The Fibonacci Sequence


The Fibonacci Sequence is by far the most famous and probably the oldest recursive sequence orginating from a problem published 1202 by Leonardo Pisano Fibonacci in his book Liber abacci.

It also represents the first and thus simplified attempt to describe dynamic structures within mathematics:

A man puts a young pair of rabbits into a closed garden. After two months they start to produce offspring: two little rabbits every month. How many pairs of rabbits live in that garden after a year's time?

Counting the rabbits for, let's say seven months, we get the following table (k denotes a juvenile, k a one month old, K an adult rabbit):

month parents and juveniles one month old rabbits pairs
1
kk  
1
2
  kk
1
3
KK kk  
2
4
KK kk kk
3
5
KK kk
KK kk
kk
5
6
KK kk
KK kk
KK kk
kk
kk
8
7
KK kk
KK kk
KK kk
KK kk
KK kk
kk
kk

kk
13

Obviously the number of pairs coincides with the first seven Fibonacci numbers. From that we can solve the rabbit problem with the twelfth Fibonacci number: 144.

Besides this modest start of population dynamics the Fibonacci numbers unfold a surprising richness of mathematical coherence. There is for example a relation to the golden section

 i

The golden section is the solution of a partition task: A given line of length s>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg6da+iaaicdaaaa@38A3@ is to be devided into two parts, so that the ratio 'whole line to bigger segment' is exactly the same as 'bigger segment to smaller one'.

Let the given line be the interval [0,s] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaam4Caiaac2faaaa@3A0B@ . Then we have to find a real number x from ]0,s[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaaicdacaGGSaGaam4CaiaacUfaaaa@3A0B@ satisfying

s x = x sx . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGZbaabaGaamiEaaaacqGH9aqpdaWcaaqaaiaadIhaaeaacaWGZbGaeyOeI0IaamiEaaaaaaa@3CE3@

Thus our problem is solved as soon as we could solve the quadratic equation s 2 sx= x 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadohacaWG4bGaeyypa0JaamiEamaaCaaaleqabaGaaGOmaaaaaaa@3DA2@ for x. With x]0,s[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaaIWaGaaiilaiaadohacaGGBbaaaa@3C8C@ however we get from the p/q-formula:

x 2 +sx s 2 =0 x= s 2 + s 2 4 + s 2 x= s 2 + s 2 5 x=s 1+ 5 2 x=sϕ. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadohacaWG4bGaeyOeI0Iaam4CamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaicdaaeaacqGHuhY2aeaacaWG4bGaeyypa0JaeyOeI0YaaSaaaeaacaWGZbaabaGaaGOmaaaacqGHRaWkdaGcaaqaamaalaaabaGaam4CamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdaaaGaey4kaSIaam4CamaaCaaaleqabaGaaGOmaaaaaeqaaaGcbaGaeyi1HSnabaGaamiEaiabg2da9iabgkHiTmaalaaabaGaam4CaaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaWGZbaabaGaaGOmaaaadaGcaaqaaiaaiwdaaSqabaaakeaacqGHuhY2aeaacaWG4bGaeyypa0Jaam4CaiabgwSixpaalaaabaGaeyOeI0IaaGymaiabgUcaRmaakaaabaGaaGynaaWcbeaaaOqaaiaaikdaaaaabaGaeyi1HSnabaGaamiEaiabg2da9iaadohacqGHflY1cqaHvpGAaaaaaa@6CCA@

So we get the value for x simply by multiplying the length s with the golden section number ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@37B5@ .

which we will use to find a non-recursive representation for the Fibonacci sequence. To that end we need the golden section numbers

Φ 1+ 5 2   und  ϕ 1+ 5 2 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaeyypa0ZaaSaaaeaacaaIXaGaey4kaSYaaOaaaeaacaaI1aaaleqaaaGcbaGaaGOmaaaacaqG1bGaaeOBaiaabsgacqaHvpGAcqGH9aqpdaWcaaqaaiabgkHiTiaaigdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaaakeaacaaIYaaaaaaa@4592@

Consider:

There are some interesting properties of the section numbers. We need the following ones for the remainder.

  • Φϕ=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGamaiMfA6agjabgkHiTiabew9aQjabg2da9iaaigdaaaa@3CFD@

  • Φϕ=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGamaiMfA6agjabgwSixlabew9aQjabg2da9iaaigdaaaa@3E5A@

  • (x Φ)(x+ϕ)= x 2 ( Φϕ)x Φϕ= x 2 x1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacqGHsislcWaGywOPdyKaaiykaiabgwSixlaacIcacaWG4bGaey4kaSIaeqy1dOMaaiykaiabg2da9iaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaGGOaGaeuOPdyKaeyOeI0Iaeqy1dOMaaiykaiaadIhacqGHsislcqqHMoGrcqGHflY1cqaHvpGAcqGH9aqpcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEaiabgkHiTiaaigdaaaa@5A85@

    From the last equation we see that Φ  and ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaeyDaiaab6gacaqGKbGaeyOeI0Iaeqy1dOgaaa@3CEC@ satisfy  x 2 x1=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhacqGHsislcaaIXaGaeyypa0JaaGimaaaa@3D2B@ , that means:

    Φ 2 = Φ+1 (ϕ) 2 =ϕ+1 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiabfA6agnaaCaaaleqabaGaaGOmaaaakiabg2da9iabfA6agjabgUcaRiaaigdaaeaacaGGOaGaeyOeI0Iaeqy1dOMaaiykamaaCaaaleqabaGaaGOmaaaakiabg2da9iabgkHiTiabew9aQjabgUcaRiaaigdaaaaaaa@46E0@

     

These preparations enable us to present a non-recursive version of the Fibonacci sequence.

