Example of a locally non-injective, regular function


Consider the function  f: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C62@ where

f(x){ x+ x 2 cos π x  ,  if  x0 0 ,  if  x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaadIhacqGHRaWkcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaci4yaiaac+gacaGGZbWaaSaaaeaacqaHapaCaeaacaWG4baaaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyiyIKRaaGimaaqaaiaaicdacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabg2da9iaaicdaaaaacaGL7baaaaa@57A0@
 

f is a sample function of the required kind, as we will show:

  1. f is differentiable at 0 and  f (0)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaGymaaaa@3AB7@ .

  2. f fails to be one-to-one in every neighbourhood of 0.

Proof:  

1. ►  The inequality

0| m 0 (x)1|=| f(x)f(0) x0 1|=|xcos π x ||x| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaacYhacaWGTbWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadIhacaGGPaGaeyOeI0IaaGymaiaacYhacqGH9aqpcaGG8bWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaaIWaGaaiykaaqaaiaadIhacqGHsislcaaIWaaaaiabgkHiTiaaigdacaGG8bGaeyypa0JaaiiFaiaadIhacqGHflY1ciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaadIhaaaGaaiiFaiabgsMiJkaacYhacaWG4bGaaiiFaaaa@5F65@

is obviously valid for all x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@396A@ so that the nesting theorem [6.9.10] yields lim x0 | m 0 (x)1|=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakiaacYhacaWGTbWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadIhacaGGPaGaeyOeI0IaaGymaiaacYhacqGH9aqpcaaIWaaaaa@4643@ . According to [6.9.11] this is the assertion lim x0 m 0 (x)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakiaad2gadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpcaaIXaaaaa@429C@ .

2. ►  f is continuous (at 0 due to 1. and for x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@396A@ due to the calculation rules for continuous functions). Now for an arbitrary k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ we consider the numbers

1 2k+2 < 1 2k+1 < 1 2k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiaadUgacqGHRaWkcaaIYaaaaiabgYda8maalaaabaGaaGymaaqaaiaaikdacaWGRbGaey4kaSIaaGymaaaacqGH8aapdaWcaaqaaiaaigdaaeaacaaIYaGaam4Aaaaaaaa@4294@

They will satisfy

f( 1 2k+1 ) < [1] f( 1 2k+2 ) < [2] f( 1 2k ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaiabgUcaRiaaigdaaaGaaiykamaaxababaGaeyipaWdaleaacaGGBbGaaGymaiaac2faaeqaaOGaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaiabgUcaRiaaikdaaaGaaiykamaaxababaGaeyipaWdaleaacaGGBbGaaGOmaiaac2faaeqaaOGaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaaaacaGGPaaaaa@4EDD@

This assumed the intermediate value theorem ([6.6.2]) will provide an x ˜ ] 1 2k+1 , 1 2k [ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxamaalaaabaGaaGymaaqaaiaaikdacaWGRbGaey4kaSIaaGymaaaacaGGSaWaaSaaaeaacaaIXaaabaGaaGOmaiaadUgaaaGaai4waaaa@4177@ , in particular x ˜ 1 2k+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyiyIK7aaSaaaeaacaaIXaaabaGaaGOmaiaadUgacqGHRaWkcaaIYaaaaaaa@3CD4@ , such that  f( x ˜ )=f( 1 2k+2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcaceWG4bGbaGaacaGGPaGaeyypa0JaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaiabgUcaRiaaikdaaaGaaiykaaaa@409B@ . But this proves that  f is not injective on ] 1 2k , 1 2k [ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGRbaaaiaacYcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaaaacaGGBbaaaa@3E37@ .

To validate [1] and [2] note that the cosine takes the value 1 for all even multiples of π, and the value −1 for all the odd ones. So we have

f( 1 n )={ 1 n + 1 n 2 = n+1 n 2 , if n is even 1 n 1 n 2 = n1 n 2 , if n is odd MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcacqGH9aqpdaGabaqaauaabaqaceaaaeaadaWcaaqaaiaaigdaaeaacaWGUbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaad6gadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaad6gadaahaaWcbeqaaiaaikdaaaaaaOGaaeilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiaabEgacaqGLbGaaeOCaiaabggacaqGKbGaaeyzaaqaamaalaaabaGaaGymaaqaaiaad6gaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqaaiaad6gacqGHsislcaaIXaaabaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccaqGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaaeyDaiaab6gacaqGNbGaaeyzaiaabkhacaqGHbGaaeizaiaabwgaaaaacaGL7baaaaa@6B4D@

[1] is thus valid due to the following calculation:

f( 1 2k+1 )<f( 1 2k+2 ) 2k (2k+1) 2 < 2k+3 (2k+2) 2 8 k 3 +16 k 2 +8k<8 k 3 +20 k 2 +14k+3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiaadAgacaGGOaWaaSaaaeaacaaIXaaabaGaaGOmaiaadUgacqGHRaWkcaaIXaaaaiaacMcacqGH8aapcaWGMbGaaiikamaalaaabaGaaGymaaqaaiaaikdacaWGRbGaey4kaSIaaGOmaaaacaGGPaaabaGaeyi1HSTaaGzbVdqaamaalaaabaGaaGOmaiaadUgaaeaacaGGOaGaaGOmaiaadUgacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGH8aapdaWcaaqaaiaaikdacaWGRbGaey4kaSIaaG4maaqaaiaacIcacaaIYaGaam4AaiabgUcaRiaaikdacaGGPaWaaWbaaSqabeaacaaIYaaaaaaaaOqaaiabgsDiBlaaywW7aeaacaaI4aGaam4AamaaCaaaleqabaGaaG4maaaakiabgUcaRiaaigdacaaI2aGaam4AamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiIdacaWGRbGaeyipaWJaaGioaiaadUgadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaaGimaiaadUgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGinaiaadUgacqGHRaWkcaaIZaaaaaaa@7316@

For [2] we find a similar calculation:

f( 1 2k+2 )<f( 1 2k ) 2k+3 (2k+2) 2 < 2k+1 (2k) 2 8 k 3 +12 k 2 <8 k 3 +20 k 2 +16k+4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiaadAgacaGGOaWaaSaaaeaacaaIXaaabaGaaGOmaiaadUgacqGHRaWkcaaIYaaaaiaacMcacqGH8aapcaWGMbGaaiikamaalaaabaGaaGymaaqaaiaaikdacaWGRbaaaiaacMcaaeaacqGHuhY2caaMf8oabaWaaSaaaeaacaaIYaGaam4AaiabgUcaRiaaiodaaeaacaGGOaGaaGOmaiaadUgacqGHRaWkcaaIYaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGH8aapdaWcaaqaaiaaikdacaWGRbGaey4kaSIaaGymaaqaaiaacIcacaaIYaGaam4AaiaacMcadaahaaWcbeqaaiaaikdaaaaaaaGcbaGaeyi1HSTaaGzbVdqaaiaaiIdacaWGRbWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGymaiaaikdacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeyipaWJaaGioaiaadUgadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaaGimaiaadUgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGOnaiaadUgacqGHRaWkcaaI0aaaaaaa@6EE4@