9.17. Abstandsmessungen


Über die Länge des Lotvektors konnten wir im letzten Abschnitt den Nullabstand eines affinen Unterraums M errechnen. Hier nun soll dieser elementare Abstandsbegriff in zwei Schritten erweitert werden. Wir ermitteln

  1. den Abstand von M zu einem beliebigen Punkt p,
  2. den Abstand von M zu einem weiteren affinen Unterraum N.


Wie bisher sei wieder M=a+< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4daaa@4226@ ein beliebiger k-dimensionaler affiner Unterraum des m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@3878@ , l der zugehörige Lotvektor. Im Fall 0<k<m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadUgacqGH8aapcaWGTbaaaa@3A8D@ stehen uns n k+1 ,, n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaad6gadaWgaaWcbaGaamyBaaqabaaaaa@3E32@ als Normalenvektoren zur Verfügung.

 
Sei nun p ein beliebiger Punkt des m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@3878@ . Setzt man
 
M p =p+< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGWbaabeaakiabg2da9iaadchacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4daaa@4360@ ,

so entsteht ein zu M parallel verschobener affiner Unterraum, der den Punkt p enthält. Die nebenstehende Skizze zeigt dies für den Fall einer Geraden in 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ . Zugleich wird deutlich, dass die Abstandsmessung nicht unbedingt an der Stelle p durchgeführt werden muss, sondern dass man dazu auch die beiden Lotvektoren heranziehen darf.

     
 
Definition:  Es sei M ein affiner Unterraum und p ein Punkt des m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@3878@ . Ist l MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36DA@ der Lotvektor von M und l' MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaacEcaaaa@3785@ der Lotvektor des durch p gehenden parallelen affinen Unterraums M p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGWbaabeaaaaa@37DC@ , so nennen wir die Zahl

d(p,M)=|ll'| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaGaeyypa0JaaiiFaiaadYgacqGHsislcaWGSbGaai4jaiaacYhaaaa@4122@

den Abstand von p zu M.
  

In den Sonderfällen k=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaicdaaaa@3899@ und k=m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaad2gaaaa@38D1@ sind die Abstandmessungen leicht durchzuführen:
 

In den "eigentlichen" Fällen, d.h. für 0<k<m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadUgacqGH8aapcaWGTbaaaa@3A8D@ , benötigen wir Normalenvektoren zur Abstandsermittlung.
  
Bemerkung:  Sind n k+1 ,, n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaad6gadaWgaaWcbaGaamyBaaqabaaaaa@3E32@ Normalenvektoren von M, so gilt für jeden Punkt p:
 
d(p,M)= ( n k+1 ·(ap)) 2 ++ ( n m ·(ap)) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaGaeyypa0ZaaOaaaeaacaGGOaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccqWIpM+zcaGGOaGaamyyaiabgkHiTiaadchacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiablAciljabgUcaRiaacIcacaWGUbWaaSbaaSqaaiaad2gaaeqaaOGaeS4JPFMaaiikaiaadggacqGHsislcaWGWbGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaaabeaaaaa@561F@ .

Beweis:

M und M p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGWbaabeaaaaa@37DC@ besitzen denselben zugrunde liegenden Raum. Man darf daher für M und M p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGWbaabeaaaaa@37DC@ auch dieselben Normalenvektoren n k+1 ,, n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaad6gadaWgaaWcbaGaamyBaaqabaaaaa@3E32@ wählen. Für die beiden Lotvektoren ergibt sich also:
 

l=( n k+1 ·a) n k+1 ++( n m ·a) n m l'=( n k+1 ·p) n k+1 ++( n m ·p) n m . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadYgacqGH9aqpcaGGOaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccqWIpM+zcaWGHbGaaiykaiaad6gadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaaiikaiaad6gadaWgaaWcbaGaamyBaaqabaGccqWIpM+zcaWGHbGaaiykaiaad6gadaWgaaWcbaGaamyBaaqabaaakeaacaWGSbGaai4jaiabg2da9iaacIcacaWGUbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiabl+y6NjaadchacaGGPaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcaGGOaGaamOBamaaBaaaleaacaWGTbaabeaakiabl+y6NjaadchacaGGPaGaamOBamaaBaaaleaacaWGTbaabeaaaaaaaa@6A6E@

Da nun ll'=( n k+1 ·(ap)) n k+1 ++( n m ·(ap)) n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgkHiTiaadYgacaGGNaGaeyypa0Jaaiikaiaad6gadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaeS4JPFMaaiikaiaadggacqGHsislcaWGWbGaaiykaiaacMcacaWGUbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiabgUcaRiablAciljabgUcaRiaacIcacaWGUbWaaSbaaSqaaiaad2gaaeqaaOGaeS4JPFMaaiikaiaadggacqGHsislcaWGWbGaaiykaiaacMcacaWGUbWaaSbaaSqaaiaad2gaaeqaaaaa@58BB@ eine Linearkombination von orthonormalen Vektoren ist, ist die Länge von ll' MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgkHiTiaadYgacaGGNaaaaa@3963@ identisch mit der Länge des zugehörigen Koordinatenvektors:
 

d(p,M)= ( n k+1 ·(ap)) 2 ++ ( n m ·(ap)) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaGaeyypa0ZaaOaaaeaacaGGOaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccqWIpM+zcaGGOaGaamyyaiabgkHiTiaadchacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiablAciljabgUcaRiaacIcacaWGUbWaaSbaaSqaaiaad2gaaeqaaOGaeS4JPFMaaiikaiaadggacqGHsislcaWGWbGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaaabeaaaaa@561F@ .

