7.6. Rechenregeln für differenzierbare Funktionen


Routinemäßig überprüfen wir Eigenschaften reellwertiger Funktionen darauf, ob sie mit den Grundrechenarten verträglich sind. Bei "guten" Eigenschaften ergibt sich dabei meist ein Regelwerk, das die Bearbeitung von Aufgaben oft deutlich erleichtern, ja sogar automatisieren kann.

Die folgende Bemerkung zeigt, dass die Differenzierbarkeit eine "sehr gute" Eigenschaft ist.

Bemerkung (Ableitungsregeln, lokal):   aAB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeacqGHPiYXcaWGcbaaaa@3B81@ sei ein Häufungspunkt von AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgMIihlaadkeaaaa@3917@ . Sind f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB8@ und g:B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGcbGaeyOKH4QaeSyhHekaaa@3BBA@ zwei in a differenzierbare Funktionen, so sind die Funktionen f+g,   fg,   fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgUcaRiaadEgacaGGSaGaaGjbVlaadAgacqGHsislcaWGNbGaaiilaiaaysW7caWGMbGaeyyXICTaam4zaaaa@4404@ und - falls g(a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWGHbGaaiykaiabgcMi5kaaicdaaaa@3B98@  - auch f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbaabaGaam4zaaaaaaa@37D3@ ebenfalls differenzierbar in a. Dabei gilt die

  1. Summenregel (f+g ) (a)= f (a)+ g (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHRaWkcaWGNbGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0JabmOzayaafaGaaiikaiaadggacaGGPaGaey4kaSIabm4zayaafaGaaiikaiaadggacaGGPaaaaa@449E@

[7.6.1]
  1. Differenzregel (fg ) (a)= f (a) g (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHsislcaWGNbGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0JabmOzayaafaGaaiikaiaadggacaGGPaGaeyOeI0Iabm4zayaafaGaaiikaiaadggacaGGPaaaaa@44B4@

[7.6.2]
  1. Produktregel (fg ) (a)= f (a)g(a)+f(a) g (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHflY1caWGNbGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0JabmOzayaafaGaaiikaiaadggacaGGPaGaeyyXICTaam4zaiaacIcacaWGHbGaaiykaiabgUcaRiaadAgacaGGOaGaamyyaiaacMcacqGHflY1ceWGNbGbauaacaGGOaGaamyyaiaacMcaaaa@50EF@

[7.6.3]
  1. Quotientenregel ( f g ) (a)= f (a)g(a)f(a) g (a) g 2 (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaamOzaaqaaiaadEgaaaGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0ZaaSaaaeaaceWGMbGbauaacaGGOaGaamyyaiaacMcacqGHflY1caWGNbGaaiikaiaadggacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaiabgwSixlqadEgagaqbaiaacIcacaWGHbGaaiykaaqaaiaadEgadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyyaiaacMcaaaaaaa@52EE@

[7.6.4]

Beweis:  Alle Nachweise ergeben sich über die Grenzwertsätze [6.9.5] - [6.9.8] direkt aus der Darstellung der jeweiligen Differenzenquotientenfunktion in [7.2.7] - [7.2.10]. Man beachte dabei, dass  f und g als in a differenzierbare Funktionen dort auch stetig sind und daher ihren eigenen Funktionswert als Limes besitzen.

Im Fall der Quotientenregel ist ferner gesichert, dass a Häufungspunkt des Definitionsbereichs der Quotientenfunktion ist (vgl. dazu die Argumentation im Beweis zu [6.9.8]).

Beachte:

  • Alle Ableitungsregeln sind nur in der angegebenen Richtung gültig. Aus der Differenzierbarkeit der Ergebnisfunktion kann man i.a. nicht auf die Differenzierbarkeit der Partnerfunktionen schließen. Damit ist auch Schluss wie etwa

    f oder g nicht differenzierbar in a fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caWGMbGaeyyXICTaam4zaaaa@3F86@ nicht differenzierbar in a

    nicht zulässig. Über die Differenzierbarkeit von  fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgwSixlaadEgaaaa@3A0D@ muss individuell entschieden werden. So gilt etwa für die in 0 nicht differenzierbare Funktion |X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfacaGG8baaaa@38C9@ :

    • 1|X|=|X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgwSixlaacYhacaWGybGaaiiFaiabg2da9iaacYhacaWGybGaaiiFaaaa@3FB1@ ist nicht differenzierbar in 0.

