Beispiele zum Lagrange-Verfahren


Wir illustruieren das Lagrange-Verfahren an einigen Beispielen in () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFzecucaGGOaGaeSyhHeQaaiykaaaa@4365@ . Dazu geben wir jeweils Stützpunkte ( x 0 , y 0 ),,( x n , y n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIWaaabeaakiaacMcacaGGSaGaeSOjGSKaaiilaiaacIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@44A4@ vor, stellen die dazu gehörigen Lagrangeschen Grundpolynome

l k = i=0 ik n X x i x k x i = (X x 0 )(X x k1 )(X x k+1 )(X x n ) ( x k x 0 )( x k x k1 )( x k x k+1 )( x k x n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaWGRbaabeaakiabg2da9maarahabaWaaSaaaeaacaWGybGaeyOeI0IaamiEamaaBaaaleaacaWGPbaabeaaaOqaaiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaaaeaafaqabeGabaaabaGaamyAaiabg2da9iaaicdaaeaacaWGPbGaeyiyIKRaam4AaaaaaeaacaWGUbaaniabg+GivdGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaacMcacqGHflY1cqWIMaYscqGHflY1caGGOaGaamiwaiabgkHiTiaadIhadaWgaaWcbaGaam4AaiabgkHiTiaaigdaaeqaaOGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0IaamiEamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaGGPaGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadIfacqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaqaaiaacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaacMcacqGHflY1cqWIMaYscqGHflY1caGGOaGaamiEamaaBaaaleaacaWGRbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaam4AaiabgkHiTiaaigdaaeqaaOGaaiykaiabgwSixlaacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaGGPaGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaaaaa@9D98@

auf und ermitteln anschließend das Lagrangesche Interpolationspolynom  p= y 0 l 0 ++ y n l n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadMhadaWgaaWcbaGaaGimaaqabaGccaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaamyEamaaBaaaleaacaWGUbaabeaakiaadYgadaWgaaWcbaGaamOBaaqabaaaaa@42CF@ .

Beispiel:  

  • Für die vorgegebenen Stützpunkte (2 , 4) , (6 , 6) ist

    l 0 = X6 26 = 1 4 (X6) l 1 = X2 62 = 1 4 (X2). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadYgadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadIfacqGHsislcaaI2aaabaGaaGOmaiabgkHiTiaaiAdaaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaacaGGOaGaamiwaiabgkHiTiaaiAdacaGGPaaabaGaamiBamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaamiwaiabgkHiTiaaikdaaeaacaaI2aGaeyOeI0IaaGOmaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI0aaaaiaacIcacaWGybGaeyOeI0IaaGOmaiaacMcaaaaaaa@5392@

    Damit hat man: p=4 l 0 +6 l 1 = 4 4 (X6)+ 6 4 (X2)= 1 2 X+3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaaisdacaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaGOnaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaisdaaeaacaaI0aaaaiaacIcacaWGybGaeyOeI0IaaGOnaiaacMcacqGHRaWkdaWcaaqaaiaaiAdaaeaacaaI0aaaaiaacIcacaWGybGaeyOeI0IaaGOmaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadIfacqGHRaWkcaaIZaaaaa@50C0@ .

  • Für die vorgegebenen Stützpunkte (0 , 2) , (1 , 4) , (−1 , 6) ist

    l 0 = (X1)(X+1) (01)(0+1) =( X 2 1) l 1 = (X0)(X+1) (10)(1+1) = 1 2 ( X 2 +X) l 2 = (X0)(X1) (10)(11) = 1 2 ( X 2 X). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaaqaaiaadYgadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGymaiaacMcacqGHflY1caGGOaGaamiwaiabgUcaRiaaigdacaGGPaaabaGaaiikaiaaicdacqGHsislcaaIXaGaaiykaiabgwSixlaacIcacaaIWaGaey4kaSIaaGymaiaacMcaaaGaeyypa0JaeyOeI0IaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaaiykaaqaaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGimaiaacMcacqGHflY1caGGOaGaamiwaiabgUcaRiaaigdacaGGPaaabaGaaiikaiaaigdacqGHsislcaaIWaGaaiykaiabgwSixlaacIcacaaIXaGaey4kaSIaaGymaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadIfacaGGPaaabaGaamiBamaaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaaiikaiaadIfacqGHsislcaaIWaGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0IaaGymaiaacMcaaeaacaGGOaGaeyOeI0IaaGymaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiabgkHiTiaaigdacqGHsislcaaIXaGaaiykaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiwaiaacMcaaaaaaa@9197@

    Also:  p=2 l 0 +4 l 1 +6 l 2 =2( X 2 1)+ 4 2 ( X 2 +X)+ 6 2 ( X 2 X)=3 X 2 X+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaaikdacaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaGinaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaI2aGaamiBamaaBaaaleaacaaIYaaabeaakiabg2da9iabgkHiTiaaikdacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaGGPaGaey4kaSYaaSaaaeaacaaI0aaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadIfacaGGPaGaey4kaSYaaSaaaeaacaaI2aaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIfacaGGPaGaeyypa0JaaG4maiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGybGaey4kaSIaaGOmaaaa@5EB7@ .

  • Für die vorgegebenen Stützpunkte (1 , 1) , (2 , 2) , (3 , 3) ist

    l 0 = (X2)(X3) (12)(13) = 1 2 ( X 2 5X+6) l 1 = (X1)(X3) (21)(23) =( X 2 4X+3) l 2 = (X1)(X2) (31)(32) = 1 2 ( X 2 3X+2). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaaqaaiaadYgadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGOmaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaiodacaGGPaaabaGaaiikaiaaigdacqGHsislcaaIYaGaaiykaiabgwSixlaacIcacaaIXaGaeyOeI0IaaG4maiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdacaWGybGaey4kaSIaaGOnaiaacMcaaeaacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaGGOaGaamiwaiabgkHiTiaaigdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsislcaaIZaGaaiykaaqaaiaacIcacaaIYaGaeyOeI0IaaGymaiaacMcacqGHflY1caGGOaGaaGOmaiabgkHiTiaaiodacaGGPaaaaiabg2da9iabgkHiTiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinaiaadIfacqGHRaWkcaaIZaGaaiykaaqaaiaadYgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGymaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaikdacaGGPaaabaGaaiikaiaaiodacqGHsislcaaIXaGaaiykaiabgwSixlaacIcacaaIZaGaeyOeI0IaaGOmaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodacaWGybGaey4kaSIaaGOmaiaacMcaaaaaaa@9747@

    Also:  p= l 0 +2 l 1 +3 l 2 = 1 2 ( X 2 5X+6)2( X 2 4X+3)+ 3 2 ( X 2 3X+2)=X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadYgadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIYaGaamiBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaiodacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdacaWGybGaey4kaSIaaGOnaiaacMcacqGHsislcaaIYaGaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aGaamiwaiabgUcaRiaaiodacaGGPaGaey4kaSYaaSaaaeaacaaIZaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodacaWGybGaey4kaSIaaGOmaiaacMcacqGH9aqpcaWGybaaaa@5F3C@ .

Mit dem folgenden Formular lässt sich das Lagrangesche Interpolationspolynom zu beliebigen Stützpunkten ermitteln. Zunächst gibt man sie der Reihe nach ein (Stützpunkte sind nach Anklicken korrigier- bzw. löschbar):

   diesen Stützpunkt mit ↲ oder Klick speichern.

Anschließend können die Lagrangeschen Grundpolynome l k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaWGRbaabeaaaaa@37F5@ und das Interpolationspolynom p per Klick auf →Ergebnis abgerufen werden. (Koeffizienten auf 4 Stellen gerundet)

Mit dem Lagrange-Verfahren lassen sich zwei vertraute Eigenschaften linearer Funktionen neu beweisen.

