Beispiele zum Lagrange-Verfahren
Wir illustruieren das Lagrange-Verfahren an einigen Beispielen in
ℙ ( ℝ )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFzecucaGGOaGaeSyhHeQaaiykaaaa@4365@
. Dazu geben wir jeweils Stützpunkte
(
x
0
,
y
0
) , … , (
x
n
,
y
n
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIWaaabeaakiaacMcacaGGSaGaeSOjGSKaaiilaiaacIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@44A4@
vor, stellen die dazu gehörigen Lagrangeschen Grundpolynome
l
k
=
∏
i = 0
i ≠ k
n
X −
x
i
x
k
−
x
i
=
( X −
x
0
) ⋅ … ⋅ ( X −
x
k − 1
) ⋅ ( X −
x
k + 1
) ⋅ … ⋅ ( X −
x
n
)
(
x
k
−
x
0
) ⋅ … ⋅ (
x
k
−
x
k − 1
) ⋅ (
x
k
−
x
k + 1
) ⋅ … ⋅ (
x
k
−
x
n
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaWGRbaabeaakiabg2da9maarahabaWaaSaaaeaacaWGybGaeyOeI0IaamiEamaaBaaaleaacaWGPbaabeaaaOqaaiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaaaeaafaqabeGabaaabaGaamyAaiabg2da9iaaicdaaeaacaWGPbGaeyiyIKRaam4AaaaaaeaacaWGUbaaniabg+GivdGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaacMcacqGHflY1cqWIMaYscqGHflY1caGGOaGaamiwaiabgkHiTiaadIhadaWgaaWcbaGaam4AaiabgkHiTiaaigdaaeqaaOGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0IaamiEamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaGGPaGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadIfacqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaqaaiaacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaakiaacMcacqGHflY1cqWIMaYscqGHflY1caGGOaGaamiEamaaBaaaleaacaWGRbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaam4AaiabgkHiTiaaigdaaeqaaOGaaiykaiabgwSixlaacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaGGPaGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaaaaa@9D98@
auf und ermitteln anschließend das Lagrangesche Interpolationspolynom
p =
y
0
l
0
+ … +
y
n
l
n
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadMhadaWgaaWcbaGaaGimaaqabaGccaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaamyEamaaBaaaleaacaWGUbaabeaakiaadYgadaWgaaWcbaGaamOBaaqabaaaaa@42CF@
.
Beispiel:
Für die vorgegebenen Stützpunkte (2 , 4) , (6 , 6) ist
l
0
=
X − 6
2 − 6
= −
1
4
( X − 6 )
l
1
=
X − 2
6 − 2
=
1
4
( X − 2 ) .
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadYgadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadIfacqGHsislcaaI2aaabaGaaGOmaiabgkHiTiaaiAdaaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaacaGGOaGaamiwaiabgkHiTiaaiAdacaGGPaaabaGaamiBamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaamiwaiabgkHiTiaaikdaaeaacaaI2aGaeyOeI0IaaGOmaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI0aaaaiaacIcacaWGybGaeyOeI0IaaGOmaiaacMcaaaaaaa@5392@
Damit hat man:
p = 4
l
0
+ 6
l
1
= −
4
4
( X − 6 ) +
6
4
( X − 2 ) =
1
2
X + 3
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaaisdacaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaGOnaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaisdaaeaacaaI0aaaaiaacIcacaWGybGaeyOeI0IaaGOnaiaacMcacqGHRaWkdaWcaaqaaiaaiAdaaeaacaaI0aaaaiaacIcacaWGybGaeyOeI0IaaGOmaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadIfacqGHRaWkcaaIZaaaaa@50C0@
.
Für die vorgegebenen Stützpunkte (0 , 2) , (1 , 4) , (−1 , 6) ist
l
0
=
( X − 1 ) ⋅ ( X + 1 )
( 0 − 1 ) ⋅ ( 0 + 1 )
= − (
X
2
− 1 )
l
1
=
( X − 0 ) ⋅ ( X + 1 )
( 1 − 0 ) ⋅ ( 1 + 1 )
=
1
2
(
X
2
+ X )
l
2
=
( X − 0 ) ⋅ ( X − 1 )
( − 1 − 0 ) ⋅ ( − 1 − 1 )
=
1
2
(
X
2
− X ) .