    • |X||X|= X 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfacaGG8bGaeyyXICTaaiiFaiaadIfacaGG8bGaeyypa0JaamiwamaaCaaaleqabaGaaGOmaaaaaaa@40BC@ ist differenzierbar in 0.
       

Es lohnt sich, einige Spezialfälle der Rechenregeln gesondert zu notieren. Sie ergeben sich sofort, wenn man beachtet, dass die Ableitung einer konstanten Funktion überall den Wert 0 hat: c (a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaafaGaaiikaiaadggacaGGPaGaeyypa0JaaGimaaaa@3ADF@ .

  1.   (f+c ) (a)= f (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHRaWkcaWGJbGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0JabmOzayaafaGaaiikaiaadggacaGGPaaaaa@4081@

    Konstante Summanden gehen beim Ableiten verloren.
     

[7.6.5]
  1. Faktorregel (cf ) (a)=c f (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogacqGHflY1caWGMbGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0Jaam4yaiabgwSixlqadAgagaqbaiaacIcacaWGHbGaaiykaaaa@451B@

    Konstante Faktoren bleiben beim Ableiten erhalten.
     

[7.6.6]
  1. Kehrwertregel ( 1 g ) (a)= g (a) g 2 (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaaGymaaqaaiaadEgaaaGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0JaeyOeI0YaaSaaaeaaceWGNbGbauaacaGGOaGaamyyaiaacMcaaeaacaWGNbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaadggacaGGPaaaaaaa@449F@

     

[7.6.7]

Beispiel:  Mit den nach [7.3.3/5] und [7.5.8/9] differenzierbaren Funktionen X n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOBaaaaaaa@37E9@ , X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGybaaleqaaaaa@36E4@ , sin und exp sind auch die folgenden Funktionen im jeweils angegebenen Punkt differenzierbar. Wir berechnen die Ableitungswerte mit Hilfe der Regeln 1. bis 7.

  • ( X 2 +sin ) (π)=( X 2 ) (π)+ sin (π)=2π+cosπ=2π1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkciGGZbGaaiyAaiaac6gaceGGPaGbauaacaGGOaGaeqiWdaNaaiykaiabg2da9iaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGabiykayaafaGaaiikaiabec8aWjaacMcacqGHRaWkciGGZbGaaiyAaiaac6gacaGGNaGaaiikaiabec8aWjaacMcacqGH9aqpcaaIYaGaeqiWdaNaey4kaSIaci4yaiaac+gacaGGZbGaeqiWdaNaeyypa0JaaGOmaiabec8aWjabgkHiTiaaigdaaaa@5CD5@

  • ( X 3 X ) (4)=( X 3 ) (4) X (4)+ X 3 (4) X (4)=3 4 2 4 + 4 3 1 2 4 =112 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaiodaaaGcdaGcaaqaaiaadIfaaSqabaGcceGGPaGbauaacaGGOaGaaGinaiaacMcacqGH9aqpcaGGOaGaamiwamaaCaaaleqabaGaaG4maaaakiqacMcagaqbaiaacIcacaaI0aGaaiykaiabgwSixpaakaaabaGaamiwaaWcbeaakiaacIcacaaI0aGaaiykaiabgUcaRiaadIfadaahaaWcbeqaaiaaiodaaaGccaGGOaGaaGinaiaacMcacqGHflY1daGcaaqaaiaadIfaaSqabaGcdaahaaWcbeqaaOGamai4gkdiIcaacaGGOaGaaGinaiaacMcacqGH9aqpcaaIZaGaeyyXICTaaGinamaaCaaaleqabaGaaGOmaaaakiabgwSixpaakaaabaGaaGinaaWcbeaakiabgUcaRiaaisdadaahaaWcbeqaaiaaiodaaaGcdaWcaaqaaiaaigdaaeaacaaIYaWaaOaaaeaacaaI0aaaleqaaaaakiabg2da9iaaigdacaaIXaGaaGOmaaaa@665E@