Proposition:  Let ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ denote the Fibonacci sequence. Then we have:

( a n )=( Φ n (ϕ) n 5 ). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaaiikamaalaaabaGaeuOPdy0aaWbaaSqabeaacaWGUbaaaOGaeyOeI0IaaiikaiabgkHiTiabew9aQjaacMcadaahaaWcbeqaaiaad6gaaaaakeaadaGcaaqaaiaaiwdaaSqabaaaaOGaaiykaaaa@4571@

Proof:  We prove by induction. The two stage recursion however now needs a two step basis of induction.

  • 1A: Φ(ϕ) 5 = Φ+ϕ 5 = 1+ 5 1+ 5 2 5 =1= a 1 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgIGiolaadgeacaGG6aWaaSaaaeaacqqHMoGrcqGHsislcaGGOaGaeyOeI0Iaeqy1dOMaaiykaaqaamaakaaabaGaaGynaaWcbeaaaaGccqGH9aqpdaWcaaqaaiabfA6agjabgUcaRiabew9aQbqaamaakaaabaGaaGynaaWcbeaaaaGccqGH9aqpdaWcaaqaaiaaigdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccqGHsislcaaIXaGaey4kaSYaaOaaaeaacaaI1aaaleqaaaGcbaGaaGOmamaakaaabaGaaGynaaWcbeaaaaGccqGH9aqpcaaIXaGaeyypa0JaamyyamaaBaaaleaacaaIXaaabeaaaaa@5474@

  • 2A: Φ 2 (ϕ) 2 5 = Φ+1(ϕ+1) 5 = Φ+ϕ 5 =1= a 2 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgIGiolaadgeacaGG6aWaaSaaaeaacqqHMoGrdaahaaWcbeqaaiaaikdaaaGccqGHsislcaGGOaGaeyOeI0Iaeqy1dOMaaiykamaaCaaaleqabaGaaGOmaaaaaOqaamaakaaabaGaaGynaaWcbeaaaaGccqGH9aqpdaWcaaqaaiabfA6agjabgUcaRiaaigdacqGHsislcaGGOaGaeyOeI0Iaeqy1dOMaey4kaSIaaGymaiaacMcaaeaadaGcaaqaaiaaiwdaaSqabaaaaOGaeyypa0ZaaSaaaeaacqqHMoGrcqGHRaWkcqaHvpGAaeaadaGcaaqaaiaaiwdaaSqabaaaaOGaeyypa0JaaGymaiabg2da9iaadggadaWgaaWcbaGaaGOmaaqabaaaaa@5964@

  • nAn+1A: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aaaaa@411B@

    Φ n+2 (ϕ) n+2 5 = Φ n Φ 2 (ϕ) n (ϕ) 2 5 = Φ n ( Φ+1) (ϕ) n (ϕ+1) 5 = Φ n+1 + Φ n (ϕ) n+1 (ϕ) n 5 = Φ n+1 (ϕ) n+1 5 + Φ n (ϕ) n 5 = a n+1 + a n = a n+2 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaaaabaWaaSaaaeaacqqHMoGrdaahaaWcbeqaaiaad6gacqGHRaWkcaaIYaaaaOGaeyOeI0IaaiikaiabgkHiTiabew9aQjaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIYaaaaaGcbaWaaOaaaeaacaaI1aaaleqaaaaaaOqaaiabg2da9maalaaabaGaeuOPdy0aaWbaaSqabeaacaWGUbaaaOGaeuOPdy0aaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaiikaiabgkHiTiabew9aQjaacMcadaahaaWcbeqaaiaad6gaaaGccaGGOaGaeyOeI0Iaeqy1dOMaaiykamaaCaaaleqabaGaaGOmaaaaaOqaamaakaaabaGaaGynaaWcbeaaaaaakeaaaeaacqGH9aqpdaWcaaqaaiabfA6agnaaCaaaleqabaGaamOBaaaakiaacIcacqqHMoGrcqGHRaWkcaaIXaGaaiykaiabgkHiTiaacIcacqGHsislcqaHvpGAcaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiikaiabgkHiTiabew9aQjabgUcaRiaaigdacaGGPaaabaWaaOaaaeaacaaI1aaaleqaaaaaaOqaaaqaaiabg2da9maalaaabaGaeuOPdy0aaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgUcaRiabfA6agnaaCaaaleqabaGaamOBaaaakiabgkHiTiaacIcacqGHsislcqaHvpGAcaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgkHiTiaacIcacqGHsislcqaHvpGAcaGGPaWaaWbaaSqabeaacaWGUbaaaaGcbaWaaOaaaeaacaaI1aaaleqaaaaaaOqaaaqaaiabg2da9maalaaabaGaeuOPdy0aaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgkHiTiaacIcacqGHsislcqaHvpGAcaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaOqaamaakaaabaGaaGynaaWcbeaaaaGccqGHRaWkdaWcaaqaaiabfA6agnaaCaaaleqabaGaamOBaaaakiabgkHiTiaacIcacqGHsislcqaHvpGAcaGGPaWaaWbaaSqabeaacaWGUbaaaaGcbaWaaOaaaeaacaaI1aaaleqaaaaaaOqaaaqaaiabg2da9iaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWGUbaabeaaaOqaaaqaaiabg2da9iaadggadaWgaaWcbaGaamOBaiabgUcaRiaaikdaaeqaaaaaaaa@A6C0@

There is much more information on Fibonacci numbers on the net. This site e.g. is very comprehensive.