Exkurs: Die elementarsymmetrischen Funktionen


In diesem Exkurs untersuchen wir die sog. elementarsymmetrischen Funktionen des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3878@ , insbesondere ihren Bezug zum Satz des Viëta.

Bei der Formulierung der Funktionsvorschriften von

s 1 ,, s n : n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4CamaaBaaaleaacaWGUbaabeaakiaacQdacqWIDesOdaahaaWcbeqaaiaad6gaaaGccqGHsgIRcqWIDesOaaa@4329@ .

benutzen wir die folgenden Teilmengen der Potenzmenge 𝒫({1,,n}) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacIcacaGG7bGaaGymaiaabYcacqGHMacVcaGGSaGaamOBaiaac2hacaGGPaaaaa@3EB1@ : Für 1in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOcaWGUbaaaa@3BEE@ sei

𝒫 i {A{1,,n}|A   besitzt genau   i   viele Elemente} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaakiabg2da9iaacUhacaWGbbGaeyOGIWSaai4EaiaaigdacaGGSaGaeSOjGSKaaiilaiaad6gacaGG9bGaaiiFaiaadgeacaaMe8UaaeOyaiaabwgacaqGZbGaaeyAaiaabshacaqG6bGaaeiDaiaabccacaqGNbGaaeyzaiaab6gacaqGHbGaaeyDaiaaysW7caWGPbGaaGjbVlaabAhacaqGPbGaaeyzaiaabYgacaqGLbGaaeiiaiaabweacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshacaqGLbGaaiyFaaaa@639E@ .

So ist z.B. in 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3842@ :   𝒫 1 ={{1},{2},{3}} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIXaaabeaakiabg2da9iaacUhacaGG7bGaaGymaiaac2hacaGGSaGaai4EaiaaikdacaGG9bGaaiilaiaacUhacaaIZaGaaiyFaiaac2haaaa@4448@ ,   𝒫 2 ={{1,2},{1,3},{2,3}} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIYaaabeaakiabg2da9iaacUhacaGG7bGaaGymaiaacYcacaaIYaGaaiyFaiaacYcacaGG7bGaaGymaiaacYcacaaIZaGaaiyFaiaacYcacaGG7bGaaGOmaiaacYcacaaIZaGaaiyFaiaac2haaaa@488D@ und   𝒫 3 ={{1,2,3}} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIZaaabeaakiabg2da9iaacUhacaGG7bGaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGG9bGaaiyFaaaa@404A@ .

Für 1in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOcaWGUbaaaa@3BEE@ definieren wir jetzt

s i ( x 1 ,, x n ) { j 1 ,, j i } 𝒫 i x j 1 x j i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWGPbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9maaqafabaGaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgwSixlablAciljabgwSixlaadIhadaWgaaWcbaGaamOAamaaBaaameaacaWGPbaabeaaaSqabaaabaGaai4EaiaadQgadaWgaaadbaGaaGymaaqabaWccaGGSaGaeSOjGSKaaiilaiaadQgadaWgaaadbaGaamyAaaqabaWccaGG9bGaeyicI4SaamiuamaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaaa@5B12@ .

Man beachte, dass das Produkt x j 1 x j i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgwSixlablAciljabgwSixlaadIhadaWgaaWcbaGaamOAamaaBaaameaacaWGPbaabeaaaSqabaaaaa@41F1@ nicht von der Reihenfolge der Faktoren abhängt. s i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWGPbaabeaaaaa@37FA@ ist daher wohldefiniert.

Als Beispiel ermitteln wir die drei elementarsymmetrischen Funktionen des 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3842@ :

  • 𝒫 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIZaaabeaaaaa@37A6@ enthält nur ein Element, nämlich {1,2,3} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiyFaaaa@3B7C@ , so dass bei der Ermittlung von s 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaaIZaaabeaaaaa@37C9@ nur ein Summand anfällt, und zwar ein Produkt der Länge 3:

    s 3 ( x 1 , x 2 , x 3 )= x 1 x 2 x 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaaIZaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaamiEamaaBaaaleaacaaIYaaabeaakiabgwSixlaadIhadaWgaaWcbaGaaG4maaqabaaaaa@4BB6@
     
