Beispiel einer Polynomdivision


Wir betrachten ein Beispiel in () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFzecucaGGOaGaeSyhHeQaaiykaaaa@4363@ . Dabei erhalten wir einen schreibtechnischen Vorteil, wenn wir Polynomfunktionen, anders als bisher, mit dem Leitkoeffizient-Summanden beginnen lassen. Also z.B. 2 X 3 X 2 +4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaaaa@3CD2@ statt 4 X 2 +2 X 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiabgkHiTiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamiwamaaCaaaleqabaGaaG4maaaaaaa@3CC8@ .

Für p=(4,0,1,2,0,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaacIcacaaI0aGaaiilaiaaicdacaGGSaGaeyOeI0IaaGymaiaacYcacaaIYaGaaiilaiaaicdacaGGSaGaeSOjGSKaaiykaaaa@4264@ und q=(0,1,1,0,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9iaacIcacaaIWaGaaiilaiaaigdacaGGSaGaaGymaiaacYcacaaIWaGaaiilaiablAciljaacMcaaaa@4009@ , also f p =2 X 3 X 2 +4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbaabeaakiabg2da9iaaikdacaWGybWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdaaaa@3FEE@ und f q = X 2 +X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGXbaabeaakiabg2da9iaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGybaaaa@3C94@ , ist

n=grad   p=3 m=grad   q=2 k=mn=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGUbGaeyypa0Jaam4zaiaadkhacaWGHbGaamizaiaaysW7caWGWbGaeyypa0JaaG4maaqaaiaad2gacqGH9aqpcaWGNbGaamOCaiaadggacaWGKbGaaGjbVlaadghacqGH9aqpcaaIYaaabaGaam4Aaiabg2da9iaad2gacqGHsislcaWGUbGaeyypa0JaaGymaaaaaa@5058@

Es sind also die Polynome p 0 ,    p 1 , p 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaIWaaabeaakiaacYcacaaMe8UaamiCamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaamiCamaaBaaaleaacaaIYaaabeaaaaa@4008@ zu bilden und zwar mit Hilfe der Rekursion

c i+1,j { c i,j    für   jki1 c i,j c i,ni b jk+i    für   j>ki1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaWGPbGaey4kaSIaaGymaiaacYcacaWGQbaabeaakiabg2da9maaceaabaqbaeaabiqaaaqaaiaadogadaWgaaWcbaGaamyAaiaacYcacaWGQbaabeaakiaaysW7caqGMbGaaei=aiaabkhacaaMe8UaamOAaiabgsMiJkaadUgacqGHsislcaWGPbGaeyOeI0IaaGymaaqaaiaadogadaWgaaWcbaGaamyAaiaacYcacaWGQbaabeaakiabgkHiTiaadogadaWgaaWcbaGaamyAaiaacYcacaWGUbGaeyOeI0IaamyAaaqabaGccqGHflY1caWGIbWaaSbaaSqaaiaadQgacqGHsislcaWGRbGaey4kaSIaamyAaaqabaGccaaMe8UaaeOzaiaabYpacaqGYbGaaGjbVlaadQgacqGH+aGpcaWGRbGaeyOeI0IaamyAaiabgkHiTiaaigdaaaaacaGL7baaaaa@6D9B@

 