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaaqaaiaadYgadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGymaiaacMcacqGHflY1caGGOaGaamiwaiabgUcaRiaaigdacaGGPaaabaGaaiikaiaaicdacqGHsislcaaIXaGaaiykaiabgwSixlaacIcacaaIWaGaey4kaSIaaGymaiaacMcaaaGaeyypa0JaeyOeI0IaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaaiykaaqaaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGimaiaacMcacqGHflY1caGGOaGaamiwaiabgUcaRiaaigdacaGGPaaabaGaaiikaiaaigdacqGHsislcaaIWaGaaiykaiabgwSixlaacIcacaaIXaGaey4kaSIaaGymaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadIfacaGGPaaabaGaamiBamaaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaaiikaiaadIfacqGHsislcaaIWaGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0IaaGymaiaacMcaaeaacaGGOaGaeyOeI0IaaGymaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiabgkHiTiaaigdacqGHsislcaaIXaGaaiykaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiwaiaacMcaaaaaaa@9197@
Also:
p = 2
l
0
+ 4
l
1
+ 6
l
2
= − 2 (
X
2
− 1 ) +
4
2
(
X
2
+ X ) +
6
2
(
X
2
− X ) = 3
X
2
− X + 2
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaaikdacaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaGinaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaI2aGaamiBamaaBaaaleaacaaIYaaabeaakiabg2da9iabgkHiTiaaikdacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaGGPaGaey4kaSYaaSaaaeaacaaI0aaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadIfacaGGPaGaey4kaSYaaSaaaeaacaaI2aaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIfacaGGPaGaeyypa0JaaG4maiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGybGaey4kaSIaaGOmaaaa@5EB7@
.
Für die vorgegebenen Stützpunkte (1 , 1) , (2 , 2) , (3 , 3) ist
l
0
=
( X − 2 ) ⋅ ( X − 3 )
( 1 − 2 ) ⋅ ( 1 − 3 )
=
1
2
(
X
2
− 5 X + 6 )
l
1
=
( X − 1 ) ⋅ ( X − 3 )
( 2 − 1 ) ⋅ ( 2 − 3 )
= − (
X
2
− 4 X + 3 )
l
2
=
( X − 1 ) ⋅ ( X − 2 )
( 3 − 1 ) ⋅ ( 3 − 2 )
=
1
2
(
X
2
− 3 X + 2 ) .
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaaqaaiaadYgadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGOmaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaiodacaGGPaaabaGaaiikaiaaigdacqGHsislcaaIYaGaaiykaiabgwSixlaacIcacaaIXaGaeyOeI0IaaG4maiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdacaWGybGaey4kaSIaaGOnaiaacMcaaeaacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaGGOaGaamiwaiabgkHiTiaaigdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsislcaaIZaGaaiykaaqaaiaacIcacaaIYaGaeyOeI0IaaGymaiaacMcacqGHflY1caGGOaGaaGOmaiabgkHiTiaaiodacaGGPaaaaiabg2da9iabgkHiTiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinaiaadIfacqGHRaWkcaaIZaGaaiykaaqaaiaadYgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGymaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaikdacaGGPaaabaGaaiikaiaaiodacqGHsislcaaIXaGaaiykaiabgwSixlaacIcacaaIZaGaeyOeI0IaaGOmaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodacaWGybGaey4kaSIaaGOmaiaacMcaaaaaaa@9747@
Also:
p =
l
0
+ 2
l
1
+ 3
l
2
=
1
2
(
X
2
− 5 X + 6 ) − 2 (
X
2
− 4 X + 3 ) +
3
2
(
X
2
− 3 X + 2 ) = X
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadYgadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIYaGaamiBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaiodacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdacaWGybGaey4kaSIaaGOnaiaacMcacqGHsislcaaIYaGaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aGaamiwaiabgUcaRiaaiodacaGGPaGaey4kaSYaaSaaaeaacaaIZaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodacaWGybGaey4kaSIaaGOmaiaacMcacqGH9aqpcaWGybaaaa@5F3C@
.
Mit dem folgenden Formular lässt sich das Lagrangesche Interpolationspolynom zu beliebigen Stützpunkten ermitteln. Zunächst gibt man sie der Reihe nach ein (Stützpunkte sind nach Anklicken korrigier- bzw. löschbar):
diesen Stützpunkt mit ↲ oder Klick speichern.
Anschließend können die Lagrangeschen Grundpolynome
l
k
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaWGRbaabeaaaaa@37F5@
und das Interpolationspolynom p per Klick auf →Ergebnis abgerufen werden. (Koeffizienten auf 4 Stellen gerundet)
Neues Polynom?