  • 𝒫 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIYaaabeaaaaa@37A5@ enthält drei Elemente, also treten drei Summanden auf; es sind Produkte der Länge 2:

    s 2 ( x 1 , x 2 , x 3 )= x 1 x 2 + x 1 x 3 + x 2 x 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaaIYaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaakiabgwSixlaadIhadaWgaaWcbaGaaG4maaqabaaaaa@5590@
     
  • 𝒫 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIXaaabeaaaaa@37A4@ schließlich enthält ebenfalls drei Elemente, die drei Summanden bestehen hier allerdings aus Produkten der Länge 1:

    s 1 ( x 1 , x 2 , x 3 )= x 1 + x 2 + x 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaaIXaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaaaaa@48E4@
     

Beachte:

  • s i ( x 1 ,, x n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWGPbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@3FF3@ ist die Summe aller Produkte der Länge i, die aus den Zahlen x 1 ,, x n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3C74@ gebildet werden können.

  • Mit s 0 ( x 1 ,, x n )1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaaIWaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9iaaigdaaaa@4180@ führt man meist eine weitere elementarsymmetrische Funktion des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3878@ ein. Wir benutzen sie hier nicht.

  • Gelegentlich schreiben wir s n,i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWGUbGaaiilaiaadMgaaeqaaaaa@399D@ statt s i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWGPbaabeaaaaa@37FA@ (und 𝒫 n,i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbGaaiilaiaadMgaaeqaaaaa@397A@ statt 𝒫 i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaaaaa@37D7@ ) falls der Bezug zu n nicht klar genug aus dem Kontext hervorgeht.

  • Alle Ausführungen in diesem Exkurs gelten uneingeschränkt auch im komplexen Fall, also für die analog einzuführbaren elementarsymmetrischen Funktionen des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHm6aaWbaaSqabeaacaWGUbaaaaaa@385F@ .

Der Begriff "symmetrisch" bedeutet bei diesen Funktionen: Jede Umsortierung von x 1 ,, x n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3C74@ liefert denselben Funktionswert wie zuvor.

Bemerkung:  Ist σ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37AB@ eine beliebige Permutation von 1,,n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaacYcacqWIMaYscaGGSaGaamOBaaaa@3A18@ , so ist

s i ( x σ(1) ,, x σ(n) )= s i ( x 1 ,, x n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWGPbaabeaakiaacIcacaWG4bWaaSbaaSqaaiabeo8aZjaacIcacaaIXaGaaiykaaqabaGccaGGSaGaeSOjGSKaaiilaiaadIhadaWgaaWcbaGaeq4WdmNaaiikaiaad6gacaGGPaaabeaakiaacMcacqGH9aqpcaWGZbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadIhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@513C@
[4.0.1]

Beweis:   σ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37AB@ ist eine bijektive Abbildung von {1,,n} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaaigdacaGGSaGaeSOjGSKaaiilaiaad6gacaGG9baaaa@3C18@ auf sich selbst. Durch die Festsetzung

σ (A){σ(j)|jA} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaWbaaSqabeaacqGHxiIkaaGccaGGOaGaamyqaiaacMcacqGH9aqpcaGG7bGaeq4WdmNaaiikaiaadQgacaGGPaGaaiiFaiaadQgacqGHiiIZcaWGbbGaaiyFaaaa@463A@

induziert σ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37AB@ eine Bijektion σ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaWbaaSqabeaacqGHxiIkaaaaaa@38C7@ von 𝒫 i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaaaaa@37D7@ auf sich selbst, denn

  • jedes σ (A){1,,n} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaWbaaSqabeaacqGHxiIkaaGccaGGOaGaamyqaiaacMcacqGHckcZcaGG7bGaaGymaiaacYcacqWIMaYscaGGSaGaamOBaiaac2haaaa@431C@ enthält genau i viele Elemente.

  • σ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaWbaaSqabeaacqGHxiIkaaaaaa@38C7@ ist injektiv: Ist σ (A)= σ (B) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaWbaaSqabeaacqGHxiIkaaGccaGGOaGaamyqaiaacMcacqGH9aqpcqaHdpWCdaahaaWcbeqaaiabgEHiQaaakiaacIcacaWGcbGaaiykaaaa@40FF@ für A,B 𝒫 i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaacYcacaWGcbGaeyicI4SaamiuamaaBaaaleaacaWGPbaabeaaaaa@3B98@ , so gilt

    jAσ(j) σ (A)= σ (B)jB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgIGiolaadgeacaaMf8Uaeyi1HSTaaGzbVlabeo8aZjaacIcacaWGQbGaaiykaiabgIGiolabeo8aZnaaCaaaleqabaGaey4fIOcaaOGaaiikaiaadgeacaGGPaGaeyypa0Jaeq4Wdm3aaWbaaSqabeaacqGHxiIkaaGccaGGOaGaamOqaiaacMcacaaMf8Uaeyi1HSTaaGzbVlaadQgacqGHiiIZcaWGcbaaaa@57F1@ .