Beachte:

Beispiel: 
  1. ( 4 3 ) ° = 1 5 ( 4 3 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaGinaaqaaiabgkHiTiaaiodaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHWcaSaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI1aaaamaabmaabaqbaeqabiqaaaqaaiaaisdaaeaacqGHsislcaaIZaaaaaGaayjkaiaawMcaaaaa@4298@ ist ein Normalenvektor der Geraden g=( 2 3 )+<( 3 4 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9maabmaabaqbaeqabiqaaaqaaiaaikdaaeaacqGHsislcaaIZaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabiqaaaqaaiaaiodaaeaacaaI0aaaaaGaayjkaiaawMcaaiabg6da+aaa@41D6@ , also ist z.B:
    d(( 3 1 ),g)= 1 5 |( 4 3 )·( 1 4 )|= 8 5 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcadaqadaqaauaabeqaceaaaeaacaaIZaaabaGaaGymaaaaaiaawIcacaGLPaaacaGGSaGaam4zaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI1aaaaiaacYhadaqadaqaauaabeqaceaaaeaacaaI0aaabaGaeyOeI0IaaG4maaaaaiaawIcacaGLPaaacqWIpM+zdaqadaqaauaabeqaceaaaeaacqGHsislcaaIXaaabaGaeyOeI0IaaGinaaaaaiaawIcacaGLPaaacaGG8bGaeyypa0ZaaSaaaeaacaaI4aaabaGaaGynaaaaaaa@4F53@ .

     
  2. (( 1 3 1 )×( 0 1 1 )) ° = ( 4 1 1 ) ° = 1 18 ( 4 1 1 )= 1 3 2 ( 4 1 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaabmaabaqbaeqabmqaaaqaaiaaigdaaeaacqGHsislcaaIZaaabaGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaacqGHxdaTdaqadaqaauaabeqadeaaaeaacaaIWaaabaGaaGymaaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaaiykamaaCaaaleqabaGaeyiSaalaaOGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaGinaaqaaiaaigdaaeaacaaIXaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaeyiSaalaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaaIXaGaaGioaaWcbeaaaaGcdaqadaqaauaabeqadeaaaeaacaaI0aaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4mamaakaaabaGaaGOmaaWcbeaaaaGcdaqadaqaauaabeqadeaaaeaacaaI0aaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaaaaa@5B45@ ist ein Normalenvektor der Ebene E=( 0 4 0 )+<( 1 3 1 ),( 0 1 1 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9maabmaabaqbaeqabmqaaaqaaiaaicdaaeaacaaI0aaabaGaaGimaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacaaIXaaabaGaeyOeI0IaaG4maaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabmqaaaqaaiaaicdaaeaacaaIXaaabaGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaacqGH+aGpaaa@497B@ . Man hat also etwa:
     
    d(( 1 5 1 ),E)= 1 18 |( 4 4 1 )·( 1 1 1 )|=| 6 18 |= 6 3 2 = 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcadaqadaqaauaabeqadeaaaeaacaaIXaaabaGaaGynaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiilaiaadweacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaaIXaGaaGioaaWcbeaaaaGccaGG8bWaaeWaaeaafaqabeWabaaabaGaaGinaaqaaiaaisdaaeaacaaIXaaaaaGaayjkaiaawMcaaiabl+y6NnaabmaabaqbaeqabmqaaaqaaiabgkHiTiaaigdaaeaacqGHsislcaaIXaaabaGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaacaGG8bGaeyypa0JaaiiFaiabgkHiTmaalaaabaGaaGOnaaqaamaakaaabaGaaGymaiaaiIdaaSqabaaaaOGaaiiFaiabg2da9maalaaabaGaaGOnaaqaaiaaiodadaGcaaqaaiaaikdaaSqabaaaaOGaeyypa0ZaaOaaaeaacaaIYaaaleqaaaaa@5B6A@ .

     
  3. Für die Ebene ( 2 1 0 1 )+<( 1 2 0 1 ),( 2 1 1 1 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeabbaaaaeaacqGHsislcaaIYaaabaGaaGymaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabqqaaaaabaGaaGymaaqaaiaaikdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacaGGSaWaaeWaaeaafaqabeabbaaaaeaacaaIYaaabaGaaGymaaqaaiaaigdaaeaacaaIXaaaaaGaayjkaiaawMcaaiabg6da+aaa@4807@ benötigen wir zwei Normalenvektoren. Über den Ansatz
     
    <( 1 2 0 1 ),( 2 1 1 1 ) > =Ker( 1 2 0 1 2 1 1 1 )=<( 1 0 1 1 ),( 0 1 1 2 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWZaaeWaaeaafaqabeabbaaaaeaacaaIXaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqaeeaaaaqaaiaaikdaaeaacaaIXaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaeyOpa4ZaaWbaaSqabeaacqGHLkIxaaGccqGH9aqpcaWGlbGaamyzaiaadkhacaaMc8+aaeWaaeaafaqabeGaeaaaaeaacaaIXaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaabaGaaGOmaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacqGH9aqpcqGH8aapdaqadaqaauaabeqaeeaaaaqaaiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGymaaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabqqaaaaabaGaaGimaaqaaiaaigdaaeaacaaIXaaabaGaeyOeI0IaaGOmaaaaaiaawIcacaGLPaaacqGH+aGpaaa@5FE8@