Bemerkung:  

  1. Zu jedem Punkt (x,c) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacaGGSaGaam4yaiaacMcaaaa@39D6@ gibt es genau eine konstante Funktion, die durch (x,c) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacaGGSaGaam4yaiaacMcaaaa@39D6@ geht.

[4.0.6]
  1. Zu je zwei Punkten ( x 1 , y 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIXaaabeaakiaacMcaaaa@3BCE@ und ( x 2 , y 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3BD0@ mit unterschiedlichen x-Werten gibt es genau eine lineare Funktion die durch ( x 1 , y 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIXaaabeaakiaacMcaaaa@3BCE@ und ( x 2 , y 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3BD0@ geht.

[4.0.7]

Beweis:  

1.  Beachtet man die Konvention, dass ein Produkt aus 0 Faktoren gleich 1 ist, so gilt für das erste (und einzige) Lagrangesche Grundpolynom: l 0 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaaIWaaabeaakiabg2da9iaaigdaaaa@398A@ . Also ist p=c1=c MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadogacqGHflY1caaIXaGaeyypa0Jaam4yaaaa@3DBE@ .

2.  Mit l 0 = X x 2 x 1 x 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaaIWaaabeaakiabg2da9maalaaabaGaamiwaiabgkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaaaaaaaa@4158@ und l 1 = X x 1 x 2 x 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaamiwaiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaaaaaa@4158@ ergibt sich die sog. 2-Punkte-Form:

p= y 1 l 0 + y 2 l 1 = y 1 X x 2 x 1 x 2 + y 2 X x 1 x 2 x 1 = y 2 y 1 x 2 x 1 X+ y 1 x 2 y 2 x 1 x 2 x 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadMhadaWgaaWcbaGaaGymaaqabaGccaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaakiaadYgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWG5bWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacaWGybGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiabgUcaRiaadMhadaWgaaWcbaGaaGOmaaqabaGcdaWcaaqaaiaadIfacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaeyypa0ZaaSaaaeaacaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaIXaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiaadIfacqGHRaWkdaWcaaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaIYaaabeaakiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaaaaaa@7137@ .

Durch Umformen des letzten Summanden

y 1 x 2 y 2 x 1 x 2 x 1 = y 1 x 2 y 2 x 2 + y 2 x 2 y 2 x 1 x 2 x 1 = y 2 y 1 x 2 x 1 x 2 + y 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaeyypa0ZaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiabg2da9iabgkHiTmaalaaabaGaamyEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaaaaa@6BD1@

erhalten wir eine kompakte Darstellung der 2-Punkte Form, die sich leichter merken lässt:

p= y 2 y 1 x 2 x 1 (X x 2 )+ y 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9maalaaabaGaamyEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaaGccaGGOaGaamiwaiabgkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaaaaa@4963@ .

Gelegentlich benutzt man die Lagrangesche Methode um eine andere Funktionen f durch Polynome zu interpolieren. Als Stützpunkte wählt man dabei Graphenpunkte von f, also Punkte der Form

( x 0 ,f( x 0 )),,( x n ,f( x n )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGSaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaacMcacaGGSaGaeSOjGSKaaiilaiaacIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadAgacaGGOaGaamiEamaaBaaaleaacaWGUbaabeaakiaacMcacaGGPaaaaa@492A@ .

Dabei wird die gewünschte Interpolation (möglicherweise) um so besser sein, je mehr Stützpunkte ausgewählt wurden.