  • ( 7 exp ) (0)=7( 1 exp ) (0)=7( exp (0) exp 2 (0) )=7( exp0 exp 2 (0) )=7 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaaG4naaqaaiGacwgacaGG4bGaaiiCaaaaceGGPaGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcaaI3aGaeyyXICTaaiikamaalaaabaGaaGymaaqaaiGacwgacaGG4bGaaiiCaaaaceGGPaGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcaaI3aGaeyyXICTaaiikaiabgkHiTmaalaaabaGaciyzaiaacIhacaGGWbGaai4jaiaacIcacaaIWaGaaiykaaqaaiGacwgacaGG4bGaaiiCamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIWaGaaiykaaaacaGGPaGaeyypa0JaaG4naiabgwSixlaacIcacqGHsisldaWcaaqaaiGacwgacaGG4bGaaiiCaiaaicdaaeaaciGGLbGaaiiEaiaacchadaahaaWcbeqaaiaaikdaaaGccaGGOaGaaGimaiaacMcaaaGaaiykaiabg2da9iabgkHiTiaaiEdaaaa@6CB1@

  • ( X X1 ) (5)= X (5)(X1)(5)X(5)(X1 ) (5) (X1) 2 (5) = 1451 16 = 1 16 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaamiwaaqaaiaadIfacqGHsislcaaIXaaaaiqacMcagaqbaiaacIcacaaI1aGaaiykaiabg2da9maalaaabaGabmiwayaafaGaaiikaiaaiwdacaGGPaGaeyyXICTaaiikaiaadIfacqGHsislcaaIXaGaaiykaiaacIcacaaI1aGaaiykaiabgkHiTiaadIfacaGGOaGaaGynaiaacMcacqGHflY1caGGOaGaamiwaiabgkHiTiaaigdaceGGPaGbauaacaGGOaGaaGynaiaacMcaaeaacaGGOaGaamiwaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaaiwdacaGGPaaaaiabg2da9maalaaabaGaaGymaiabgwSixlaaisdacqGHsislcaaI1aGaeyyXICTaaGymaaqaaiaaigdacaaI2aaaaiabg2da9iabgkHiTmaalaaabaGaaGymaaqaaiaaigdacaaI2aaaaaaa@6B87@

Ein weiteres, allgemeines Beispiel ergibt sich allein aus der Summen- und Faktorregel:

  • Jedes Polynom p= a n X n + a n1 X n1 ++ a 1 X+ a 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccaWGybWaaWbaaSqabeaacaWGUbaaaOGaey4kaSIaamyyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaWGybWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgUcaRiablAciljabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccaWGybGaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaaaaa@4C8D@ ist in jedem a differenzierbar (was allerdings auch schon durch [7.5.6] gesichert ist). Die Ableitung wird dabei summandenweise gebildet:

    p (a)= a n n a n1 + a n1 (n1) a n2 + a 2 2a+ a 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaafaGaaiikaiaadggacaGGPaGaeyypa0JaamyyamaaBaaaleaacaWGUbaabeaakiaad6gacaWGHbWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgUcaRiaadggadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaadggadaahaaWcbeqaaiaad6gacqGHsislcaaIYaaaaOGaey4kaSIaeSOjGSKaamyyamaaBaaaleaacaaIYaaabeaakiaaikdacaWGHbGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaaaaa@555F@ [7.6.8]
     

In [7.5.9/10] haben wir die Ableitungen von sin und cos berechnet (Für eine Rechnung ohne den Potenzreihenkalkül hier klicken). Mit Hilfe der Quotientenregel ist es nun leicht, auch die verbleibenden trigonometrischen Funktionen tan und cot zu differenzieren.