    erhält man sie durch Orthonormalisieren: n 3 = 1 3 ( 1 0 1 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGymaaqaamaakaaabaGaaG4maaWcbeaaaaGcdaqadaqaauaabeqaeeaaaaqaaiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGymaaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaaaaa@40E1@ und n 4 = 1 51 ( 1 3 4 5 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaI0aaabeaakiabg2da9maalaaabaGaaGymaaqaamaakaaabaGaaGynaiaaigdaaSqabaaaaOWaaeWaaeaafaqabeabbaaaaeaacqGHsislcaaIXaaabaGaaG4maaqaaiaaisdaaeaacqGHsislcaaI1aaaaaGaayjkaiaawMcaaaaa@41A9@ .  Damit ermittelt man z.B.:
     
    d(( 1 3 4 5 ),E)= (( 1 0 1 1 )·( 1 1 3 2 ) ) 2 3 + (( 1 3 4 5 )·( 1 1 3 2 )) 2 51 = 36 3 + 0 51 = 12 =2 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcadaqadaqaauaabeqaeeaaaaqaaiabgkHiTiaaigdaaeaacaaIZaaabaGaaGinaaqaaiabgkHiTiaaiwdaaaaacaGLOaGaayzkaaGaaiilaiaadweacaGGPaGaeyypa0ZaaOaaaeaadaWcaaqaaiaacIcadaqadaqaauaabeqaeeaaaaqaaiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGymaaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaeS4JPF2aaeWaaeaafaqabeabbaaaaeaacaaIXaaabaGaaGymaaqaaiabgkHiTiaaiodaaeaacqGHsislcaaIYaaaaaGaayjkaiaawMcaaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaacaaIZaaaaiabgUcaRmaalaaabaGaaiikamaabmaabaqbaeqabqqaaaaabaGaeyOeI0IaaGymaaqaaiaaiodaaeaacaaI0aaabaGaeyOeI0IaaGynaaaaaiaawIcacaGLPaaacqWIpM+zdaqadaqaauaabeqaeeaaaaqaaiaaigdaaeaacaaIXaaabaGaeyOeI0IaaG4maaqaaiabgkHiTiaaikdaaaaacaGLOaGaayzkaaGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaiwdacaaIXaaaaaWcbeaakiabg2da9maakaaabaWaaSaaaeaacaaIZaGaaGOnaaqaaiaaiodaaaGaey4kaSYaaSaaaeaacaaIWaaabaGaaGynaiaaigdaaaaaleqaaOGaeyypa0ZaaOaaaeaacaaIXaGaaGOmaaWcbeaakiabg2da9iaaikdadaGcaaqaaiaaiodaaSqabaaaaa@734F@ .

Wir notieren einige Eigenschaften des Abstandsbegriffs. 4. in der folgenden Aufstellung stellt sicher, dass unsere Abstandsberechnung die intuitive Vorstellung der kürzesten Entfernung trifft.
 
Bemerkung: 
  1. d(0,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaaIWaGaaiilaiaad2eacaGGPaaaaa@3A67@ ist der Nullabstand von M.
     
  2. Für jedes x M p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaad2eadaWgaaWcbaGaamiCaaqabaaaaa@3A5D@ gilt: d(x,M)=d(p,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWG4bGaaiilaiaad2eacaGGPaGaeyypa0JaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaaaaa@4069@ .
     
  3. Ist N ein weiterer affiner Unterraum, so hat man:  NMd(p,N)d(p,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabgkOimlaad2eacaaMf8UaeyO0H4TaaGzbVlaadsgacaGGOaGaamiCaiaacYcacaWGobGaaiykaiabgwMiZkaadsgacaGGOaGaamiCaiaacYcacaWGnbGaaiykaaaa@4A3C@ .
     
  4. d(p,M)=min{|xp||xM} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaGaeyypa0JaciyBaiaacMgacaGGUbGaai4EaiaacYhacaWG4bGaeyOeI0IaamiCaiaacYhacaaMc8UaaiiFaiaadIhacqGHiiIZcaWGnbGaaiyFaaaa@4B37@ .
     
  5. d(x,M)=0xM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWG4bGaaiilaiaad2eacaGGPaGaeyypa0JaaGimaiaaywW7cqGHuhY2caaMf8UaamiEaiabgIGiolaad2eaaaa@4535@ .
     

Beweis:

Zu 1.:  M 0 =< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaaIWaaabeaakiabg2da9iabgYda8iaadEhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadEhadaWgaaWcbaGaam4AaaqabaGccqGH+aGpaaa@414E@ ist ein Untervektorraum, also ist l'=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaacEcacqGH9aqpcaaIWaaaaa@3945@ , d.h. d(0,M)=|l| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaaIWaGaaiilaiaad2eacaGGPaGaeyypa0JaaiiFaiaadYgacaGG8baaaa@3E5E@ .

Zu 2.:  Die Behauptung folgt direkt aus M x = M p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaakiabg2da9iaad2eadaWgaaWcbaGaamiCaaqabaaaaa@3AE7@ .