Als Beispiel ermitteln wir für die Betragsfunktion |X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfacaGG8baaaa@38C5@ zwei Interpolationspolynome, eins für drei und eins für fünf Stützpunkte. Wir beginnen mit (−1 , | −1 |) , (0 , | 0 |) , (1 , | 1 |), also mit (−1 , 1) , (0 , 0) , (1 , 1):

l 0 = (X0)(X1) (10)(11) = 1 2 ( X 2 X) l 1 = (X+1)(X1) (0+1)(01) =( X 2 1) l 2 = (X+1)(X0) (1+1)(10) = 1 2 ( X 2 +X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaaqaaiaadYgadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGimaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaigdacaGGPaaabaGaaiikaiabgkHiTiaaigdacqGHsislcaaIWaGaaiykaiabgwSixlaacIcacqGHsislcaaIXaGaeyOeI0IaaGymaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIfacaGGPaaabaGaamiBamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaaiikaiaadIfacqGHRaWkcaaIXaGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0IaaGymaiaacMcaaeaacaGGOaGaaGimaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaaicdacqGHsislcaaIXaGaaiykaaaacqGH9aqpcqGHsislcaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaGGPaaabaGaamiBamaaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaaiikaiaadIfacqGHRaWkcaaIXaGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0IaaGimaiaacMcaaeaacaGGOaGaaGymaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaaigdacqGHsislcaaIWaGaaiykaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiwaiaacMcaaaaaaa@9197@

Daraus erhält man das erste Interpolationspolynom (für drei Stützpunkte):

p 3 = l 0 +0 l 1 + l 2 = X 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaIZaaabeaakiabg2da9iaadYgadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIWaGaamiBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadYgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGybWaaWbaaSqabeaacaaIYaaaaaaa@43C6@ .

Im zweiten Schritt fügen wir ( 1 2 ,| 1 2 |) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaiilaiaacYhacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYhacaGGPaaaaa@3ED9@ und ( 1 2 ,| 1 2 |) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaaiilaiaacYhadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYhacaGGPaaaaa@3CFF@ als weitere Stützpunkte ein . Wir gehen also aus von (1,1),( 1 2 , 1 2 ),(0,0),( 1 2 , 1 2 ),(1,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaigdacaGGSaGaaGymaiaacMcacaGGSaGaaiikaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaiilamaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiaacYcacaGGOaGaaGimaiaacYcacaaIWaGaaiykaiaacYcacaGGOaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGSaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGPaGaaiilaiaacIcacaaIXaGaaiilaiaaigdacaGGPaaaaa@4F2B@ :

l 0 = (X+ 1 2 )(X0)(X 1 2 )(X1) (1+ 1 2 )(10)(1 1 2 )(11) = 2 3 ( X 4 X 3 1 4 X 2 + 1 4 X) l 1 = (X+1)(X0)(X 1 2 )(X1) ( 1 2 +1)( 1 2 0)( 1 2 1 2 )( 1 2 1) = 8 3 ( X 4 1 2 X 3 X 2 + 1 2 X) l 2 = (X+1)(X+ 1 2 )(X 1 2 )(X1) (0+1)(0+ 1 2 )(0 1 2 )(01) =4( X 4 5 4 X 2 + 1 4 ) l 3 = (X+1)(X+ 1 2 )(X0)(X1) ( 1 2 +1)( 1 2 + 1 2 )( 1 2 0)( 1 2 1) = 8 3 ( X 4 + 1 2 X 3 X 2 1 2 X) l 4 = (X+1)(X+ 1 2 )(X0)(X 1 2 ) (1+1)(1+ 1 2 )(10)(1 1 2 ) = 2 3 ( X 4 + X 3 1 4 X 2 1 4 X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuqaaaaabaGaamiBamaaBaaaleaacaaIWaaabeaakiabg2da9maalaaabaGaaiikaiaadIfacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaigdacaGGPaaabaGaaiikaiabgkHiTiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaeyOeI0IaaGymaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiabgkHiTiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaeyOeI0IaaGymaiabgkHiTiaaigdacaGGPaaaaiabg2da9maalaaabaGaaGOmaaqaaiaaiodaaaGaaiikaiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaaaacaWGybGaaiykaaqaaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaey4kaSIaaGymaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaigdacaGGPaaabaGaaiikaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaey4kaSIaaGymaiaacMcacqGHflY1caGGOaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacqGHsislcaaIWaGaaiykaiabgwSixlaacIcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiabgwSixlaacIcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabgkHiTiaaigdacaGGPaaaaiabg2da9iabgkHiTmaalaaabaGaaGioaaqaaiaaiodaaaGaaiikaiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGybGaaiykaaqaaiaadYgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaey4kaSIaaGymaiaacMcacqGHflY1caGGOaGaamiwaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGPaGaeyyXICTaaiikaiaadIfacqGHsislcaaIXaGaaiykaaqaaiaacIcacaaIWaGaey4kaSIaaGymaiaacMcacqGHflY1caGGOaGaaGimaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiabgwSixlaacIcacaaIWaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGPaGaeyyXICTaaiikaiaaicdacqGHsislcaaIXaGaaiykaaaacqGH9aqpcaaI0aGaaiikaiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHsisldaWcaaqaaiaaiwdaaeaacaaI0aaaaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaiaacMcaaeaacaWGSbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0ZaaSaaaeaacaGGOaGaamiwaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaadIfacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsislcaaIXaGaaiykaaqaaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaaaaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGPaGaeyyXICTaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaeyOeI0IaaGimaiaacMcacqGHflY1caGGOaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqGHsislcaaIXaGaaiykaaaacqGH9aqpcqGHsisldaWcaaqaaiaaiIdaaeaacaaIZaaaaiaacIcacaWGybWaaWbaaSqabeaacaaI0aaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGybWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaamiwaiaacMcaaeaacaWGSbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0ZaaSaaaeaacaGGOaGaamiwaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaadIfacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcaaeaacaGGOaGaaGymaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaaGymaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIYaaabaGaaG4maaaacaGGOaGaamiwamaaCaaaleqabaGaaGinaaaakiabgUcaRiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaaI0aaaaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaaI0aaaaiaadIfacaGGPaaaaaaa@88F1@