p 0 =p=( c 0 )=(4,0,1, 2 c 0,3 ,0,) i=0 p 1 =( c 0,0 , c 0,1 c 0,3 b 0 , c 0,2 c 0,3 b 1 , c 0,3 c 0,3 b 2 , c 0,4 c 0,3 b 3 ,) =(4,020,121,221,020,) =(4,0, 3 c 1,2 ,0,) i=1 p 2 =( c 1,0 c 1,2 b 0 , c 1,1 c 1,2 b 1 , c 1,2 c 1,2 b 2 , c 1,3 c 1,2 b 3 ,) =(4(3)0,0(3)1,3(3)1,0(3)0,) =(4,3,0,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabCGaaaaabaGaamiCamaaBaaaleaacaaIWaaabeaaaOqaaiabg2da9iaadchacqGH9aqpcaGGOaGaam4yamaaBaaaleaacaaIWaaabeaakiaacMcacqGH9aqpcaGGOaGaaGinaiaacYcacaaIWaGaaiilaiabgkHiTiaaigdacaGGSaWaaGbaaeaacaaIYaaaleaacaWGJbWaaSbaaWqaaiaaicdacaGGSaGaaG4maaqabaaakiaawIJ=aiaacYcacaaIWaGaaiilaiablAciljaacMcaaeaacaWGPbGaeyypa0JaaGimaiaaywW7caWGWbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyypa0JaaiikaiaadogadaWgaaWcbaGaaGimaiaacYcacaaIWaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaicdacaGGSaGaaGymaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaicdacaGGSaGaaG4maaqabaGccqGHflY1caWGIbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaadogadaWgaaWcbaGaaGimaiaacYcacaaIYaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGimaiaacYcacaaIZaaabeaakiabgwSixlaadkgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIWaGaaiilaiaaiodaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIWaGaaiilaiaaiodaaeqaaOGaeyyXICTaamOyamaaBaaaleaacaaIYaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaicdacaGGSaGaaGinaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaicdacaGGSaGaaG4maaqabaGccqGHflY1caWGIbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiablAciljaacMcaaeaaaeaacqGH9aqpcaGGOaGaaGinaiaacYcacaaIWaGaeyOeI0IaaGOmaiabgwSixlaaicdacaGGSaGaeyOeI0IaaGymaiabgkHiTiaaikdacqGHflY1caaIXaGaaiilaiaaikdacqGHsislcaaIYaGaeyyXICTaaGymaiaacYcacaaIWaGaeyOeI0IaaGOmaiabgwSixlaaicdacaGGSaGaeSOjGSKaaiykaaqaaaqaaiabg2da9iaacIcacaaI0aGaaiilaiaaicdacaGGSaWaaGbaaeaacqGHsislcaaIZaaaleaacaWGJbWaaSbaaWqaaiaaigdacaGGSaGaaGOmaaqabaaakiaawIJ=aiaacYcacaaIWaGaaiilaiablAciljaacMcaaeaacaWGPbGaeyypa0JaaGymaiaaywW7caWGWbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyypa0JaaiikaiaadogadaWgaaWcbaGaaGymaiaacYcacaaIWaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakiabgwSixlaadkgadaWgaaWcbaGaaGimaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIXaGaaiilaiaaigdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaGaaiilaiaaikdaaeqaaOGaeyyXICTaamOyamaaBaaaleaacaaIXaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdacaGGSaGaaGOmaaqabaGccqGHflY1caWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadogadaWgaaWcbaGaaGymaiaacYcacaaIZaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakiabgwSixlaadkgadaWgaaWcbaGaaG4maaqabaGccaGGSaGaeSOjGSKaaiykaaqaaaqaaiabg2da9iaacIcacaaI0aGaeyOeI0IaaiikaiabgkHiTiaaiodacaGGPaGaeyyXICTaaGimaiaacYcacaaIWaGaeyOeI0IaaiikaiabgkHiTiaaiodacaGGPaGaeyyXICTaaGymaiaacYcacqGHsislcaaIZaGaeyOeI0IaaiikaiabgkHiTiaaiodacaGGPaGaeyyXICTaaGymaiaacYcacaaIWaGaeyOeI0IaaiikaiabgkHiTiaaiodacaGGPaGaeyyXICTaaGimaiaacYcacqWIMaYscaGGPaaabaaabaGaeyypa0JaaiikaiaaisdacaGGSaGaaG4maiaacYcacaaIWaGaaiilaiablAciljaacMcaaaaaaa@23AE@

Damit haben wir insbesondere die Polynomfunktion f p 2 =3X+4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabg2da9iaaiodacaWGybGaey4kaSIaaGinaaaa@3D32@ und können nun die gesuchte Darstellung

f p =( j=0 k c j,nj X kj ) f q + f p k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbaabeaakiabg2da9iaacIcadaaeWbqaaiaadogadaWgaaWcbaGaamOAaiaacYcacaWGUbGaeyOeI0IaamOAaaqabaGccaWGybWaaWbaaSqabeaacaWGRbGaeyOeI0IaamOAaaaaaeaacaWGQbGaeyypa0JaaGimaaqaaiaadUgaa0GaeyyeIuoakiaacMcacqGHflY1caWGMbWaaSbaaSqaaiaadghaaeqaaOGaey4kaSIaamOzamaaBaaaleaacaWGWbWaaSbaaWqaaiaadUgacqGHRaWkcaaIXaaabeaaaSqabaaaaa@53B3@ ,