Zu 3.:  O.E. sei N=a+< w 1 ,, w j > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2da9iaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadQgaaeqaaOGaeyOpa4daaa@4226@ mit einem jk MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgsMiJkaadUgaaaa@397D@ . Ist M= m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iabl2riHoaaCaaaleqabaGaamyBaaaaaaa@3A50@ , also d(p,M)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaGaeyypa0JaaGimaaaa@3C62@ , so ist nichts zu zeigen. Im anderen Fall greifen wir gemäß 9.16 auf eine orthonormale Fortsetzung n j+1 ,, n k+1 ,, n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGQbGaey4kaSIaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaad6gadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGUbWaaSbaaSqaaiaad2gaaeqaaaaa@4469@ von w 1 ,, w j MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGQbaabeaaaaa@3C6F@ , zurück. Die dort eingesetzte Methode garantiert, dass n k+1 ,, n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaad6gadaWgaaWcbaGaamyBaaqabaaaaa@3E32@ eine orthonormale Fortsetzung von w 1 ,, w k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGRbaabeaaaaa@3C70@ ist. Damit ergibt sich nun:
 

d(p,N) = ( n j+1 ·(ap)) 2 ++ ( n m ·(ap)) 2 ( n k+1 ·(ap)) 2 ++ ( n m ·(ap)) 2 =d(p,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaadsgacaGGOaGaamiCaiaacYcacaWGobGaaiykaaqaaiabg2da9maakaaabaGaaiikaiaad6gadaWgaaWcbaGaamOAaiabgUcaRiaaigdaaeqaaOGaeS4JPFMaaiikaiaadggacqGHsislcaWGWbGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWIMaYscqGHRaWkcaGGOaGaamOBamaaBaaaleaacaWGTbaabeaakiabl+y6NjaacIcacaWGHbGaeyOeI0IaamiCaiaacMcacaGGPaWaaWbaaSqabeaacaaIYaaaaaqabaaakeaaaeaacqGHLjYSdaGcaaqaaiaacIcacaWGUbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiabl+y6NjaacIcacaWGHbGaeyOeI0IaamiCaiaacMcacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeSOjGSKaey4kaSIaaiikaiaad6gadaWgaaWcbaGaamyBaaqabaGccqWIpM+zcaGGOaGaamyyaiabgkHiTiaadchacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaaaeqaaaGcbaaabaGaeyypa0JaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaaaaaaa@7841@

Zu 4.:  Ist xM=a+< w 1 ,, w k >=l+< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaad2eacqGH9aqpcaWGHbGaey4kaSIaeyipaWJaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGRbaabeaakiabg6da+iabg2da9iaadYgacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4daaa@501D@ , so gibt es ein w< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgIGiolabgYda8iaadEhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadEhadaWgaaWcbaGaam4AaaqabaGccqGH+aGpaaa@4106@ , so dass x=l+w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadYgacqGHRaWkcaWG3baaaa@3ABB@ .
Analog findet man zu p M p =p+< w 1 ,, w k >=l'+< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgIGiolaad2eadaWgaaWcbaGaamiCaaqabaGccqGH9aqpcaWGWbGaey4kaSIaeyipaWJaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGRbaabeaakiabg6da+iabg2da9iaadYgacaGGNaGaey4kaSIaeyipaWJaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGRbaabeaakiabg6da+aaa@51FA@ ein w'< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacEcacqGHiiIZcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4daaa@41B1@ , so dass p=l'+w' MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadYgacaGGNaGaey4kaSIaam4DaiaacEcaaaa@3C09@ .
Beachtet man nun, dass ll' MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgkHiTiaadYgacaGGNaaaaa@3963@ und ww' MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgkHiTiaadEhacaGGNaaaaa@3979@ zueinander senkrecht stehen, ergibt sich die folgende Abschätzung für die Längenquadrate:
 

|xp | 2 =|ll'+ww' | 2 =|ll' | 2 +|ww' | 2 |ll' | 2 =d (p,M) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacqGHsislcaWGWbGaaiiFamaaCaaaleqabaGaaGOmaaaakiabg2da9iaacYhacaWGSbGaeyOeI0IaamiBaiaacEcacqGHRaWkcaWG3bGaeyOeI0Iaam4DaiaacEcacaGG8bWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaiiFaiaadYgacqGHsislcaWGSbGaai4jaiaacYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGG8bGaam4DaiabgkHiTiaadEhacaGGNaGaaiiFamaaCaaaleqabaGaaGOmaaaakiabgwMiZkaacYhacaWGSbGaeyOeI0IaamiBaiaacEcacaGG8bWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaWaaWbaaSqabeaacaaIYaaaaaaa@6553@
 

Daraus nun folgt: |xp|d(p,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacqGHsislcaWGWbGaaiiFaiabgwMiZkaadsgacaGGOaGaamiCaiaacYcacaWGnbGaaiykaaaa@4147@ für alle xM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaad2eaaaa@393C@ , also auch:
 

min{|xp||xM}d(p,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacMgacaGGUbGaai4EaiaacYhacaWG4bGaeyOeI0IaamiCaiaacYhacaGG8bGaamiEaiabgIGiolaad2eacaGG9bGaeyyzImRaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaaaaa@4A6C@

Die Gleichheit folgt nun, wenn wir die Zahl d(p,M)=|ll'| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaGaeyypa0JaaiiFaiaadYgacqGHsislcaWGSbGaai4jaiaacYhaaaa@4122@ unter den Zahlen |xp| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacqGHsislcaWGWbGaaiiFaaaa@3AC8@ nachweisen können. Dazu betrachten wir noch einmal die Darstellung p=l'+w' MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadYgacaGGNaGaey4kaSIaam4DaiaacEcaaaa@3C09@ . Für x=l+w'M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadYgacqGHRaWkcaWG3bGaai4jaiabgIGiolaad2eaaaa@3DBC@ ist aber tatsächlich
 

|xp|=|l+w'(l'+w')|=|ll'| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacqGHsislcaWGWbGaaiiFaiabg2da9iaacYhacaWGSbGaey4kaSIaam4DaiaacEcacqGHsislcaGGOaGaamiBaiaacEcacqGHRaWkcaWG3bGaai4jaiaacMcacaGG8bGaeyypa0JaaiiFaiaadYgacqGHsislcaWGSbGaai4jaiaacYhaaaa@4E33@
 

Zu 5.:
" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ ":  Ist d(x,M)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWG4bGaaiilaiaad2eacaGGPaGaeyypa0JaaGimaaaa@3C6A@ , so gibt es nach 4. ein yM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaad2eaaaa@393D@ , so dass |yx|=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadMhacqGHsislcaWG4bGaaiiFaiabg2da9iaaicdaaaa@3C91@ ist. D.h. aber: x=yM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadMhacqGHiiIZcaWGnbaaaa@3B40@ .