Damit berechnet sich das zweite Interpolationspolynom (für fünf Stützpunkte) zu:

p 5 = l 0 + 1 2 l 1 +0 l 2 + 1 2 l 3 + l 4 = 4 3 X 4 + 7 3 X 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaI1aaabeaakiabg2da9iaadYgadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIWaGaamiBamaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaamiBamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadYgadaWgaaWcbaGaaGinaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaisdaaeaacaaIZaaaaiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaWcaaqaaiaaiEdaaeaacaaIZaaaaiaadIfadaahaaWcbeqaaiaaikdaaaaaaa@531D@ .

In der folgenden Skizze sind beide Interpolationspolynome und die Betragsfunktion eingezeichnet. Einerseits erkennt man deutlich, dass p 5 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaI1aaabeaaaaa@37C8@ sich besser an die Betragsfunktion anschmiegt als p 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaIZaaabeaaaaa@37C6@ , andererseits wird aber auch klar, dass außerhalb von [-1,1] beide Interpolationspolynome nur noch sehr wenig mit |X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfacaGG8baaaa@38C5@ zu tun haben. Verbesserungen ergeben sich vielleicht, wenn man die Zahl der Stützpunkte erhöht oder ihren Bereich ausweitet. Dies aber sind Fragestellungen aus dem Bereich der Numerik. Dort entwickelt man auch andere Interpolationsverfahren, die auf komplexere Aufgabenstellungen bessere Antworten geben können.

Hier stellen wir jetzt eine Variante des Lagrange-Verfahrens vor, die sog. baryzentrische Form. Bei einem gegebenen Satz von Stützstellen x 0 ,, x n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIWaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3C73@ setzen wir dazu für k=0,,n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaicdacaGGSaGaeSOjGSKaaiilaiaad6gaaaa@3C0D@ die Stützkoeffizienten (auch: baryzentrischen Gewichte) fest durch

λ k (n) i=0 ik n 1 x k x i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aa0baaSqaaiaadUgaaeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaqeWbqaamaalaaabaGaaGymaaqaaiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaaaeaafaqabeGabaaabaGaamyAaiabg2da9iaaicdaaeaacaWGPbGaeyiyIKRaam4AaaaaaeaacaWGUbaaniabg+Givdaaaa@4B80@
[4.0.8]