     
  • σ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaWbaaSqabeaacqGHxiIkaaaaaa@38C7@ ist surjektiv, denn jedes A 𝒫 i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgIGiolaadcfadaWgaaWcbaGaamyAaaqabaaaaa@3A21@ besitzt ein Urbild:

    σ ({ σ 1 (j)|jA})={σ( σ 1 (j))|jA}=A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaWbaaSqabeaacqGHxiIkaaGccaGGOaGaai4Eaiabeo8aZnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWGQbGaaiykaiaacYhacaWGQbGaeyicI4Saamyqaiaac2hacaGGPaGaeyypa0Jaai4Eaiabeo8aZjaacIcacqaHdpWCdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaamOAaiaacMcacaGGPaGaaiiFaiaadQgacqGHiiIZcaWGbbGaaiyFaiabg2da9iaadgeaaaa@585E@ .
     

Also ist 𝒫 i ={ σ (A)|A 𝒫 i }= 𝒫 i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDaaaleaacaWGPbaabaGaey4fIOcaaOGaeyypa0Jaai4Eaiabeo8aZnaaCaaaleqabaGaey4fIOcaaOGaaiikaiaadgeacaGGPaGaaiiFaiaadgeacqGHiiIZcaWGqbWaaSbaaSqaaiaadMgaaeqaaOGaaiyFaiabg2da9iaadcfadaWgaaWcbaGaamyAaaqabaaaaa@4917@ und damit:

s i ( x σ(1) ,, x σ(n) ) = { j 1 ,, j i } 𝒫 i x σ( j 1 ) x σ( j i ) = { j 1 ,, j i } 𝒫 i x j 1 x j i = s i ( x 1 ,, x n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaadohadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamiEamaaBaaaleaacqaHdpWCcaGGOaGaaGymaiaacMcaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiabeo8aZjaacIcacaWGUbGaaiykaaqabaGccaGGPaaabaGaeyypa0ZaaabuaeaacaWG4bWaaSbaaSqaaiabeo8aZjaacIcacaWGQbWaaSbaaWqaaiaaigdaaeqaaSGaaiykaaqabaGccqGHflY1cqWIMaYscqGHflY1caWG4bWaaSbaaSqaaiabeo8aZjaacIcacaWGQbWaaSbaaWqaaiaadMgaaeqaaSGaaiykaaqabaaabaGaai4EaiaadQgadaWgaaadbaGaaGymaaqabaWccaGGSaGaeSOjGSKaaiilaiaadQgadaWgaaadbaGaamyAaaqabaWccaGG9bGaeyicI4SaamiuamaaBaaameaacaWGPbaabeaaaSqab0GaeyyeIuoaaOqaaaqaaiabg2da9maaqafabaGaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgwSixlablAciljabgwSixlaadIhadaWgaaWcbaGaamOAamaaBaaameaacaWGPbaabeaaaSqabaaabaGaai4EaiaadQgadaWgaaadbaGaaGymaaqabaWccaGGSaGaeSOjGSKaaiilaiaadQgadaWgaaadbaGaamyAaaqabaWccaGG9bGaeyicI4SaamiuamaaDaaameaacaWGPbaabaGaey4fIOcaaaWcbeqdcqGHris5aaGcbaaabaGaeyypa0Jaam4CamaaBaaaleaacaWGPbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaaaaa@8EC8@

Zur Vorbereitung des Viëtaschen Satzes notieren wir zunächst einige Eigenschaften der Funktion s i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWGPbaabeaaaaa@37FA@ .