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ ":  In diesem Fall hat man M x =M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaakiabg2da9iaad2eaaaa@39C6@ , und damit l'=l MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaacEcacqGH9aqpcaWGSbaaaa@397C@ , d.h. d(x,M)=|ll|=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWG4bGaaiilaiaad2eacaGGPaGaeyypa0JaaiiFaiaadYgacqGHsislcaWGSbGaaiiFaiabg2da9iaaicdaaaa@423F@ .
 

 

In einem zweiten Teil nun soll der Abstand zweier affiner Unterräume zueinander ermittelt werden. Punkt 2. der letzten Bemerkung enthält einen Hinweis darauf, wie man hier vorgehen könnte. Jeder Punkt von M p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGWbaabeaaaaa@37DC@ hat denselben Abstand zu M, nämlich d(p,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaaaaa@3AA2@ , so dass man die Zahl d(p,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGWbGaaiilaiaad2eacaGGPaaaaa@3AA2@ gut als Abstand zwischen den beiden parallelen affinen Unterräumen M p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGWbaabeaaaaa@37DC@ und M auffassen kann.

Zwei beliebige affine Unterräume des m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@3878@

M=a+< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4daaa@4226@ und N=b+< v 1 ,, v l > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2da9iaadkgacqGHRaWkcqGH8aapcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaadYgaaeqaaOGaeyOpa4daaa@4227@

werden kaum parallel zueinander liegen. Der Trick besteht nun darin, M so aufzublähen, dass eine Parallelität zu N erzwungen wird.
 
Definition:  Sind M=a+< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4daaa@4226@ und N=b+< v 1 ,, v l > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2da9iaadkgacqGHRaWkcqGH8aapcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaadYgaaeqaaOGaeyOpa4daaa@4227@ zwei affine Unterräume des m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@3878@ , so heißt die Zahl
 
d(N,M)=d(b,a+< w 1 ,, w k , v 1 ,, v l >) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaGaeyypa0JaamizaiaacIcacaWGIbGaaiilaiaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamiBaaqabaGccqGH+aGpcaGGPaaaaa@5104@

der Abstand von N zu M.
  

Beachte:

 
Beispiel: 
  1. Um den Abstand der beiden Geraden g 1 =( 3 1 2 )+<( 1 2 2 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacaaIXaaabeaakiabg2da9maabmaabaqbaeqabmqaaaqaaiaaiodaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacaaIXaaabaGaaGOmaaqaaiabgkHiTiaaikdaaaaacaGLOaGaayzkaaGaeyOpa4daaa@443E@ und g 2 =( 2 2 1 )+<( 2 2 1 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacaaIYaaabeaakiabg2da9maabmaabaqbaeqabmqaaaqaaiaaikdaaeaacaaIYaaabaGaaGymaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacqGHsislcaaIYaaabaGaaGOmaaqaaiaaigdaaaaacaGLOaGaayzkaaGaeyOpa4daaa@443E@ zu berechnen, benötigen wir zunächst einen Normalenvektor von ( 3 1 2 )+<( 1 2 2 ),( 2 2 1 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWabaaabaGaaG4maaqaaiaaigdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIYaaabaGaeyOeI0IaaGOmaaaaaiaawIcacaGLPaaacaGGSaWaaeWaaeaafaqabeWabaaabaGaeyOeI0IaaGOmaaqaaiaaikdaaeaacaaIXaaaaaGaayjkaiaawMcaaiabg6da+aaa@46C3@ .
    Wir ermitteln dazu (( 1 2 2 )×( 2 2 1 )) ° = ( 6 3 6 ) ° = 1 81 ( 6 3 6 )= 1 3 ( 2 1 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaabmaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIYaaabaGaeyOeI0IaaGOmaaaaaiaawIcacaGLPaaacqGHxdaTdaqadaqaauaabeqadeaaaeaacqGHsislcaaIYaaabaGaaGOmaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiykamaaCaaaleqabaGaeyiSaalaaOGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaGOnaaqaaiaaiodaaeaacaaI2aaaaaGaayjkaiaawMcaamaaCaaaleqabaGaeyiSaalaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaaI4aGaaGymaaWcbeaaaaGcdaqadaqaauaabeqadeaaaeaacaaI2aaabaGaaG4maaqaaiaaiAdaaaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4maaaadaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@598B@ und berechnen dann:
     
    d( g 1 , g 2 )=d(( 2 2 1 ),( 3 1 2 )+<( 1 2 2 ),( 2 2 1 )>)= 1 3 |( 2 1 2 )·( 1 1 1 )|=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaeyypa0JaamizaiaacIcadaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGOmaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabmqaaaqaaiaaiodaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacaaIXaaabaGaaGOmaaqaaiabgkHiTiaaikdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabmqaaaqaaiabgkHiTiaaikdaaeaacaaIYaaabaGaaGymaaaaaiaawIcacaGLPaaacqGH+aGpcaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4maaaacaGG8bWaaeWaaeaafaqabeWabaaabaGaaGOmaaqaaiaaigdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabl+y6NnaabmaabaqbaeqabmqaaaqaaiaaigdaaeaacqGHsislcaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacaGG8bGaeyypa0JaaGymaaaa@6673@ .