Spielt die Anzahl der Stützstellen keine Rolle, so schreiben wir nur λ k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaaaa@38B8@ . Für das Interpolationspolynom p erhält man damit die Darstellung

p= k=0 n y k λ k i=0 ik n (X x i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9maaqahabaGaamyEamaaBaaaleaacaWGRbaabeaakiabeU7aSnaaBaaaleaacaWGRbaabeaakmaarahabaGaaiikaiaadIfacqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaqbaeqabiqaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamyAaiabgcMi5kaadUgaaaaabaGaamOBaaqdcqGHpis1aaWcbaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@518E@ .
[4.0.9]

Stellt man p in der Standardform p= a n X n ++ a 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccaWGybWaaWbaaSqabeaacaWGUbaaaOGaey4kaSIaeSOjGSKaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaaaaa@40AB@ dar, so ist k=0 n y k λ k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaaa@40B6@ gerade der Koeffizient von X n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOBaaaaaaa@37E5@ . Und da für y k =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaWGRbaabeaakiabg2da9iaaigdaaaa@39CD@  p das konstante Polynom 1 ist, hat man so für jedes n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaicdaaaa@389D@ die Gleichheit

k=0 n λ k =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpcaaIWaaaaa@405C@
[4.0.10]

gesichert. Als weitere Abkürzung setzen wir für x x k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaadIhadaWgaaWcbaGaam4Aaaqabaaaaa@3AC5@

μ k (n) (x) λ k (n) x x k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aa0baaSqaaiaadUgaaeaacaGGOaGaamOBaiaacMcaaaGccaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaqaaiabeU7aSnaaDaaaleaacaWGRbaabaGaaiikaiaad6gacaGGPaaaaaGcbaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaam4Aaaqabaaaaaaa@47A7@ .
[4.0.11]

Auch hier verkürzen wir zu μ k (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaaa@3B1A@ , wenn der Bezug zu n nicht wichtig ist. Beachtet man, dass

λ k i=0 ik n (x x i ) = λ k x x k i=0 n (x x i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOWaaebCaeaacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaafaqabeGabaaabaGaamyAaiabg2da9iaaicdaaeaacaWGPbGaeyiyIKRaam4AaaaaaeaacaWGUbaaniabg+GivdGccqGH9aqpdaWcaaqaaiabeU7aSnaaBaaaleaacaWGRbaabeaaaOqaaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaadUgaaeqaaaaakmaarahabaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabg+Givdaaaa@5AE7@  ,

so haben wir außerhalb der Stützstellen, also für x{ x 0 ,, x n } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgMGiplaacUhacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiyFaaaa@4100@ :

p(x)= k=0 n y k λ k i=0 ik n (x x i ) = i=0 n (x x i ) k=0 n y k μ k (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacIcacaWG4bGaaiykaiabg2da9maaqahabaGaamyEamaaBaaaleaacaWGRbaabeaakiabeU7aSnaaBaaaleaacaWGRbaabeaakmaarahabaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaqbaeqabiqaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamyAaiabgcMi5kaadUgaaaaabaGaamOBaaqdcqGHpis1aaWcbaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpdaqeWbqaaiaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaWGPbaabeaakiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHpis1aOWaaabCaeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaa@6D8F@ .
[4.0.12]

Das ist die 1. baryzentrische Form des Lagrangeschen Interpolationspolynoms. Wählt man auch hier y k =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaWGRbaabeaakiabg2da9iaaigdaaaa@39CD@ , also p(x)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacIcacaWG4bGaaiykaiabg2da9iaaigdaaaa@3AF4@ , so erhält man i=0 n (x x i ) = 1 k=0 n μ k (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaebCaeaacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0Gaey4dIunakiabg2da9maalaaabaGaaGymaaqaamaaqahabaGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaaaaa@4E10@ , und damit die 2. baryzentrische Form:

p(x)= k=0 n y k μ k (x) k=0 n μ k (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacIcacaWG4bGaaiykaiabg2da9maalaaabaWaaabCaeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaOqaamaaqahabaGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaaaaa@52A5@ .
[4.0.13]