Mit dem Lagrange-Verfahren lassen sich zwei vertraute Eigenschaften linearer Funktionen neu beweisen.
Bemerkung:
Zu jedem Punkt
( x , c )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacaGGSaGaam4yaiaacMcaaaa@39D6@
gibt es genau eine konstante Funktion, die durch
( x , c )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacaGGSaGaam4yaiaacMcaaaa@39D6@
geht.
[4.0.6]
Zu je zwei Punkten
(
x
1
,
y
1
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIXaaabeaakiaacMcaaaa@3BCE@
und
(
x
2
,
y
2
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3BD0@
mit unterschiedlichen x -Werten gibt es genau eine lineare Funktion die durch
(
x
1
,
y
1
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIXaaabeaakiaacMcaaaa@3BCE@
und
(
x
2
,
y
2
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3BD0@
geht.
[4.0.7]
Beweis :
1. ► Beachtet man die Konvention, dass ein Produkt aus 0 Faktoren gleich 1 ist, so gilt für das erste (und einzige) Lagrangesche Grundpolynom:
l
0
= 1
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaaIWaaabeaakiabg2da9iaaigdaaaa@398A@
. Also ist
p = c ⋅ 1 = c
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadogacqGHflY1caaIXaGaeyypa0Jaam4yaaaa@3DBE@
.
2. ► Mit
l
0
=
X −
x
2
x
1
−
x
2
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaaIWaaabeaakiabg2da9maalaaabaGaamiwaiabgkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaaaaaaaa@4158@
und
l
1
=
X −
x
1
x
2
−
x
1
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaamiwaiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaaaaaa@4158@
ergibt sich die sog. 2-Punkte-Form :
p =
y
1
l
0
+
y
2
l
1
=
y
1
X −
x
2
x
1
−
x
2
+
y
2
X −
x
1
x
2
−
x
1
=
y
2
−
y
1
x
2
−
x
1
X +
y
1
x
2
−
y
2
x
1
x
2
−
x
1
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadMhadaWgaaWcbaGaaGymaaqabaGccaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaakiaadYgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWG5bWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacaWGybGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiabgUcaRiaadMhadaWgaaWcbaGaaGOmaaqabaGcdaWcaaqaaiaadIfacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaeyypa0ZaaSaaaeaacaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaIXaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiaadIfacqGHRaWkdaWcaaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaIYaaabeaakiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaaaaaa@7137@
.
Durch Umformen des letzten Summanden
y
1
x
2
−
y
2
x
1
x
2
−
x
1
=
y
1
x
2
−
y
2
x
2
+
y
2
x
2
−
y
2
x
1
x
2
−
x
1
= −
y
2
−
y
1
x
2
−
x
1
x
2
+
y
2
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaeyypa0ZaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiabg2da9iabgkHiTmaalaaabaGaamyEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaaaaa@6BD1@
erhalten wir eine kompakte Darstellung der 2-Punkte Form, die sich leichter merken lässt:
p =
y
2
−
y
1
x
2
−
x
1
( X −
x
2
) +
y
2
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9maalaaabaGaamyEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaaGccaGGOaGaamiwaiabgkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaaaaa@4963@
.
Gelegentlich benutzt man die Lagrangesche Methode um eine andere Funktionen f durch Polynome zu interpolieren. Als Stützpunkte wählt man dabei Graphenpunkte von f , also Punkte der Form
(
x
0
, f (
x
0
) ) , … , (
x
n
, f (
x
n
) )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGSaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaacMcacaGGSaGaeSOjGSKaaiilaiaacIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadAgacaGGOaGaamiEamaaBaaaleaacaWGUbaabeaakiaacMcacaGGPaaaaa@492A@
.
Dabei wird die gewünschte Interpolation (möglicherweise) um so besser sein, je mehr Stützpunkte ausgewählt wurden.
