+1 n (T i+1 m+1 )T(T i m+1 )T =(T m m )T(T m+1 m+1 )T+(T n+1 m+1 )T(telescope trick) =11+(T n+1 m+1 )T=(T n+1 m+1 )T. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaadMgaaeaacaWGTbaaaiaacMcaaSqaaiaadMgacqGH9aqpcaWGTbaabaGaamOBaaqdcqGHris5aaGcbaGaeyypa0JaaiikauaabeqaceaaaeaacaWGTbaabaGaamyBaaaacaGGPaGaey4kaSYaaabCaeaacaGGOaqbaeqabiqaaaqaaiaadMgaaeaacaWGTbaaaiaacMcaaSqaaiaadMgacqGH9aqpcaWGTbGaey4kaSIaaGymaaqaaiaad6gaa0GaeyyeIuoaaOqaaaqaamaaxababaGaeyypa0daleaacaGGBbGaaGynaiaac6cacaaIWaGaaiOlaiaaiwdacaGGDbaabeaakiaacIcafaqabeGabaaabaGaamyBaaqaaiaad2gaaaGaaiykaiabgUcaRmaaqahabaGaaiikauaabeqaceaaaeaacaWGPbGaey4kaSIaaGymaaqaaiaad2gacqGHRaWkcaaIXaaaaiaacMcacqGHsislcaGGOaqbaeqabiqaaaqaaiaadMgaaeaacaWGTbGaey4kaSIaaGymaaaacaGGPaaaleaacaWGPbGaeyypa0JaamyBaiabgUcaRiaaigdaaeaacaWGUbaaniabggHiLdaakeaaaeaacqGH9aqpcaGGOaqbaeqabiqaaaqaaiaad2gaaeaacaWGTbaaaiaacMcacqGHsislcaGGOaqbaeqabiqaaaqaaiaad2gacqGHRaWkcaaIXaaabaGaamyBaiabgUcaRiaaigdaaaGaaiykaiabgUcaRiaacIcafaqabeGabaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGTbGaey4kaSIaaGymaaaacaGGPaGaaeikaiaabsfacaqGLbGaaeiBaiaabwgacaqGZbGaae4Aaiaab+gacaqGWbGaaeiDaiaabkhacaqGPbGaae4yaiaabUgacaqGPaaabaaabaGaeyypa0JaaGymaiabgkHiTiaaigdacqGHRaWkcaGGOaqbaeqabiqaaaqaaiaad6gacqGHRaWkcaaIXaaabaGaamyBaiabgUcaRiaaigdaaaGaaiykaiabg2da9iaacIcafaqabeGabaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGTbGaey4kaSIaaGymaaaacaGGPaaaaaaa@A16B@

These results could also be traced in Pascal's triangle:

  1. Every row sum is a power of 2 with the line number for the exponent.
     
  2. Every alterning row sum equals zero.
     
  1. The result of each diagonal sum is noted underneath to the right of the last addend.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

Another important field for the binomial coefficients is combinatorics. A key sentence here is the following:

Proposition:  

Each set M with n elements has exactly (T n i )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaaaaa@3930@ many subsets with i elements:

{N|NMN=i}= (T n i )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaacUhacaWGobGaaiiFaiaad6eacqGHckcZcaWGnbGaey4jIKTaaiiFaiaad6eacaGG8bGaeyypa0JaamyAaiaac2hacaGG8bGaeyypa0JaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaaaaa@4A1F@
[5.0.9]

Proof:  The case i = 0 is nearly done: M has only one subset with 0 elements, namely the empty set, so the assertion follows from [5.0.2]. For i>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg6da+iaaicdaaaa@3899@ we prove by induction:

  • 0A : MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeacaGG6aaaaa@39AB@ The precondition i>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg6da+iaaicdaaaa@3899@ leaves nothing to do here, because in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJkaad6gaaaa@397F@ is now contradictory.

  • nAn+1A: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aaaaa@411B@ Let M be a set with n + 1 elements, say M={ a 1 ,, a n , a n+1 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUhacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiyFaaaa@4485@ . We separate the system of all subsets N of M having i elements into two disjoint parts:
     

    • Those N, that do not contain a n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@398B@ . But these are exactly all i-subsets of the n-set { a 1 , a n } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaamyyamaaBaaaleaacaWGUbaabeaakiaac2haaaa@3DA1@ . According to the induction hypothesis there are (T n i )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaaaaa@3930@ many of them.

    • Those N, that do contain a n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@398B@ . Let us assign the set N\{ a n+1 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaacYfacaGG7bGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGG9baaaa@3D48@ to each of those. This is obviously a bijective mapping onto the system of all (i − 1)-subsets of { a 1 , a n } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaamyyamaaBaaaleaacaWGUbaabeaakiaac2haaaa@3DA1@ , so we have (T n i1 )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaiabgkHiTiaaigdaaaGaaiykaaaa@3AD8@ many sets in this group.

    All in all (cf. [5.0.5]) M has now (T n i )T+(T n i1 )T=(T n+1 i )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaey4kaSIaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaiabgkHiTiaaigdaaaGaaiykaiabg2da9iaacIcafaqabeGabaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGPbaaaiaacMcaaaa@44EB@ many subsets with i elements.

From this and [5.0.6] we can deduce a statement on the number of all subsest of M, i.e. the power of the power set of M.

Each n-set M has exactly i=0 n (T n i )T = 2 n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaaGOmamaaCaaaleqabaGaamOBaaaaaaa@41FF@ many subsets:

P(M)= 2 n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadcfacaGGOaGaamytaiaacMcacaGG8bGaeyypa0JaaGOmamaaCaaaleqabaGaamOBaaaaaaa@3DCB@
[5.0.10]