Die baryzentrische Form erweist sich als vorteilhaft, wenn man einen bereits gegebenen Satz von Stützpunkten ( x 0 , y 0 ),,( x n , y n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIWaaabeaakiaacMcacaGGSaGaeSOjGSKaaiilaiaacIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@44A4@ durch einen weiteren Punkt ( x n+1 , y n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiilaiaadMhadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiykaaaa@3F78@ ergänzen will. Während bei der Lagrange-Darstellung alle Grundpolynome neu berechnet werden müssten, gewinnt man die hier notwendigen neuen Stützkoeffizienten leicht aus den alten:

λ k (n+1) = λ k (n) x k x n+1 für kn λ n+1 (n+1) = k=0 n λ k (n+1) gemäß  [4.0.10] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiabeU7aSnaaDaaaleaacaWGRbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9maalaaabaGaeq4UdW2aa0baaSqaaiaadUgaaeaacaGGOaGaamOBaiaacMcaaaaakeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaOGaaGzbVdqaaiaabAgacaqG8dGaaeOCaiaabccacaWGRbGaeyizImQaamOBaaqaaiabeU7aSnaaDaaaleaacaWGUbGaey4kaSIaaGymaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGH9aqpcqGHsisldaaeWbqaaiabeU7aSnaaDaaaleaacaWGRbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaaywW7aeaacaqGNbGaaeyzaiaab2gacaqGKdGaae43aiaabccacaqGBbGaaeinaiaab6cacaqGWaGaaeOlaiaabgdacaqGWaGaaeyxaaaaaaa@7793@
[4.0.14]

Wir zeigen dies mit einem Beispiel für die 1. baryzentrische Form

  • und nehmen dazu noch einmal die Stützpunkte aus dem ersten Beispiel, also (2 , 4) , (6 , 6) . Mit

    λ 0 = λ 0 (1) = 1 26 = 1 4 μ 0 (x)= λ 0 x2 = 1 4 x2 λ 1 = λ 1 (1) = 1 62 = 1 4 μ 1 (x)= λ 1 x6 = 1 4 x6 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiabeU7aSnaaBaaaleaacaaIWaaabeaakiabg2da9iabeU7aSnaaDaaaleaacaaIWaaabaGaaiikaiaaigdacaGGPaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabgkHiTiaaiAdaaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaaaeaacqaH8oqBdaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaqaaiabeU7aSnaaBaaaleaacaaIWaaabeaaaOqaaiaadIhacqGHsislcaaIYaaaaiabg2da9maalaaabaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaaaeaacaWG4bGaeyOeI0IaaGOmaaaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH7oaBdaqhaaWcbaGaaGymaaqaaiaacIcacaaIXaGaaiykaaaakiabg2da9maalaaabaGaaGymaaqaaiaaiAdacqGHsislcaaIYaaaaiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0ZaaSaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaaakeaacaWG4bGaeyOeI0IaaGOnaaaacqGH9aqpdaWcaaqaamaalaaabaGaaGymaaqaaiaaisdaaaaabaGaamiEaiabgkHiTiaaiAdaaaaaaaaa@7777@

    ist dann

    p(x)=(x2)(x6)( 1 x2 + 3 2 x6 )=(x6)+ 3 2 (x2)= 1 2 x+3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacIcacaWG4bGaaiykaiabg2da9iaacIcacaWG4bGaeyOeI0IaaGOmaiaacMcacqGHflY1caGGOaGaamiEaiabgkHiTiaaiAdacaGGPaGaeyyXICTaaiikaiabgkHiTmaalaaabaGaaGymaaqaaiaadIhacqGHsislcaaIYaaaaiabgUcaRmaalaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaeaacaWG4bGaeyOeI0IaaGOnaaaacaGGPaGaeyypa0JaeyOeI0IaaiikaiaadIhacqGHsislcaaI2aGaaiykaiabgUcaRmaalaaabaGaaG4maaqaaiaaikdaaaGaaiikaiaadIhacqGHsislcaaIYaGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamiEaiabgUcaRiaaiodaaaa@6334@ .