Als Beispiel ermitteln wir für die Betragsfunktion
| X |
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfacaGG8baaaa@38C5@
zwei Interpolationspolynome, eins für drei und eins für fünf Stützpunkte. Wir beginnen mit (−1 , | −1 |) , (0 , | 0 |) , (1 , | 1 |), also mit (−1 , 1) , (0 , 0) , (1 , 1):
l
0
=
( X − 0 ) ⋅ ( X − 1 )
( − 1 − 0 ) ⋅ ( − 1 − 1 )
=
1
2
(
X
2
− X )
l
1
=
( X + 1 ) ⋅ ( X − 1 )
( 0 + 1 ) ⋅ ( 0 − 1 )
= − (
X
2
− 1 )
l
2
=
( X + 1 ) ⋅ ( X − 0 )
( 1 + 1 ) ⋅ ( 1 − 0 )
=
1
2
(
X
2
+ X )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaaqaaiaadYgadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaeyOeI0IaaGimaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaigdacaGGPaaabaGaaiikaiabgkHiTiaaigdacqGHsislcaaIWaGaaiykaiabgwSixlaacIcacqGHsislcaaIXaGaeyOeI0IaaGymaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIfacaGGPaaabaGaamiBamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaaiikaiaadIfacqGHRaWkcaaIXaGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0IaaGymaiaacMcaaeaacaGGOaGaaGimaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaaicdacqGHsislcaaIXaGaaiykaaaacqGH9aqpcqGHsislcaGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaGGPaaabaGaamiBamaaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaaiikaiaadIfacqGHRaWkcaaIXaGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0IaaGimaiaacMcaaeaacaGGOaGaaGymaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaaigdacqGHsislcaaIWaGaaiykaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiwaiaacMcaaaaaaa@9197@
Daraus erhält man das erste Interpolationspolynom (für drei Stützpunkte):
p
3
=
l
0
+ 0
l
1
+
l
2
=
X
2
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaIZaaabeaakiabg2da9iaadYgadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIWaGaamiBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadYgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGybWaaWbaaSqabeaacaaIYaaaaaaa@43C6@
.
Im zweiten Schritt fügen wir
( −
1
2
, | −
1
2
| )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaiilaiaacYhacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYhacaGGPaaaaa@3ED9@
und
(
1
2
, |
1
2
| )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaaiilaiaacYhadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYhacaGGPaaaaa@3CFF@
als weitere Stützpunkte ein . Wir gehen also aus von
( − 1,1 ) , ( −
1
2
,
1
2
) , ( 0,0 ) , (
1
2
,
1
2
) , ( 1,1 )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaigdacaGGSaGaaGymaiaacMcacaGGSaGaaiikaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaiilamaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiaacYcacaGGOaGaaGimaiaacYcacaaIWaGaaiykaiaacYcacaGGOaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGSaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGPaGaaiilaiaacIcacaaIXaGaaiilaiaaigdacaGGPaaaaa@4F2B@
:
l
0
=
( X +
1
2
) ⋅ ( X − 0 ) ⋅ ( X −
1
2
) ⋅ ( X − 1 )
( − 1 +
1
2
) ⋅ ( − 1 − 0 ) ⋅ ( − 1 −
1
2
) ⋅ ( − 1 − 1 )
=
2
3
(
X
4
−
X
3
−
1
4
X
2
+
1
4
X )
l
1
=
( X + 1 ) ⋅ ( X − 0 ) ⋅ ( X −
1
2
) ⋅ ( X − 1 )
( −
1
2
+ 1 ) ⋅ ( −
1
2
− 0 ) ⋅ ( −
1
2
−
1
2
) ⋅ ( −
1
2
− 1 )
= −
8
3
(
X
4
−
1
2
X
3
−
X
2
+
1
2
X )
l
2
=
( X + 1 ) ⋅ ( X +
1
2
) ⋅ ( X −
1
2
) ⋅ ( X − 1 )
( 0 + 1 ) ⋅ ( 0 +
1
2
) ⋅ ( 0 −
1
2
) ⋅ ( 0 − 1 )
= 4 (
X
4
−
5
4
X
2
+
1
4
)
l
3
=
( X + 1 ) ⋅ ( X +
1
2
) ⋅ ( X − 0 ) ⋅ ( X − 1 )
(
1
2
+ 1 ) ⋅ (
1
2
+
1
2
) ⋅ (
1
2
− 0 ) ⋅ (
1
2
− 1 )
= −
8
3
(
X
4
+
1
2
X
3
−
X
2
−
1
2
X )
l
4
=
( X + 1 ) ⋅ ( X +
1
2
) ⋅ ( X − 0 ) ⋅ ( X −
1
2
)
( 1 + 1 ) ⋅ ( 1 +
1
2
) ⋅ ( 1 − 0 ) ⋅ ( 1 −
1
2
)
=
2
3
(
X
4
+
X
3
−
1
4
X
2
−
1
4