     
  2. Für E=( 2 1 0 1 )+<( 1 2 0 1 ),( 2 1 1 1 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9maabmaabaqbaeqabqqaaaaabaGaeyOeI0IaaGOmaaqaaiaaigdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqaeeaaaaqaaiaaigdaaeaacaaIYaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabqqaaaaabaGaaGOmaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacqGH+aGpaaa@49D7@ und g=( 2 1 0 1 )+<( 3 0 1 1 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9maabmaabaqbaeqabqqaaaaabaGaaGOmaaqaaiabgkHiTiaaigdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqaeeaaaaqaaiaaiodaaeaacaaIWaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaeyOpa4daaa@44C3@   berechnen wir zunächst
     
    <( 1 2 0 1 ),( 2 1 1 1 ),( 3 0 1 1 ) > =Ker( 1 2 0 1 2 1 1 1 3 0 1 1 )=<( 1 1 0 3 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWZaaeWaaeaafaqabeabbaaaaeaacaaIXaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqaeeaaaaqaaiaaikdaaeaacaaIXaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabqqaaaaabaGaaG4maaqaaiaaicdaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacqGH+aGpdaahaaWcbeqaaiabgwQiEbaakiabg2da9iaadUeacaWGLbGaamOCaiaaykW7daqadaqaauaabeqadqaaaaqaaiaaigdaaeaacaaIYaaabaGaaGimaaqaaiaaigdaaeaacaaIYaaabaGaaGymaaqaaiaaigdaaeaacaaIXaaabaGaaG4maaqaaiaaicdaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacqGH9aqpcqGH8aapdaqadaqaauaabeqaeeaaaaqaaiaaigdaaeaacaaIXaaabaGaaGimaaqaaiabgkHiTiaaiodaaaaacaGLOaGaayzkaaGaeyOpa4daaa@6103@ .

    Damit ergibt sich für den Abstand von g zu E:
     
    d(g,E)=d(( 2 1 0 1 ),( 2 1 0 1 )+<( 1 2 0 1 ),( 2 1 1 1 ),( 3 0 1 1 )>)= 1 11 |( 1 1 0 3 )·( 4 2 0 0 )|= 2 11 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGNbGaaiilaiaadweacaGGPaGaeyypa0JaamizaiaacIcadaqadaqaauaabeqaeeaaaaqaaiaaikdaaeaacqGHsislcaaIXaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabqqaaaaabaGaeyOeI0IaaGOmaaqaaiaaigdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqaeeaaaaqaaiaaigdaaeaacaaIYaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabqqaaaaabaGaaGOmaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacaGGSaWaaeWaaeaafaqabeabbaaaaeaacaaIZaaabaGaaGimaaqaaiaaigdaaeaacaaIXaaaaaGaayjkaiaawMcaaiabg6da+iaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaadaGcaaqaaiaaigdacaaIXaaaleqaaaaakiaacYhadaqadaqaauaabeqaeeaaaaqaaiaaigdaaeaacaaIXaaabaGaaGimaaqaaiabgkHiTiaaiodaaaaacaGLOaGaayzkaaGaeS4JPF2aaeWaaeaafaqabeabbaaaaeaacqGHsislcaaI0aaabaGaaGOmaaqaaiaaicdaaeaacaaIWaaaaaGaayjkaiaawMcaaiaacYhacqGH9aqpdaWcaaqaaiaaikdaaeaadaGcaaqaaiaaigdacaaIXaaaleqaaaaaaaa@7179@ .

 

 
Bemerkung: 
 
  1. d(N,M)=d(M,N) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaGaeyypa0JaamizaiaacIcacaWGnbGaaiilaiaad6eacaGGPaaaaa@401D@ .
     
  2. < v 1 ,, v l >< w 1 ,, w k >d(N,M)=d(b,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGSbaabeaakiabg6da+iabgkOimlabgYda8iaadEhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadEhadaWgaaWcbaGaam4AaaqabaGccqGH+aGpcaaMf8UaeyO0H4TaaGzbVlaadsgacaGGOaGaamOtaiaacYcacaWGnbGaaiykaiabg2da9iaadsgacaGGOaGaamOyaiaacYcacaWGnbGaaiykaaaa@58DF@ .
     
  3. d(N,M)=min{|xy||xM      yN} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaGaeyypa0JaciyBaiaacMgacaGGUbGaai4EaiaacYhacaWG4bGaeyOeI0IaamyEaiaacYhacaGG8bGaamiEaiabgIGiolaad2eacaaMe8Uaey4jIKTaaGjbVlaadMhacqGHiiIZcaWGobGaaiyFaaaa@51B0@ .
     
  4. d(N,M)=0NM0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaGaeyypa0JaaGimaiaaywW7cqGHuhY2caaMf8UaamOtaiabgMIihlaad2eacqGHGjsUcaaIWaaaaa@477C@ .