Bemerkung:  

  1. s 1 ( x 1 ,, x n )= x 1 ++ x n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaaIXaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9iaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcaWG4bWaaSbaaSqaaiaad6gaaeqaaaaa@47B6@

[4.0.2]
  1. s n ( x 1 ,, x n )= x 1 x n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWGUbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9iaadIhadaWgaaWcbaGaaGymaaqabaGccqGHflY1cqWIMaYscqGHflY1caWG4bWaaSbaaSqaaiaad6gaaeqaaaaa@4ABE@

[4.0.3]
Für 1<i<n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgYda8iaadMgacqGH8aapcaWGUbGaey4kaSIaaGymaaaa@3C29@ gilt die folgende Rekursionsformel:
  1. s n+1,i ( x 1 ,, x n+1 )= s n,i ( x 1 ,, x n )+ s n,i1 ( x 1 ,, x n ) x n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWGUbGaey4kaSIaaGymaiaacYcacaWGPbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacMcacqGH9aqpcaWGZbWaaSbaaSqaaiaad6gacaGGSaGaamyAaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGUbaabeaakiaacMcacqGHRaWkcaWGZbWaaSbaaSqaaiaad6gacaGGSaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadIhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyyXICTaamiEamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@65BF@

[4.0.4]

Beweis:  

1.   Folgt direkt aus 𝒫 1 ={{1},,{n}} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIXaaabeaakiabg2da9iaacUhacaGG7bGaaGymaiaac2hacaGGSaGaeSOjGSKaaiilaiaacUhacaWGUbGaaiyFaiaac2haaaa@42E4@ .

2.   Ergibt sich mit 𝒫 n ={{1,,n}} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiabg2da9iaacUhacaGG7bGaaGymaiaacYcacqWIMaYscaGGSaGaamOBaiaac2hacaGG9baaaa@411C@ .

3.   Die disjunkte Vereinigung

 i

Eine Vereinigung AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgQIiilaadkeaaaa@3915@ heißt disjunkt falls die Partnermengen elementfremd sind, also AB= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgMIihlaadkeacqGH9aqpcqGHfiIXaaa@3B92@ ist.

𝒫 n+1,i ={A 𝒫 n+1,i |n+1A}{A 𝒫 n+1,i |n+1A} = 𝒫 n,i {A{n+1}|A 𝒫 n,i1 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadcfadaWgaaWcbaGaamOBaiabgUcaRiaaigdacaGGSaGaamyAaaqabaaakeaacqGH9aqpcaGG7bGaamyqaiabgIGiolaadcfadaWgaaWcbaGaamOBaiabgUcaRiaaigdacaGGSaGaamyAaaqabaGccaGG8bGaamOBaiabgUcaRiaaigdacqGHjiYZcaWGbbGaaiyFaiabgQIiilaacUhacaWGbbGaeyicI4SaamiuamaaBaaaleaacaWGUbGaey4kaSIaaGymaiaacYcacaWGPbaabeaakiaacYhacaWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG9baabaaabaGaeyypa0JaamiuamaaBaaaleaacaWGUbGaaiilaiaadMgaaeqaaOGaeyOkIGSaai4EaiaadgeacqGHQicYcaGG7bGaamOBaiabgUcaRiaaigdacaGG9bGaaiiFaiaadgeacqGHiiIZcaWGqbWaaSbaaSqaaiaad6gacaGGSaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiyFaaaaaaa@7458@

erlaubt es, die Summe { j 1 ,, j i } 𝒫 n+1,i x j 1 x j i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeaacaWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeyyXICTaeSOjGSKaeyyXICTaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaeaacaGG7bGaamOAamaaBaaameaacaaIXaaabeaaliaacYcacqWIMaYscaGGSaGaamOAamaaBaaameaacaWGPbaabeaaliaac2hacqGHiiIZcaWGqbWaaSbaaWqaaiaad6gacqGHRaWkcaaIXaGaaiilaiaadMgaaeqaaaWcbeqdcqGHris5aaaa@5341@ in zwei Summanden aufzuteilen:

s n+1,i ( x 1 ,, x n+1 ) = { j 1 ,, j i } 𝒫 n+1,i x j 1 x j i = { j 1 ,, j i } 𝒫 n,i x j 1 x j i + { j 1 ,, j i } 𝒫 n,i1 x j 1 x j i x n+1 = s n,i ( x 1 ,, x n )+ s n,i1 ( x 1 ,, x n ) x n+1 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaadohadaWgaaWcbaGaamOBaiabgUcaRiaaigdacaGGSaGaamyAaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGPaaabaGaeyypa0ZaaabuaeaacaWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeyyXICTaeSOjGSKaeyyXICTaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaeaacaGG7bGaamOAamaaBaaameaacaaIXaaabeaaliaacYcacqWIMaYscaGGSaGaamOAamaaBaaameaacaWGPbaabeaaliaac2hacqGHiiIZcaWGqbWaaSbaaWqaaiaad6gacqGHRaWkcaaIXaGaaiilaiaadMgaaeqaaaWcbeqdcqGHris5aaGcbaaabaGaeyypa0ZaaabuaeaacaWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaaaleqaaOGaeyyXICTaeSOjGSKaeyyXICTaamiEamaaBaaaleaacaWGQbWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaeaacaGG7bGaamOAamaaBaaameaacaaIXaaabeaaliaacYcacqWIMaYscaGGSaGaamOAamaaBaaameaacaWGPbaabeaaliaac2hacqGHiiIZcaWGqbWaaSbaaWqaaiaad6gacaGGSaGaamyAaaqabaaaleqaniabggHiLdGccqGHRaWkdaaeqbqaaiaadIhadaWgaaWcbaGaamOAamaaBaaameaacaaIXaaabeaaaSqabaGccqGHflY1cqWIMaYscqGHflY1caWG4bWaaSbaaSqaaiaadQgadaWgaaadbaGaamyAaaqabaaaleqaaOGaeyyXICTaamiEamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaabaGaai4EaiaadQgadaWgaaadbaGaaGymaaqabaWccaGGSaGaeSOjGSKaaiilaiaadQgadaWgaaadbaGaamyAaaqabaWccaGG9bGaeyicI4SaamiuamaaBaaameaacaWGUbGaaiilaiaadMgacqGHsislcaaIXaaabeaaaSqab0GaeyyeIuoaaOqaaaqaaiabg2da9iaadohadaWgaaWcbaGaamOBaiaacYcacaWGPbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgUcaRiaadohadaWgaaWcbaGaamOBaiaacYcacaWGPbGaeyOeI0IaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGUbaabeaakiaacMcacqGHflY1caWG4bWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaaaaaa@C563@

Wir beweisen jetzt den Satz von Viëta. Er stellt einen Zusammenhang her zwischen den Lösungen und den Koeffizienten einer Gleichung n-ten Grades.

Bemerkung (Satz von Viëta):  

c 1 , c n    sind Lösungen von    x n + a n1 x n1 ++ a 1 x+ a 0 =0 a ni = (1) i s i ( c 1 , c n )für   1in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaaqaaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaam4yamaaBaaaleaacaWGUbaabeaakiaaysW7caqGZbGaaeyAaiaab6gacaqGKbGaaeiiaiaabYeacaqG2dGaae4CaiaabwhacaqGUbGaae4zaiaabwgacaqGUbGaaeiiaiaabAhacaqGVbGaaeOBaiaaysW7caWG4bWaaWbaaSqabeaacaWGUbaaaOGaey4kaSIaamyyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgUcaRiabl+UimjabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaakiabg2da9iaaicdaaeaacqGHuhY2caaMf8oabaGaamyyamaaBaaaleaacaWGUbGaeyOeI0IaamyAaaqabaGccqGH9aqpcaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgaaaGccaWGZbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaam4yamaaBaaaleaacaWGUbaabeaakiaacMcacaaMf8UaaeOzaiaabYpacaqGYbGaaGjbVlaaigdacqGHKjYOcaWGPbGaeyizImQaamOBaaaaaaa@86CF@
[4.0.5]

Beweis per Induktion:  

  • Ist n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@389C@ , so liegt eine lineare Gleichung vor. Man hat:

    c ist Lösung von x+ a 0 a 0 =c= (1) 1 s 1 (c) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgUcaRiaadggadaWgaaWcbaGaaGimaaqabaGccaaMf8Uaeyi1HSTaaGzbVlaadggadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcqGHsislcaWGJbGaeyypa0JaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaaIXaaaaOGaam4CamaaBaaaleaacaaIXaaabeaakiaacIcacaWGJbGaaiykaaaa@4CE9@ .
     
  • Sei jetzt x n+1 + a n x n ++ a 0 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaaleqabaGaamOBaaaakiabgUcaRiablAciljabgUcaRiaadggadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIWaaaaa@4540@  (*)  eine Gleichung vom Grad n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@3878@ . Sie hat genau dann die Lösungen c 1 ,, c n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4yamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3DE7@ , wenn der Gleichungsterm vollständig zerfällt:

    x n+1 + a n x n ++ a 0 =(x c 1 )(x c n )(x c n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaaleqabaGaamOBaaaakiabgUcaRiablAciljabgUcaRiaadggadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaGGOaGaamiEaiabgkHiTiaadogadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadIhacqGHsislcaWGJbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgwSixlaacIcacaWG4bGaeyOeI0Iaam4yamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGPaaaaa@5DE7@ .