X )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuqaaaaabaGaamiBamaaBaaaleaacaaIWaaabeaakiabg2da9maalaaabaGaaiikaiaadIfacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaigdacaGGPaaabaGaaiikaiabgkHiTiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaeyOeI0IaaGymaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiabgkHiTiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaeyOeI0IaaGymaiabgkHiTiaaigdacaGGPaaaaiabg2da9maalaaabaGaaGOmaaqaaiaaiodaaaGaaiikaiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaaaacaWGybGaaiykaaqaaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaey4kaSIaaGymaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaigdacaGGPaaabaGaaiikaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaey4kaSIaaGymaiaacMcacqGHflY1caGGOaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacqGHsislcaaIWaGaaiykaiabgwSixlaacIcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiabgwSixlaacIcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabgkHiTiaaigdacaGGPaaaaiabg2da9iabgkHiTmaalaaabaGaaGioaaqaaiaaiodaaaGaaiikaiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGybGaaiykaaqaaiaadYgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaacIcacaWGybGaey4kaSIaaGymaiaacMcacqGHflY1caGGOaGaamiwaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiabgwSixlaacIcacaWGybGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGPaGaeyyXICTaaiikaiaadIfacqGHsislcaaIXaGaaiykaaqaaiaacIcacaaIWaGaey4kaSIaaGymaiaacMcacqGHflY1caGGOaGaaGimaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiabgwSixlaacIcacaaIWaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGPaGaeyyXICTaaiikaiaaicdacqGHsislcaaIXaGaaiykaaaacqGH9aqpcaaI0aGaaiikaiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHsisldaWcaaqaaiaaiwdaaeaacaaI0aaaaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaiaacMcaaeaacaWGSbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0ZaaSaaaeaacaGGOaGaamiwaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaadIfacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsislcaaIXaGaaiykaaqaaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaaaaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGPaGaeyyXICTaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaeyOeI0IaaGimaiaacMcacqGHflY1caGGOaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqGHsislcaaIXaGaaiykaaaacqGH9aqpcqGHsisldaWcaaqaaiaaiIdaaeaacaaIZaaaaiaacIcacaWGybWaaWbaaSqabeaacaaI0aaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGybWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaamiwaiaacMcaaeaacaWGSbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0ZaaSaaaeaacaGGOaGaamiwaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaadIfacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcaaeaacaGGOaGaaGymaiabgUcaRiaaigdacaGGPaGaeyyXICTaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHflY1caGGOaGaaGymaiabgkHiTiaaicdacaGGPaGaeyyXICTaaiikaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIYaaabaGaaG4maaaacaGGOaGaamiwamaaCaaaleqabaGaaGinaaaakiabgUcaRiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaaI0aaaaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaaI0aaaaiaadIfacaGGPaaaaaaa@88F1@
Damit berechnet sich das zweite Interpolationspolynom (für fünf Stützpunkte) zu:
p
5
=
l
0
+
1
2
l
1
+ 0
l
2
+
1
2
l
3
+
l
4
= −
4
3
X
4
+
7
3
X
2
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaI1aaabeaakiabg2da9iaadYgadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIWaGaamiBamaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaamiBamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadYgadaWgaaWcbaGaaGinaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaisdaaeaacaaIZaaaaiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaWcaaqaaiaaiEdaaeaacaaIZaaaaiaadIfadaahaaWcbeqaaiaaikdaaaaaaa@531D@
.
In der folgenden Skizze sind beide Interpolationspolynome und die Betragsfunktion eingezeichnet. Einerseits erkennt man deutlich, dass
p
5
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaI1aaabeaaaaa@37C8@
sich besser an die Betragsfunktion anschmiegt als
p
3
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaIZaaabeaaaaa@37C6@
, andererseits wird aber auch klar, dass außerhalb von [-1,1] beide Interpolationspolynome nur noch sehr wenig mit
| X |
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfacaGG8baaaa@38C5@
zu tun haben. Verbesserungen ergeben sich vielleicht, wenn man die Zahl der Stützpunkte erhöht oder ihren Bereich ausweitet. Dies aber sind Fragestellungen aus dem Bereich der Numerik . Dort entwickelt man auch andere Interpolationsverfahren, die auf komplexere Aufgabenstellungen bessere Antworten geben können.