     

Beweis:

Zu 1.:  Ist < w 1 ,, w k , v 1 ,, v l >= m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGRbaabeaakiaacYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaadYgaaeqaaOGaeyOpa4Jaeyypa0JaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@495B@ , so ist auch < v 1 ,, v l , w 1 ,, w k >= m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGSbaabeaakiaacYcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4Jaeyypa0JaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@495B@ . In diesem Fall hat man:
 

d(N,M)=d(b,a+< w 1 ,, w k , v 1 ,, v l >)=0=d(a,b+< v 1 ,, v l , w 1 ,, w k >)=d(M,N) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaGaeyypa0JaamizaiaacIcacaWGIbGaaiilaiaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamiBaaqabaGccqGH+aGpcaGGPaGaeyypa0JaaGimaiabg2da9iaadsgacaGGOaGaamyyaiaacYcacaWGIbGaey4kaSIaeyipaWJaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGSbaabeaakiaacYcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4Jaaiykaiabg2da9iaadsgacaGGOaGaamytaiaacYcacaWGobGaaiykaaaa@6EE5@ .
 

Also darf man k+l<m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgUcaRiaadYgacqGH8aapcaWGTbaaaa@3AA2@ annehmen. Falls k+l=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgUcaRiaadYgacqGH9aqpcaaIWaaaaa@3A6C@ , ist M={a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUhacaWGHbGaaiyFaaaa@3AA7@ und N={b} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2da9iaacUhacaWGIbGaaiyFaaaa@3AA9@ , d.h.
 

d(N,M)=d(b,{a})=|ab|=|ba|=d(a,{b})=d(M,N) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaGaeyypa0JaamizaiaacIcacaWGIbGaaiilaiaacUhacaWGHbGaaiyFaiaacMcacqGH9aqpcaGG8bGaamyyaiabgkHiTiaadkgacaGG8bGaeyypa0JaaiiFaiaadkgacqGHsislcaWGHbGaaiiFaiabg2da9iaadsgacaGGOaGaamyyaiaacYcacaGG7bGaamOyaiaac2hacaGGPaGaeyypa0JaamizaiaacIcacaWGnbGaaiilaiaad6eacaGGPaaaaa@5B27@ .
 

In der verbleibenden Situation 0<k+l<m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadUgacqGHRaWkcaWGSbGaeyipaWJaamyBaaaa@3C60@ stehen uns Normalenvektoren n k+l+1 ,, n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaamiBaiabgUcaRiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGUbWaaSbaaSqaaiaad2gaaeqaaaaa@4005@ von a+< w 1 ,, w k , v 1 ,, v l > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiabgYda8iaadEhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadEhadaWgaaWcbaGaam4AaaqabaGccaGGSaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGSbaabeaakiabg6da+aaa@478E@ zur Verfügung. n k+l+1 ,, n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaamiBaiabgUcaRiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGUbWaaSbaaSqaaiaad2gaaeqaaaaa@4005@ sind aber auch Normalenvektoren von b+< v 1 ,, v l , w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgUcaRiabgYda8iaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamiBaaqabaGccaGGSaGaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGRbaabeaakiabg6da+aaa@478F@ , so dass man die folgende Rechnung durchführen kann:
 

d(N,M) =d(b,a+< w 1 ,, w k , v 1 ,, v l >) = ( n k+l+1 ·(ab)) 2 ++ ( n m ·(ab)) 2 = ( n k+l+1 ·(ba)) 2 ++ ( n m ·(ba)) 2 =d(a,b+< v 1 ,, v l , w 1 ,, w k >) =d(M,N). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaaabaGaeyypa0JaamizaiaacIcacaWGIbGaaiilaiaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamiBaaqabaGccqGH+aGpcaGGPaaabaaabaGaeyypa0ZaaOaaaeaacaGGOaGaamOBamaaBaaaleaacaWGRbGaey4kaSIaamiBaiabgUcaRiaaigdaaeqaaOGaeS4JPFMaaiikaiaadggacqGHsislcaWGIbGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWIMaYscqGHRaWkcaGGOaGaamOBamaaBaaaleaacaWGTbaabeaakiabl+y6NjaacIcacaWGHbGaeyOeI0IaamOyaiaacMcacaGGPaWaaWbaaSqabeaacaaIYaaaaaqabaaakeaaaeaacqGH9aqpdaGcaaqaaiaacIcacaWGUbWaaSbaaSqaaiaadUgacqGHRaWkcaWGSbGaey4kaSIaaGymaaqabaGccqWIpM+zcaGGOaGaamOyaiabgkHiTiaadggacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiablAciljabgUcaRiaacIcacaWGUbWaaSbaaSqaaiaad2gaaeqaaOGaeS4JPFMaaiikaiaadkgacqGHsislcaWGHbGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaaabeaaaOqaaaqaaiabg2da9iaadsgacaGGOaGaamyyaiaacYcacaWGIbGaey4kaSIaeyipaWJaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGSbaabeaakiaacYcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4Jaaiykaaqaaaqaaiabg2da9iaadsgacaGGOaGaamytaiaacYcacaWGobGaaiykaiaac6caaaaaaa@A86B@

 

Zu 2.:  Aus < v 1 ,, v l >< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGSbaabeaakiabg6da+iabgkOimlabgYda8iaadEhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadEhadaWgaaWcbaGaam4AaaqabaGccqGH+aGpaaa@491E@ erhält man sofort < w 1 ,, w k , v 1 ,, v l >=< w 1 ,, w k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGRbaabeaakiaacYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaadYgaaeqaaOGaeyOpa4Jaeyypa0JaeyipaWJaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGRbaabeaakiabg6da+aaa@4F69@ , und damit:
 

d(N,M)=d(b,a+< w 1 ,, w k , v 1 ,, v l >)=d(b,a+< w 1 ,, w k >)=d(b,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaGaeyypa0JaamizaiaacIcacaWGIbGaaiilaiaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamiBaaqabaGccqGH+aGpcaGGPaGaeyypa0JaamizaiaacIcacaWGIbGaaiilaiaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4Jaaiykaiabg2da9iaadsgacaGGOaGaamOyaiaacYcacaWGnbGaaiykaaaa@65F9@ .