  • Wir fügen (3 , 0) als weiteren Stützpunkt hinzu und berechnen die neuen Daten gemäß [4.0.14]:

    λ 0 (2) = λ 0 (1) 23 = 1 4 μ 0 (x)= 1 4 x2 λ 1 (2) = λ 1 (1) 63 = 1 12 μ 1 (x)= 1 12 x6 λ 2 (2) =( 1 4 + 1 12 )= 1 3 μ 2 (x)= 1 3 x3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiabeU7aSnaaDaaaleaacaaIWaaabaGaaiikaiaaikdacaGGPaaaaOGaeyypa0ZaaSaaaeaacqaH7oaBdaqhaaWcbaGaaGimaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaaikdacqGHsislcaaIZaaaaiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaaabaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0ZaaSaaaeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaqaaiaadIhacqGHsislcaaIYaaaaaqaaiabeU7aSnaaDaaaleaacaaIXaaabaGaaiikaiaaikdacaGGPaaaaOGaeyypa0ZaaSaaaeaacqaH7oaBdaqhaaWcbaGaaGymaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaaiAdacqGHsislcaaIZaaaaiabg2da9maalaaabaGaaGymaaqaaiaaigdacaaIYaaaaaqaaiabeY7aTnaaBaaaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaabaWaaSaaaeaacaaIXaaabaGaaGymaiaaikdaaaaabaGaamiEaiabgkHiTiaaiAdaaaaabaGaeq4UdW2aa0baaSqaaiaaikdaaeaacaGGOaGaaGOmaiaacMcaaaGccqGH9aqpcqGHsislcaGGOaWaaSaaaeaacaaIXaaabaGaaGinaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaGaaGOmaaaacaGGPaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaaabaGaamiEaiabgkHiTiaaiodaaaaaaaaa@8655@

    Also:  p(x) =(x2)(x6)(x3)( 1 x2 + 1 2 x6 + 0 x3 ) =(x6)(x3)+ 1 2 (x2)(x3) = 3 2 x 2 23 2 x+21. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaabgeacaqGSbGaae4Caiaab+gacaqG6aGaamiCaiaacIcacaWG4bGaaiykaaqaaiabg2da9iaacIcacaWG4bGaeyOeI0IaaGOmaiaacMcacqGHflY1caGGOaGaamiEaiabgkHiTiaaiAdacaGGPaGaeyyXICTaaiikaiaadIhacqGHsislcaaIZaGaaiykaiabgwSixlaacIcadaWcaaqaaiaaigdaaeaacaWG4bGaeyOeI0IaaGOmaaaacqGHRaWkdaWcaaqaamaalaaabaGaaGymaaqaaiaaikdaaaaabaGaamiEaiabgkHiTiaaiAdaaaGaey4kaSYaaSaaaeaacaaIWaaabaGaamiEaiabgkHiTiaaiodaaaGaaiykaaqaaaqaaiabg2da9iaacIcacaWG4bGaeyOeI0IaaGOnaiaacMcacqGHflY1caGGOaGaamiEaiabgkHiTiaaiodacaGGPaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiEaiabgkHiTiaaikdacaGGPaGaeyyXICTaaiikaiaadIhacqGHsislcaaIZaGaaiykaaqaaaqaaiabg2da9maalaaabaGaaG4maaqaaiaaikdaaaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaaGOmaiaaiodaaeaacaaIYaaaaiaadIhacqGHRaWkcaaIYaGaaGymaaaaaaa@82CF@