Hier stellen wir jetzt eine Variante des Lagrange-Verfahrens vor, die sog. baryzentrische Form . Bei einem gegebenen Satz von Stützstellen
x
0
, … ,
x
n
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIWaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3C73@
setzen wir dazu für
k = 0, … , n
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaicdacaGGSaGaeSOjGSKaaiilaiaad6gaaaa@3C0D@
die Stützkoeffizienten (auch: baryzentrischen Gewichte ) fest durch
λ
k
( n )
≔
∏
i = 0
i ≠ k
n
1
x
k
−
x
i
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aa0baaSqaaiaadUgaaeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaqeWbqaamaalaaabaGaaGymaaqaaiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaaaeaafaqabeGabaaabaGaamyAaiabg2da9iaaicdaaeaacaWGPbGaeyiyIKRaam4AaaaaaeaacaWGUbaaniabg+Givdaaaa@4B80@
[4.0.8]
Spielt die Anzahl der Stützstellen keine Rolle, so schreiben wir nur
λ
k
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaaaa@38B8@
. Für das Interpolationspolynom p erhält man damit die Darstellung
p =
∑
k = 0
n
y
k
λ
k
∏
i = 0
i ≠ k
n
( X −
x
i
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9maaqahabaGaamyEamaaBaaaleaacaWGRbaabeaakiabeU7aSnaaBaaaleaacaWGRbaabeaakmaarahabaGaaiikaiaadIfacqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaqbaeqabiqaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamyAaiabgcMi5kaadUgaaaaabaGaamOBaaqdcqGHpis1aaWcbaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@518E@
.
[4.0.9]
Stellt man p in der Standardform
p =
a
n
X
n
+ … +
a
0
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccaWGybWaaWbaaSqabeaacaWGUbaaaOGaey4kaSIaeSOjGSKaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaaaaa@40AB@
dar, so ist
∑
k = 0
n
y
k
λ
k
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaaa@40B6@
gerade der Koeffizient von
X
n
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOBaaaaaaa@37E5@
. Und da für
y
k
= 1
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaWGRbaabeaakiabg2da9iaaigdaaaa@39CD@
p das konstante Polynom 1 ist, hat man so für jedes
n > 0
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaicdaaaa@389D@
die Gleichheit
∑
k = 0
n
λ
k
= 0
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpcaaIWaaaaa@405C@
[4.0.10]
gesichert. Als weitere Abkürzung setzen wir für
x ≠
x
k
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaadIhadaWgaaWcbaGaam4Aaaqabaaaaa@3AC5@
μ
k
( n )
( x ) ≔
λ
k
( n )
x −
x
k
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aa0baaSqaaiaadUgaaeaacaGGOaGaamOBaiaacMcaaaGccaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaqaaiabeU7aSnaaDaaaleaacaWGRbaabaGaaiikaiaad6gacaGGPaaaaaGcbaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaam4Aaaqabaaaaaaa@47A7@
.
[4.0.11]
Auch hier verkürzen wir zu
μ
k
( x )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaaa@3B1A@
, wenn der Bezug zu n nicht wichtig ist. Beachtet man, dass
λ
k
∏
i = 0
i ≠ k
n
( x −
x
i
)
=
λ
k
x −
x
k
∏
i = 0
n
( x −
x
i
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOWaaebCaeaacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaafaqabeGabaaabaGaamyAaiabg2da9iaaicdaaeaacaWGPbGaeyiyIKRaam4AaaaaaeaacaWGUbaaniabg+GivdGccqGH9aqpdaWcaaqaaiabeU7aSnaaBaaaleaacaWGRbaabeaaaOqaaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaadUgaaeqaaaaakmaarahabaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabg+Givdaaaa@5AE7@
,
so haben wir außerhalb der Stützstellen, also für
x ∉ {
x
0
, … ,
x
n
}
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgMGiplaacUhacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiyFaaaa@4100@
:
p ( x ) =
∑
k = 0
n
y
k
λ
k
∏
i = 0
i ≠ k
n
( x −
x
i
)
=
∏
i = 0
n
( x −
x
i
)
∑
k = 0
n
y
k
μ
k
( x )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacIcacaWG4bGaaiykaiabg2da9maaqahabaGaamyEamaaBaaaleaacaWGRbaabeaakiabeU7aSnaaBaaaleaacaWGRbaabeaakmaarahabaGaaiikaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaWcbaqbaeqabiqaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamyAaiabgcMi5kaadUgaaaaabaGaamOBaaqdcqGHpis1aaWcbaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpdaqeWbqaaiaacIcacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaWGPbaabeaakiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHpis1aOWaaabCaeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaa@6D8F@
.