für k=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaigdaaaa@3899@ also f p =( c 0,3 X+ c 1,2 ) f q + f p 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbaabeaakiabg2da9iaacIcacaWGJbWaaSbaaSqaaiaaicdacaGGSaGaaG4maaqabaGccaWGybGaey4kaSIaam4yamaaBaaaleaacaaIXaGaaiilaiaaikdaaeqaaOGaaiykaiaadAgadaWgaaWcbaGaamyCaaqabaGccqGHRaWkcaWGMbWaaSbaaSqaaiaadchadaWgaaadbaGaaGOmaaqabaaaleqaaaaa@489F@ , angeben:

2 X 3 X 2 +4=(2X3)( X 2 +X)+3X+4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiabg2da9iaacIcacaaIYaGaamiwaiabgkHiTiaaiodacaGGPaGaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGybGaaiykaiabgUcaRiaaiodacaWGybGaey4kaSIaaGinaaaa@4B78@ .

Es ist unverkennbar, dass Ermittlung der Koeffizienten c i,j MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaWGPbGaaiilaiaadQgaaeqaaaaa@398B@ , und damit der gesuchten Zerlegung, recht mühsam ist. Zum Glück gibt es eine alternative Rekursionsroutine, die an das schriftliche Dividieren aus der Schulzeit erinnert. Dabei wird die Darstellung

f p i+1 = f p i c i,ni X ki f q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbWaaSbaaWqaaiaadMgacqGHRaWkcaaIXaaabeaaaSqabaGccqGH9aqpcaWGMbWaaSbaaSqaaiaadchadaWgaaadbaGaamyAaaqabaaaleqaaOGaeyOeI0Iaam4yamaaBaaaleaacaWGPbGaaiilaiaad6gacqGHsislcaWGPbaabeaakiaadIfadaahaaWcbeqaaiaadUgacqGHsislcaWGPbaaaOGaeyyXICTaamOzamaaBaaaleaacaWGXbaabeaaaaa@4DB0@
 
direkt errechnet. Beachtet man, dass c i,ni X ki = c i,ni X nim =( c i,ni X ni ): X m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaWGPbGaaiilaiaad6gacqGHsislcaWGPbaabeaakiaadIfadaahaaWcbeqaaiaadUgacqGHsislcaWGPbaaaOGaeyypa0Jaam4yamaaBaaaleaacaWGPbGaaiilaiaad6gacqGHsislcaWGPbaabeaakiaadIfadaahaaWcbeqaaiaad6gacqGHsislcaWGPbGaeyOeI0IaamyBaaaakiabg2da9iaacIcacaWGJbWaaSbaaSqaaiaadMgacaGGSaGaamOBaiabgkHiTiaadMgaaeqaaOGaamiwamaaCaaaleqabaGaamOBaiabgkHiTiaadMgaaaGccaGGPaGaaiOoaiaadIfadaahaaWcbeqaaiaad2gaaaaaaa@5A27@ , so lässt sich die Berechnung von f p i+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbWaaSbaaWqaaiaadMgacqGHRaWkcaaIXaaabeaaaSqabaaaaa@3AB7@ durch drei Schritte mechanisieren:
  • Teile den Leitkoeffizient-Summanden von f p i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaaa@391A@ durch Leitkoeffizient-Summanden von f q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGXbaabeaaaaa@37F5@ .
  • Multipliziere dieses Teilergebnis mit f q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGXbaabeaaaaa@37F5@ .
  • Subtrahiere dieses Produkt von f p i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbWaaSbaaWqaaiaadMgaaeqaaaWcbeaaaaa@391A@ .
In unserem Beispiel mit f p =2 X 3 X 2 +4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbaabeaakiabg2da9iaaikdacaWGybWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdaaaa@3FEE@ und f q = X 2 +X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGXbaabeaakiabg2da9iaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGybaaaa@3C94@ , berechnet man etwa f p 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaaa@38E7@ aus f p 0 = f p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbWaaSbaaWqaaiaaicdaaeqaaaWcbeaakiabg2da9iaadAgadaWgaaWcbaGaamiCaaqabaaaaa@3C02@ wie folgt:
  • 2 X 3 : X 2 =2X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadIfadaahaaWcbeqaaiaaiodaaaGccaGG6aGaamiwamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaikdacaWGybaaaa@3DA2@ .
  • ( X 2 +X)2X=2 X 3 +2 X 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGybGaaiykaiabgwSixlaaikdacaWGybGaeyypa0JaaGOmaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaamiwamaaCaaaleqabaGaaGOmaaaaaaa@45AA@ .
  • (2 X 3 X 2 +4)(2 X 3 +2 X 2 )=3 X 2 +4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaikdacaWGybWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdacaGGPaGaeyOeI0IaaiikaiaaikdacaWGybWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiaadIfadaahaaWcbeqaaiaaikdaaaGccaGGPaGaeyypa0JaeyOeI0IaaG4maiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aaaaa@4C8C@ .