    Setzt man x n + b n1 x n1 ++ b 1 x+ b 0 =(x c 1 )(x c n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamOBaaaakiabgUcaRiaadkgadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaamiEamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccqGHRaWkcqWIMaYscqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaadkgadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaGGOaGaamiEaiabgkHiTiaadogadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadIhacqGHsislcaWGJbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@5A18@ , so erhält man:

    x n+1 + a n x n ++ a 1 x+ a 0 = ( x n + b n1 x n1 ++ b 1 x+ b 0 )(x c n+1 ) = x n+1 + b n1 x n ++ b 1 x 2 + b 0 x c n+1 ( x n + b n1 x n1 ++ b 1 x+ b 0 ) = x n+1 +( b n1 c n+1 ) x n +( b n2 c n+1 b n1 ) x n1 ++( b 0 c n+1 b 1 )x c n+1 b 0 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaaabaGaamiEamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaaleqabaGaamOBaaaakiabgUcaRiablAciljabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaaaOqaaiabg2da9aqaaiaacIcacaWG4bWaaWbaaSqabeaacaWGUbaaaOGaey4kaSIaamOyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgUcaRiablAciljabgUcaRiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaacaaIWaaabeaakiaacMcacaGGOaGaamiEaiabgkHiTiaadogadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiykaaqaaiabg2da9aqaaiaadIhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaey4kaSIaamOyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbaaaOGaey4kaSIaeSOjGSKaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaicdaaeqaaOGaamiEaiabgkHiTiaadogadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiikaiaadIhadaahaaWcbeqaaiaad6gaaaGccqGHRaWkcaWGIbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaadIhadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaey4kaSIaeSOjGSKaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaqaaiabg2da9aqaaiaadIhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaey4kaSIaaiikaiaadkgadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGPaGaamiEamaaCaaaleqabaGaamOBaaaakiabgUcaRiaacIcacaWGIbWaaSbaaSqaaiaad6gacqGHsislcaaIYaaabeaakiabgkHiTiaadogadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaamOyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGPaGaamiEamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccqGHRaWkcqWIMaYscqGHRaWkcaGGOaGaamOyamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadogadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaamOyamaaBaaaleaacaaIXaaabeaakiaacMcacaWG4bGaeyOeI0Iaam4yamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaWGIbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@CA09@

    Ein Koeffizientenvergleich liefert nun die folgende Äquivalenz: c 1 ,, c n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4yamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3DE7@ lösen (*)

    { a n = b n1 c n+1 a ni = b ni1 c n+1 b ni für1in1 a 0 = c n+1 b 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaaqaaiabgsDiBdqaamaaceaabaqbaeaabmqaaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGH9aqpcaWGIbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgkHiTiaadogadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaWGUbGaeyOeI0IaamyAaaqabaGccqGH9aqpcaWGIbWaaSbaaSqaaiaad6gacqGHsislcaWGPbGaeyOeI0IaaGymaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaadkgadaWgaaWcbaGaamOBaiabgkHiTiaadMgaaeqaaOGaaGzbVlaabAgacaqG8dGaaeOCaiaaywW7caaIXaGaeyizImQaamyAaiabgsMiJkaad6gacqGHsislcaaIXaaabaGaamyyamaaBaaaleaacaaIWaaabeaakiabg2da9iabgkHiTiaadogadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaamOyamaaBaaaleaacaaIWaaabeaaaaaakiaawUhaaaaaaaa@6F5E@