[4.0.12]
Das ist die 1. baryzentrische Form des Lagrangeschen Interpolationspolynoms. Wählt man auch hier
y
k
= 1
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaWGRbaabeaakiabg2da9iaaigdaaaa@39CD@
, also
p ( x ) = 1
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacIcacaWG4bGaaiykaiabg2da9iaaigdaaaa@3AF4@
, so erhält man
∏
i = 0
n
( x −
x
i
)
=
1
∑
k = 0
n
μ
k
( x )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaebCaeaacaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0Gaey4dIunakiabg2da9maalaaabaGaaGymaaqaamaaqahabaGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaaaaa@4E10@
, und damit die 2. baryzentrische Form :
p ( x ) =
∑
k = 0
n
y
k
μ
k
( x )
∑
k = 0
n
μ
k
( x )
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacIcacaWG4bGaaiykaiabg2da9maalaaabaWaaabCaeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaOqaamaaqahabaGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaaaaa@52A5@
.
[4.0.13]
Die baryzentrische Form erweist sich als vorteilhaft, wenn man einen bereits gegebenen Satz von Stützpunkten
(
x
0
,
y
0
) , … , (
x
n
,
y
n
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGSaGaamyEamaaBaaaleaacaaIWaaabeaakiaacMcacaGGSaGaeSOjGSKaaiilaiaacIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@44A4@
durch einen weiteren Punkt
(
x
n + 1
,
y
n + 1
)
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiilaiaadMhadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiykaaaa@3F78@
ergänzen will. Während bei der Lagrange-Darstellung alle Grundpolynome neu berechnet werden müssten, gewinnt man die hier notwendigen neuen Stützkoeffizienten leicht aus den alten:
λ
k
( n + 1 )
=
λ
k
( n )
x
k
−
x
n + 1
für k ≤ n
λ
n + 1
( n + 1 )
= −
∑
k = 0
n
λ
k
( n + 1 )
gemäß [4.0.10]
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiabeU7aSnaaDaaaleaacaWGRbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9maalaaabaGaeq4UdW2aa0baaSqaaiaadUgaaeaacaGGOaGaamOBaiaacMcaaaaakeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaOGaaGzbVdqaaiaabAgacaqG8dGaaeOCaiaabccacaWGRbGaeyizImQaamOBaaqaaiabeU7aSnaaDaaaleaacaWGUbGaey4kaSIaaGymaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGH9aqpcqGHsisldaaeWbqaaiabeU7aSnaaDaaaleaacaWGRbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaaywW7aeaacaqGNbGaaeyzaiaab2gacaqGKdGaae43aiaabccacaqGBbGaaeinaiaab6cacaqGWaGaaeOlaiaabgdacaqGWaGaaeyxaaaaaaa@7793@
[4.0.14]
Wir zeigen dies mit einem Beispiel für die 1. baryzentrische Form
und nehmen dazu noch einmal die Stützpunkte aus dem ersten Beispiel, also (2 , 4) , (6 , 6) . Mit
λ
0
=
λ
0
( 1 )
=
1
2 − 6
= −
1
4
μ
0
( x ) =
λ
0
x − 2
=
−
1
4
x − 2
λ
1
=
λ
1
( 1 )
=
1
6 − 2
=
1
4
μ
1
( x ) =
λ
1
x − 6
=
1
4
x − 6
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiabeU7aSnaaBaaaleaacaaIWaaabeaakiabg2da9iabeU7aSnaaDaaaleaacaaIWaaabaGaaiikaiaaigdacaGGPaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabgkHiTiaaiAdaaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaaaeaacqaH8oqBdaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaqaaiabeU7aSnaaBaaaleaacaaIWaaabeaaaOqaaiaadIhacqGHsislcaaIYaaaaiabg2da9maalaaabaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaaaeaacaWG4bGaeyOeI0IaaGOmaaaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH7oaBdaqhaaWcbaGaaGymaaqaaiaacIcacaaIXaGaaiykaaaakiabg2da9maalaaabaGaaGymaaqaaiaaiAdacqGHsislcaaIYaaaaiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0ZaaSaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaaakeaacaWG4bGaeyOeI0IaaGOnaaaacqGH9aqpdaWcaaqaamaalaaabaGaaGymaaqaaiaaisdaaaaabaGaamiEaiabgkHiTiaaiAdaaaaaaaaa@7777@
ist dann
p ( x ) = ( x − 2 ) ⋅ ( x − 6 ) ⋅ ( −
1
x − 2
+
3
2
x − 6
) = − ( x − 6 ) +
3
2
( x − 2 ) =
1
2
x + 3
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacIcacaWG4bGaaiykaiabg2da9iaacIcacaWG4bGaeyOeI0IaaGOmaiaacMcacqGHflY1caGGOaGaamiEaiabgkHiTiaaiAdacaGGPaGaeyyXICTaaiikaiabgkHiTmaalaaabaGaaGymaaqaaiaadIhacqGHsislcaaIYaaaaiabgUcaRmaalaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaeaacaWG4bGaeyOeI0IaaGOnaaaacaGGPaGaeyypa0JaeyOeI0IaaiikaiaadIhacqGHsislcaaI2aGaaiykaiabgUcaRmaalaaabaGaaG4maaqaaiaaikdaaaGaaiikaiaadIhacqGHsislcaaIYaGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamiEaiabgUcaRiaaiodaaaa@6334@
.