Diesen dreistufigen Rekusionsschritt wiederholt man nun so oft bis p i+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaWGPbGaey4kaSIaaGymaaqabaaaaa@3996@ einen geringeren Grad hat als q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36E0@ . Im Beispiel ist dies bereits im zweiten Schritt erreicht.

Den vollständigen Prozess notieren wir in der klassischen Schreibweise für eine schriftliche Division:

(2 X 3 X 2 +4):( X 2 +X)=2X3 f p 1 (2 X 3 +2 X 2 ) f p 1 (2 X 3 3 X 2 +4 f p 1 X 3 (3 X 2 3X) f p 1 (3 X 2 3X) 3X+4 f p 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabuqaaaaabaGaaiikaiaaikdacaWGybWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdacaGGPaGaaiOoaiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiwaiaacMcacqGH9aqpcaaIYaGaamiwaiabgkHiTiaaiodaaeaacqGHsislcaGGOaGaaGOmaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaamiwamaaCaaaleqabaGaaGOmaaaakiaacMcaaeaacqGHsislcaaIZaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdacaaMf8UaeyiKHWQaamOzamaaBaaaleaacaWGWbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaOqaaiabgkHiTiaacIcacqGHsislcaaIZaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodacaWGybGaaiykaaqaaiaaiodacaWGybGaey4kaSIaaGinaiaaywW7cqGHqgcRcaWGMbWaaSbaaSqaaiaadchadaWgaaadbaGaaGOmaaqabaaaleqaaaaaaaa@6E00@

und lesen schließlich die gewonnene Zerlegung ab:

2 X 3 X 2 +4=(2X3)( X 2 +X)+3X+4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiabg2da9iaacIcacaaIYaGaamiwaiabgkHiTiaaiodacaGGPaGaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGybGaaiykaiabgUcaRiaaiodacaWGybGaey4kaSIaaGinaaaa@4B78@ .
 

Das folgende Formular berechnet Polynomdivisionen automatisch. Man wählt zunächst den Ring R aus, wobei im Fall n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSijHi6aaSbaaSqaaiaad6gaaeqaaaaa@3881@ auch die gewünschte Primzahl einzutragen ist:

Bei der Eingabe der Koeffizienten von p=( a 0 , a 1 ,, a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaacIcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaadggadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@422C@ und q=( b 0 ,, b m1 ,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9iaacIcacaWGIbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWGIbWaaSbaaSqaaiaad2gacqGHsislcaaIXaaabeaakiaacYcacaaIXaGaaiykaaaa@42BA@ muss das Komma als Trenner benutzt werden. Dezimalzahlen werden mit Dezimalpunkt notiert und auf vier Stellen gerundet. Komplexe Zahlen haben die übliche Form a+bi. Man beachte außerdem die Reihenfolge der Koeffizienten. Nach Eingabe der Daten

p=( MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaacIcaaaa@3891@ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiykaaaa@3697@
q=( MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9iaacIcaaaa@3892@ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiykaaaa@3697@

ruft man jetzt die Zerlegung von f p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGWbaabeaaaaa@37F6@ ab: Los!