    Die Koeffizienten b nj MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaaleaacaWGUbGaeyOeI0IaamOAaaqabaaaaa@39CA@ gehören zu einer Gleichung vom Grad n, die von c 1 ,, c n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4yamaaBaaaleaacaWGUbaabeaaaaa@3C4A@ gelöst wird. Also greift hier die Induktionsvoraussetzung. Mit [4.0.4] erhalten wir daher:

    a n = s n,1 ( c 1 ,, c n ) c n+1 = (1) 1 s n+1,1 ( c 1 ,, c n+1 ) a ni = (1) i+1 s n,i+1 ( c 1 ,, c n ) (1) i s n,i ( c 1 ,, c n ) c n+1 für1in1 = (1) i+1 s n+1, i+1 ( c 1 ,, c n+1 ) a 0 = c n+1 (1) n s n,n ( c 1 ,, c n )= (1) n+1 s n+1,n+1 ( c 1 ,, c n+1 ). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaOqaaiabg2da9iabgkHiTiaadohadaWgaaWcbaGaamOBaiaacYcacaaIXaaabeaakiaacIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGJbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgkHiTiaadogadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0JaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaaIXaaaaOGaam4CamaaBaaaleaacaWGUbGaey4kaSIaaGymaiaacYcacaaIXaaabeaakiaacIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGJbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacMcaaeaacaWGHbWaaSbaaSqaaiaad6gacqGHsislcaWGPbaabeaaaOqaaiabg2da9iaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaiabgUcaRiaaigdaaaGccaWGZbWaaSbaaSqaaiaad6gacaGGSaGaamyAaiabgUcaRiaaigdaaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadogadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyOeI0IaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaOGaam4CamaaBaaaleaacaWGUbGaaiilaiaadMgaaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadogadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyyXICTaam4yamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaaMf8UaaeOzaiaabYpacaqGYbGaaGzbVlaaigdacqGHKjYOcaWGPbGaeyizImQaamOBaiabgkHiTiaaigdaaeaaaeaacqGH9aqpcaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgacqGHRaWkcaaIXaaaaOGaam4CamaaBaaaleaacaWGUbGaey4kaSIaaGymaiaacYcacaWGPbGaey4kaSIaaGymaaqabaGccaGGOaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4yamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGPaaabaGaamyyamaaBaaaleaacaaIWaaabeaaaOqaaiabg2da9iabgkHiTiaadogadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaam4CamaaBaaaleaacaWGUbGaaiilaiaad6gaaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadogadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaadohadaWgaaWcbaGaamOBaiabgUcaRiaaigdacaGGSaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadogadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiykaaaaaaa@DF76@

    Dies schließlich läßt sich für 1in+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOcaWGUbGaey4kaSIaaGymaaaa@3D8B@ zusammenfassen zu

    a n+1i = (1) i s i ( c 1 ,, c n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaiabgkHiTiaadMgaaeqaaOGaeyypa0JaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaOGaam4CamaaBaaaleaacaWGPbaabeaakiaacIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGJbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacMcaaaa@4C19@ .

    Damit ist die Induktionsbehauptung bewiesen.

Für Gleichungen dritten Grades beispielsweise hat man nach Viëta:

c 1 , c 2 , c 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadogadaWgaaWcbaGaaG4maaqabaaaaa@3CCC@ sind Lösungen von x 3 + a 2 x 2 + a 1 x+ a 0 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaaG4maaaakiabgUcaRiaadggadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaaaa@44B1@
 
  a 2 = (1) 1 s 1 ( c 1 , c 2 , c 3 ) a 2 =( c 1 + c 2 + c 3 ) a 1 = (1) 2 s 2 ( c 1 , c 2 , c 3 ) a 1 = c 1 c 2 + c 1 c 3 + c 2 c 3 a 0 = (1) 3 s 3 ( c 1 , c 2 , c 3 ) a 0 = c 1 c 2 c 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmabaaaabaaabaGaamyyamaaBaaaleaacaaIYaaabeaakiabg2da9iaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaaGymaaaakiaadohadaWgaaWcbaGaaGymaaqabaGccaGGOaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadogadaWgaaWcbaGaaG4maaqabaGccaGGPaaabaaabaGaamyyamaaBaaaleaacaaIYaaabeaakiabg2da9iabgkHiTiaacIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaGGPaaabaGaeyi1HSTaaGzbVdqaaiaadggadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaGccaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIYaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaqaaiaaywW7cqGHuhY2caaMf8oabaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaadogadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWGJbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIXaaabeaakiabgwSixlaadogadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTaam4yamaaBaaaleaacaaIZaaabeaaaOqaaaqaaiaadggadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaaiodaaaGccaWGZbWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIYaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaqaaaqaaiaadggadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaam4yamaaBaaaleaacaaIYaaabeaakiabgwSixlaadogadaWgaaWcbaGaaG4maaqabaaaaaaa@A35C@