Wir fügen (3 , 0) als weiteren Stützpunkt hinzu und berechnen die neuen Daten gemäß [4.0.14] :
λ
0
( 2 )
=
λ
0
( 1 )
2 − 3
=
1
4
μ
0
( x ) =
1
4
x − 2
λ
1
( 2 )
=
λ
1
( 1 )
6 − 3
=
1
12
μ
1
( x ) =
1
12
x − 6
λ
2
( 2 )
= − (
1
4
+
1
12
) = −
1
3
μ
2
( x ) =
−
1
3
x − 3
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiabeU7aSnaaDaaaleaacaaIWaaabaGaaiikaiaaikdacaGGPaaaaOGaeyypa0ZaaSaaaeaacqaH7oaBdaqhaaWcbaGaaGimaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaaikdacqGHsislcaaIZaaaaiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaaabaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0ZaaSaaaeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaqaaiaadIhacqGHsislcaaIYaaaaaqaaiabeU7aSnaaDaaaleaacaaIXaaabaGaaiikaiaaikdacaGGPaaaaOGaeyypa0ZaaSaaaeaacqaH7oaBdaqhaaWcbaGaaGymaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaaiAdacqGHsislcaaIZaaaaiabg2da9maalaaabaGaaGymaaqaaiaaigdacaaIYaaaaaqaaiabeY7aTnaaBaaaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaabaWaaSaaaeaacaaIXaaabaGaaGymaiaaikdaaaaabaGaamiEaiabgkHiTiaaiAdaaaaabaGaeq4UdW2aa0baaSqaaiaaikdaaeaacaGGOaGaaGOmaiaacMcaaaGccqGH9aqpcqGHsislcaGGOaWaaSaaaeaacaaIXaaabaGaaGinaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaGaaGOmaaaacaGGPaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaaabaGaamiEaiabgkHiTiaaiodaaaaaaaaa@8655@
Also: p ( x )
= ( x − 2 ) ⋅ ( x − 6 ) ⋅ ( x − 3 ) ⋅ (
1
x − 2
+
1
2
x − 6
+
0
x − 3
)
= ( x − 6 ) ⋅ ( x − 3 ) +
1
2
( x − 2 ) ⋅ ( x − 3 )
=
3
2
x
2
−
23
2
x + 21 .
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaabgeacaqGSbGaae4Caiaab+gacaqG6aGaamiCaiaacIcacaWG4bGaaiykaaqaaiabg2da9iaacIcacaWG4bGaeyOeI0IaaGOmaiaacMcacqGHflY1caGGOaGaamiEaiabgkHiTiaaiAdacaGGPaGaeyyXICTaaiikaiaadIhacqGHsislcaaIZaGaaiykaiabgwSixlaacIcadaWcaaqaaiaaigdaaeaacaWG4bGaeyOeI0IaaGOmaaaacqGHRaWkdaWcaaqaamaalaaabaGaaGymaaqaaiaaikdaaaaabaGaamiEaiabgkHiTiaaiAdaaaGaey4kaSYaaSaaaeaacaaIWaaabaGaamiEaiabgkHiTiaaiodaaaGaaiykaaqaaaqaaiabg2da9iaacIcacaWG4bGaeyOeI0IaaGOnaiaacMcacqGHflY1caGGOaGaamiEaiabgkHiTiaaiodacaGGPaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiEaiabgkHiTiaaikdacaGGPaGaeyyXICTaaiikaiaadIhacqGHsislcaaIZaGaaiykaaqaaaqaaiabg2da9maalaaabaGaaG4maaqaaiaaikdaaaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaaGOmaiaaiodaaeaacaaIYaaaaiaadIhacqGHRaWkcaaIYaGaaGymaaaaaaa@82CF@