 

Zu 3.:  Zunächst hat man nach 5. und 4. in der ersten Bemerkung für jedes  yN MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaad6eaaaa@393E@ :
 

min{|xy||xM}=d(y,M)d(y,a+< w 1 ,, w k , v 1 ,, v l >)=d(N,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacMgacaGGUbGaai4EaiaacYhacaWG4bGaeyOeI0IaamyEaiaacYhacaGG8bGaamiEaiabgIGiolaad2eacaGG9bGaeyypa0JaamizaiaacIcacaWG5bGaaiilaiaad2eacaGGPaGaeyyzImRaamizaiaacIcacaWG5bGaaiilaiaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamiBaaqabaGccqGH+aGpcaGGPaGaeyypa0JaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaaaaa@66B6@ ,

und damit auch
 

min{|xy||xM      yN}=min{min{|xy||xM}|yN}d(N,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacMgacaGGUbGaai4EaiaacYhacaWG4bGaeyOeI0IaamyEaiaacYhacaGG8bGaamiEaiabgIGiolaad2eacaaMe8Uaey4jIKTaaGjbVlaadMhacqGHiiIZcaWGobGaaiyFaiabg2da9iGac2gacaGGPbGaaiOBaiaacUhaciGGTbGaaiyAaiaac6gacaGG7bGaaiiFaiaadIhacqGHsislcaWG5bGaaiiFaiaacYhacaWG4bGaeyicI4Saamytaiaac2hacaGG8bGaamyEaiabgIGiolaad6eacaGG9bGaeyyzImRaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaaaaa@6AAA@ .
 

Es reicht also wieder zu zeigen, dass d(N,M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaaaaa@3A80@ unter den Zahlen |xy| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacqGHsislcaWG5bGaaiiFaaaa@3AD1@ vorkommt. Auch hier hilft 5. aus der obigen Bemerkung weiter: Man findet nämlich einen Vektor a+w+va+< w 1 ,, w k , v 1 ,, v l > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEhacqGHRaWkcaWG2bGaeyicI4SaamyyaiabgUcaRiabgYda8iaadEhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadEhadaWgaaWcbaGaam4AaaqabaGccaGGSaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGSbaabeaakiabg6da+aaa@4DB3@ , so dass
 

d(N,M)=d(b,a+< w 1 ,, w k , v 1 ,, v l >)=|a+w+vb|=|a+w(bv)| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaGaeyypa0JaamizaiaacIcacaWGIbGaaiilaiaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamiBaaqabaGccqGH+aGpcaGGPaGaeyypa0JaaiiFaiaadggacqGHRaWkcaWG3bGaey4kaSIaamODaiabgkHiTiaadkgacaGG8bGaeyypa0JaaiiFaiaadggacqGHRaWkcaWG3bGaeyOeI0IaaiikaiaadkgacqGHsislcaWG2bGaaiykaiaacYhaaaa@655E@ .

Die Informationen a+wM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEhacqGHiiIZcaWGnbaaaa@3B03@ und bvN MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgkHiTiaadAhacqGHiiIZcaWGobaaaa@3B0F@ schließen den Beweis ab.

Zu 4.: 
" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ ":  Nach 3. gibt es ein xM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaad2eaaaa@393C@ und ein yN MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaad6eaaaa@393E@ , so dass
 

0=d(N,M)=|xy| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iaadsgacaGGOaGaamOtaiaacYcacaWGnbGaaiykaiabg2da9iaacYhacaWG4bGaeyOeI0IaamyEaiaacYhaaaa@422E@ .

Das bedeutet aber: x=y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadMhaaaa@38EA@ , und damit: NM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabgMIihlaad2eacqGHGjsUcqGHfiIXaaa@3C6C@ .

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ ":  Ist NM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabgMIihlaad2eacqGHGjsUcqGHfiIXaaa@3C6C@ , so darf man für M und N denselben Aufpunkt wählen. Sei daher o.E. a=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaadkgaaaa@38BC@ . Folgt:
 

d(N,M)=d(a,a+< w 1 ,, w k , v 1 ,, v l >)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGobGaaiilaiaad2eacaGGPaGaeyypa0JaamizaiaacIcacaWGHbGaaiilaiaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamiBaaqabaGccqGH+aGpcaGGPaGaeyypa0JaaGimaaaa@52C3@ .
 

Aus 4. ergeben sich einige einfache Folgerungen:
 
Folgerung: 
  1. NMd(N,M)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabgkOimlaad2eacaaMf8UaeyO0H4TaaGzbVlaadsgacaGGOaGaamOtaiaacYcacaWGnbGaaiykaiabg2da9iaaicdaaaa@455A@ .
     
  2. d(M,M)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacaWGnbGaaiilaiaad2eacaGGPaGaeyypa0JaaGimaaaa@3C3F@ .
     
  3. d( m ,M)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacIcacqWIDesOdaahaaWcbeqaaiaad2gaaaGccaGGSaGaamytaiaacMcacqGH9aqpcaaIWaaaaa@3E06@ .
     

 


 9.16