(R[X],+,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkfacaGGBbGaamiwaiaac2facaGGSaGaey4kaSIaaiilaiabgwSixlaacMcaaaa@3F41@ ist ein kommutativer Ring mit 1


Im Folgenden seien p=( a i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaacIcacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaaa@3B47@ , q=( b i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9iaacIcacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaaa@3B49@ und r=( c i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaacIcacaWGJbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaaa@3B4C@ drei beliebige Polynome über R.

  • + MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaScaaa@36CC@ ist kommutativ:

    Da + MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaScaaa@36CC@ auf R kommutativ ist, hat man a i + b i = b i + a i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadkgadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWGPbaabeaaaaa@40D4@ für alle i, und damit:

    p+q=( a i + b i )=( b i + a i )=q+p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgUcaRiaadghacqGH9aqpcaGGOaGaamyyamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadkgadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyypa0JaaiikaiaadkgadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaadghacqGHRaWkcaWGWbaaaa@4B36@ .

  • + MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaScaaa@36CC@ ist assoziativ:

    + MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaScaaa@36CC@ ist auf R assoziativ, d.h. ( a i + b i )+ c i = b i +( a i + c i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabgUcaRiaadogadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaaiikaiaadggadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaaa@496C@ für alle i. Also ist auch:

    (p+q)+r=(( a i + b i )+ c i )=( b i +( a i + c i ))=p+(q+r) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadchacqGHRaWkcaWGXbGaaiykaiabgUcaRiaadkhacqGH9aqpcaGGOaGaaiikaiaadggadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabgUcaRiaadogadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyypa0JaaiikaiaadkgadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaGGOaGaamyyamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadogadaWgaaWcbaGaamyAaaqabaGccaGGPaGaaiykaiabg2da9iaadchacqGHRaWkcaGGOaGaamyCaiabgUcaRiaadkhacaGGPaaaaa@5A28@ .

  • 0 ist neutrales Element bzgl. + MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaScaaa@36CC@ :

    Die Neutralität von 0 in R überträgt sich zu

    p+0=( a i +0)=( a i )=p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgUcaRiaaicdacqGH9aqpcaGGOaGaamyyamaaBaaaleaacaWGPbaabeaakiabgUcaRiaaicdacaGGPaGaeyypa0JaaiikaiaadggadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyypa0JaamiCaaaa@44E4@ .

  • ( a i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaadggadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@3A3A@ ist invers zu ( a i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@394D@ :

    In R gilt für alle i: a i + a i =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamyyamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadggadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaaaaa@3D8D@ , also hat man:

    ( a i )+( a i )=( a i + a i )=(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaadggadaWgaaWcbaGaamyAaaqabaGccaGGPaGaey4kaSIaaiikaiaadggadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyypa0JaaiikaiabgkHiTiaadggadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@4B9A@ ,

    und damit natürlich auch:

    ( a i )( b i )=( a i )+(( b i ))=( a i b i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyOeI0IaaiikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyypa0JaaiikaiaadggadaWgaaWcbaGaamyAaaqabaGccaGGPaGaey4kaSIaaiikaiabgkHiTiaacIcacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiaacMcacqGH9aqpcaGGOaGaamyyamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadkgadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@4FF4@ .

  • MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyXICnaaa@3834@ ist kommutativ:

    Da MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyXICnaaa@3834@ auf R kommutativ ist und, aufgrund der Kommutativität der Addition in R, die Reihenfolge der Summanden ohne Bedeutung ist, hat man hier:

    pq=( j+k=i a j b k )=( k+j=i b k a j )=qp MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgwSixlaadghacqGH9aqpcaGGOaWaaabuaeaacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaeyyXICTaamOyamaaBaaaleaacaWGRbaabeaaaeaacaWGQbGaey4kaSIaam4Aaiabg2da9iaadMgaaeqaniabggHiLdGccaGGPaGaeyypa0JaaiikamaaqafabaGaamOyamaaBaaaleaacaWGRbaabeaakiabgwSixlaadggadaWgaaWcbaGaamOAaaqabaaabaGaam4AaiabgUcaRiaadQgacqGH9aqpcaWGPbaabeqdcqGHris5aOGaaiykaiabg2da9iaadghacqGHflY1caWGWbaaaa@5E76@ .

  • MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyXICnaaa@3834@ ist assoziativ:

    Wir benötigen hier das Distributivgesetz in R. Außerdem dürfen wir wieder die Reihenfolge der Summanden verändern:

    (pq)r =( j+k=l a j b k )r =( l+m=i ( j+k=l a j b k ) c m ) =( j+k+m=i a j b k c m ) =( j+l=i a j ( k+m=l b k c m ) ) =p( k+m=l b k c m ) =p(qr). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabyGaaaaabaGaaiikaiaadchacqGHflY1caWGXbGaaiykaiabgwSixlaadkhaaeaacqGH9aqpcaGGOaWaaabuaeaacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaeyyXICTaamOyamaaBaaaleaacaWGRbaabeaaaeaacaWGQbGaey4kaSIaam4Aaiabg2da9iaadYgaaeqaniabggHiLdGccaGGPaGaeyyXICTaamOCaaqaaaqaaiabg2da9iaacIcadaaeqbqaaiaacIcadaaeqbqaaiaadggadaWgaaWcbaGaamOAaaqabaGccqGHflY1caWGIbWaaSbaaSqaaiaadUgaaeqaaaqaaiaadQgacqGHRaWkcaWGRbGaeyypa0JaamiBaaqab0GaeyyeIuoakiaacMcacqGHflY1caWGJbWaaSbaaSqaaiaad2gaaeqaaaqaaiaadYgacqGHRaWkcaWGTbGaeyypa0JaamyAaaqab0GaeyyeIuoakiaacMcaaeaaaeaacqGH9aqpcaGGOaWaaabuaeaacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaeyyXICTaamOyamaaBaaaleaacaWGRbaabeaakiabgwSixlaadogadaWgaaWcbaGaamyBaaqabaaabaGaamOAaiabgUcaRiaadUgacqGHRaWkcaWGTbGaeyypa0JaamyAaaqab0GaeyyeIuoakiaacMcaaeaaaeaacqGH9aqpcaGGOaWaaabuaeaacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaaiikamaaqafabaGaamOyamaaBaaaleaacaWGRbaabeaakiabgwSixlaadogadaWgaaWcbaGaamyBaaqabaaabaGaam4AaiabgUcaRiaad2gacqGH9aqpcaWGSbaabeqdcqGHris5aOGaaiykaaWcbaGaamOAaiabgUcaRiaadYgacqGH9aqpcaWGPbaabeqdcqGHris5aOGaaiykaaqaaaqaaiabg2da9iaadchacqGHflY1caGGOaWaaabuaeaacaWGIbWaaSbaaSqaaiaadUgaaeqaaOGaeyyXICTaam4yamaaBaaaleaacaWGTbaabeaaaeaacaWGRbGaey4kaSIaamyBaiabg2da9iaadYgaaeqaniabggHiLdGccaGGPaaabaaabaGaeyypa0JaamiCaiabgwSixlaacIcacaWGXbGaeyyXICTaamOCaiaacMcaaaaaaa@BA05@
  • 1 ist neutral bzgl. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyXICnaaa@3834@ :

    Beachtet man, dass bei dem konstanten Polynom 1 alle Folgenglieder mit einem Index 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImRaaGymaaaa@386B@ den Wert 0 haben und das erste Folgenglied (Index =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0JaaGimaaaa@37AA@ ) gleich 1 ist, erhält man mit der Neutralität von 1 in R sofort:

    p1=( j+k=i k=0 a j 1 )=( a i )=p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgwSixlaaigdacqGH9aqpcaGGOaWaaabuaeaacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaeyyXICTaaGymaaWcbaqbaeqabiqaaaqaaiaadQgacqGHRaWkcaWGRbGaeyypa0JaamyAaaqaaiaadUgacqGH9aqpcaaIWaaaaaqab0GaeyyeIuoakiaacMcacqGH9aqpcaGGOaGaamyyamaaBaaaleaacaWGPbaabeaakiaacMcacqGH9aqpcaWGWbaaaa@5156@ .

  • MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyXICnaaa@3834@ ist distributiv bzgl. + MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaScaaa@36CC@ :

    Wir benutzen das Distributivgesetz in R und ändern an geeigneter Stelle die Summationsreihenfolge:

    (p+q)r =( j+k=i ( a j + b j ) c k ) =( j+k=i ( a j c k + b j c k ) ) =( j+k=i a j c k + j+k=i b j c k ) =pr+qr. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqGaaaaabaGaaiikaiaadchacqGHRaWkcaWGXbGaaiykaiabgwSixlaadkhaaeaacqGH9aqpcaGGOaWaaabuaeaacaGGOaGaamyyamaaBaaaleaacaWGQbaabeaakiabgUcaRiaadkgadaWgaaWcbaGaamOAaaqabaaabaGaamOAaiabgUcaRiaadUgacqGH9aqpcaWGPbaabeqdcqGHris5aOGaaiykaiabgwSixlaadogadaWgaaWcbaGaam4AaaqabaGccaGGPaaabaaabaGaeyypa0JaaiikamaaqafabaGaaiikaiaadggadaWgaaWcbaGaamOAaaqabaGccaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGQbaabeaakiaadogadaWgaaWcbaGaam4AaaqabaGccaGGPaaaleaacaWGQbGaey4kaSIaam4Aaiabg2da9iaadMgaaeqaniabggHiLdGccaGGPaaabaaabaGaeyypa0JaaiikamaaqafabaGaamyyamaaBaaaleaacaWGQbaabeaakiaadogadaWgaaWcbaGaam4AaaqabaaabaGaamOAaiabgUcaRiaadUgacqGH9aqpcaWGPbaabeqdcqGHris5aOGaey4kaSYaaabuaeaacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaam4yamaaBaaaleaacaWGRbaabeaaaeaacaWGQbGaey4kaSIaam4Aaiabg2da9iaadMgaaeqaniabggHiLdGccaGGPaaabaaabaGaeyypa0JaamiCaiabgwSixlaadkhacqGHRaWkcaWGXbGaeyyXICTaamOCaaaaaaa@884F@

  • ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@37B6@ ist ein Ringhomomorphismus mit ϕ(1)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOMaaiikaiaaigdacaGGPaGaeyypa0JaaGymaaaa@3B8B@ :

    Wir wählen zunächst ein nmax{grad   p,   grad   q,   0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkGac2gacaGGHbGaaiiEaiaacUhacaWGNbGaamOCaiaadggacaWGKbGaaGjbVlaadchacaGGSaGaaGjbVlaadEgacaWGYbGaamyyaiaadsgacaaMe8UaamyCaiaacYcacaaMe8UaaGimaiaac2haaaa@4F14@ . Mit dem Distributivgesetz in F(R) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrcaGGOaGaamOuaiaacMcaaaa@43FD@ und der Kommutativität der Funktionenaddition ergibt sich damit:

    ϕ(p+q) = i=0 n ( a i + b i ) X i = i=0 n a i X i + i=0 n b i X i =ϕ(p)+ϕ(q). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmGaaaqaaiabew9aQjaacIcacaWGWbGaey4kaSIaamyCaiaacMcaaeaacqGH9aqpdaaeWbqaaiaacIcacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGPbaabeaakiaacMcacaWGybWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaGcbaaabaGaeyypa0ZaaabCaeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaamiwamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRmaaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadIfadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaakeaaaeaacqGH9aqpcqaHvpGAcaGGOaGaamiCaiaacMcacqGHRaWkcqaHvpGAcaGGOaGaamyCaiaacMcaaaaaaa@6AED@

    Ist p=0      q=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaaicdacaaMe8UaeyikIOTaaGjbVlaadghacqGH9aqpcaaIWaaaaa@401F@ , so ist auch pq=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgwSixlaadghacqGH9aqpcaaIWaaaaa@3BDF@ und damit ϕ(pq)=0=ϕ(p)ϕ(q) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOMaaiikaiaadchacqGHflY1caWGXbGaaiykaiabg2da9iaaicdacqGH9aqpcqaHvpGAcaGGOaGaamiCaiaacMcacqGHflY1cqaHvpGAcaGGOaGaamyCaiaacMcaaaa@4A89@ . Wir dürfen also für n=grad   p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaadEgacaWGYbGaamyyaiaadsgacaaMe8UaamiCaaaa@3E17@ und m=grad   q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2da9iaadEgacaWGYbGaamyyaiaadsgacaaMe8UaamyCaaaa@3E17@ annehmen, dass n,m0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacYcacaWGTbGaeyyzImRaaGimaaaa@3AFF@ . Man hat also:

    ϕ(pq) = i=0 n+m ( j+k=i a j b k ) X i =( j=0 n a j X j )( k=0 m b k X k ) =ϕ(p)ϕ(q). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmGaaaqaaiabew9aQjaacIcacaWGWbGaeyyXICTaamyCaiaacMcaaeaacqGH9aqpdaaeWbqaaiaacIcadaaeqbqaaiaadggadaWgaaWcbaGaamOAaaqabaGccqGHflY1caWGIbWaaSbaaSqaaiaadUgaaeqaaaqaaiaadQgacqGHRaWkcaWGRbGaeyypa0JaamyAaaqab0GaeyyeIuoakiaacMcacaWGybWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgUcaRiaad2gaa0GaeyyeIuoaaOqaaaqaaiabg2da9iaacIcadaaeWbqaaiaadggadaWgaaWcbaGaamOAaaqabaGccaWGybWaaWbaaSqabeaacaWGQbaaaaqaaiaadQgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiykaiabgwSixlaacIcadaaeWbqaaiaadkgadaWgaaWcbaGaam4AaaqabaGccaWGybWaaWbaaSqabeaacaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaamyBaaqdcqGHris5aOGaaiykaaqaaaqaaiabg2da9iabew9aQjaacIcacaWGWbGaaiykaiabgwSixlabew9aQjaacIcacaWGXbGaaiykaaaaaaa@7BEB@

    Schließlich ist offensichtlich ϕ(1)= i=0 0 1 X i =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOMaaiikaiaaigdacaGGPaGaeyypa0ZaaabCaeaacaaIXaGaeyyXICTaamiwamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaaicdaa0GaeyyeIuoakiabg2da9iaaigdaaaa@4737@ .

  • Die Aussagen über die Moduleigenschaften sind mit den (stärkeren) Ringeigenschaften bereits mitbewiesen.