Berechnung von sin' und cos' ohne Potenzreihenkalkül


  1. In [6.8.6] haben wir den Grenzwert

    lim x0 sinxsin0 x0 = lim x0 sinx x =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakmaalaaabaGaci4CaiaacMgacaGGUbGaamiEaiabgkHiTiGacohacaGGPbGaaiOBaiaaicdaaeaacaWG4bGaeyOeI0IaaGimaaaacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamiEaiabgkziUkaaicdaaeqaaOWaaSaaaeaaciGGZbGaaiyAaiaac6gacaWG4baabaGaamiEaaaacqGH9aqpcaaIXaaaaa@560B@

    berechnet. sin ist damit in 0 differenzierbar und sin (0)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaai4jaiaacIcacaaIWaGaaiykaiabg2da9iaaigdaaaa@3D43@ .
     

  2. Für alle x[ π 2 , π 2 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiilamaalaaabaGaeqiWdahabaGaaGOmaaaacaGGDbaaaa@40DC@ ist nach dem Satz des Pythagoras (siehe [4.3.*]) cosx= 1 sin 2 (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaamiEaiabg2da9maakaaabaGaaGymaiabgkHiTiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaacIcacaWG4bGaaiykaaWcbeaaaaa@42A6@ , cos und 1 sin 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaIXaGaeyOeI0Iaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaaqabaaaaa@3B65@ sind also in 0 lokal identisch. Da 1 sin 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgkHiTiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaaaaa@3B55@ in 0 und X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGybaaleqaaaaa@36E4@ in 1 differenzierbar sind, ergibt sich die Differenzierbarkeit von cos in 0 aus der Kettenregel ([7.6.11]) mit

    cos (0)= 2sin0sin (0) 2 1 sin 2 (0) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaai4jaiaacIcacaaIWaGaaiykaiabg2da9maalaaabaGaeyOeI0IaaGOmaiGacohacaGGPbGaaiOBaiaaicdacqGHflY1ciGGZbGaaiyAaiaac6gacaGGNaGaaiikaiaaicdacaGGPaaabaGaaGOmamaakaaabaGaaGymaiabgkHiTiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIWaGaaiykaaWcbeaaaaGccqGH9aqpcaaIWaaaaa@53D5@

    als Ableitungszahl.
     

  3. Nach den Additionstheoremen für sin und cos (siehe [4.3.*]) hat man für alle x,a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWGHbGaeyicI4SaeSyhHekaaa@3B73@ :

    sinx=sin(xa+a)=sin(xa)cosa+cos(xa)sina cosx=cos(xa+a)=cos(xa)cosasin(xa)sina MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacohacaGGPbGaaiOBaiaadIhacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgkHiTiaadggacqGHRaWkcaWGHbGaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaacIcacaWG4bGaeyOeI0IaamyyaiaacMcacqGHflY1ciGGJbGaai4BaiaacohacaWGHbGaey4kaSIaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHsislcaWGHbGaaiykaiabgwSixlGacohacaGGPbGaaiOBaiaadggaaeaaciGGJbGaai4BaiaacohacaWG4bGaeyypa0Jaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHsislcaWGHbGaey4kaSIaamyyaiaacMcacqGH9aqpciGGJbGaai4BaiaacohacaGGOaGaamiEaiabgkHiTiaadggacaGGPaGaeyyXICTaci4yaiaac+gacaGGZbGaamyyaiabgkHiTiGacohacaGGPbGaaiOBaiaacIcacaWG4bGaeyOeI0IaamyyaiaacMcacqGHflY1ciGGZbGaaiyAaiaac6gacaWGHbaaaaaa@8921@

    Nach Ketten- und Faktorregel ([7.6.6]) sowie 1. und 2. sind daher sin und cos differenzierbar in a und

    sin (a)=sin (0)1cosa+cos (0)1sina=cosa cos (a)=cos (0)1cosasin (0)1sina=sina MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacohacaGGPbGaaiOBaiaacEcacaGGOaGaamyyaiaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacaGGNaGaaiikaiaaicdacaGGPaGaeyyXICTaaGymaiabgwSixlGacogacaGGVbGaai4CaiaadggacqGHRaWkciGGJbGaai4BaiaacohacaGGNaGaaiikaiaaicdacaGGPaGaeyyXICTaaGymaiabgwSixlGacohacaGGPbGaaiOBaiaadggacqGH9aqpciGGJbGaai4BaiaacohacaWGHbaabaGaci4yaiaac+gacaGGZbGaai4jaiaacIcacaWGHbGaaiykaiabg2da9iGacogacaGGVbGaai4CaiaacEcacaGGOaGaaGimaiaacMcacqGHflY1caaIXaGaeyyXICTaci4yaiaac+gacaGGZbGaamyyaiabgkHiTiGacohacaGGPbGaaiOBaiaacEcacaGGOaGaaGimaiaacMcacqGHflY1caaIXaGaeyyXICTaci4CaiaacMgacaGGUbGaamyyaiabg2da9iabgkHiTiGacohacaGGPbGaaiOBaiaadggaaaaaaa@8A3A@