Bemerkung:  tan ist in jedem a(2k1) π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaacIcacaaIYaGaam4AaiabgkHiTiaaigdacaGGPaWaaSaaaeaacqaHapaCaeaacaaIYaaaaaaa@3FCF@ , cot in jedem akπ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadUgacqaHapaCaaa@3B46@ differenzierbar mit

  1. tan (a)= 1 cos 2 (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaai4jaiaacIcacaWGHbGaaiykaiabg2da9maalaaabaGaaGymaaqaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaacIcacaWGHbGaaiykaaaaaaa@437D@

[7.6.9]
  1. cot (a)= 1 sin 2 (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaai4jaiaacIcacaWGHbGaaiykaiabg2da9iabgkHiTmaalaaabaGaaGymaaqaaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaacIcacaWGHbGaaiykaaaaaaa@4472@

[7.6.10]

Beweis:  Die Quotientenregel garantiert die Differenzierbarkeit von tan und cot. Beim Ausrechnen der Ableitung setzen wir den Satz des Pythagoras ( sin 2 + cos 2 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGymaaaa@4020@ ) ein!

1.   tan (a)=( sin cos ) (a)= sin (a)cosasinacos (a) cos 2 (a) = cos 2 (a)+ sin 2 (a) cos 2 (a) = 1 cos 2 (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaai4jaiaacIcacaWGHbGaaiykaiabg2da9iaacIcadaWcaaqaaiGacohacaGGPbGaaiOBaaqaaiGacogacaGGVbGaai4CaaaaceGGPaGbauaacaGGOaGaamyyaiaacMcacqGH9aqpdaWcaaqaaiGacohacaGGPbGaaiOBaiaacEcacaGGOaGaamyyaiaacMcacqGHflY1ciGGJbGaai4BaiaacohacaWGHbGaeyOeI0Iaci4CaiaacMgacaGGUbGaamyyaiabgwSixlGacogacaGGVbGaai4CaiaacEcacaGGOaGaamyyaiaacMcaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyyaiaacMcaaaGaeyypa0ZaaSaaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyyaiaacMcacqGHRaWkciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyyaiaacMcaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyyaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaadggacaGGPaaaaaaa@8180@

2.   cot (a)=( cos sin ) (a)= cos (a)sinacosasin (a) sin 2 (a) = sin 2 (a) cos 2 (a) sin 2 (a) = 1 sin 2 (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaai4jaiaacIcacaWGHbGaaiykaiabg2da9iaacIcadaWcaaqaaiGacogacaGGVbGaai4CaaqaaiGacohacaGGPbGaaiOBaaaaceGGPaGbauaacaGGOaGaamyyaiaacMcacqGH9aqpdaWcaaqaaiGacogacaGGVbGaai4CaiaacEcacaGGOaGaamyyaiaacMcacqGHflY1ciGGZbGaaiyAaiaac6gacaWGHbGaeyOeI0Iaci4yaiaac+gacaGGZbGaamyyaiabgwSixlGacohacaGGPbGaaiOBaiaacEcacaGGOaGaamyyaiaacMcaaeaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyyaiaacMcaaaGaeyypa0ZaaSaaaeaacqGHsislciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyyaiaacMcacqGHsislciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyyaiaacMcaaeaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyyaiaacMcaaaGaeyypa0ZaaSaaaeaacqGHsislcaaIXaaabaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaadggacaGGPaaaaaaa@8377@

Bei Funktionen überpüft man nicht nur, ob die vier Grundrechenarten, sondern auch, ob die Komposition mit der aktuellen Eigenschaft verträglich ist. In unserem Fall ergibt sich dabei eine weitere, oft sehr bequeme Ableitungsregel.

Bemerkung:   f:B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGcbGaeyOKH4QaeSyhHekaaa@3BB9@ und g:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB9@ seien zwei Funktionen, aA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeaaaa@391C@ ein Häufungspunkt von A so dass g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWGHbGaaiykaaaa@3917@ zu B gehört und Häufungspunkt von B ist. Ist dann g differenzierbar in a und  f differenzierbar in g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWGHbGaaiykaaaa@3917@ , so ist auch  fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgaaaa@38FD@ differenzierbar in a und es gilt die

  1. Kettenregel (fg ) (a)= f (g(a)) g (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqWIyiYBcaWGNbGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0JabmOzayaafaGaaiikaiaadEgacaGGOaGaamyyaiaacMcacaGGPaGaeyyXICTabm4zayaafaGaaiikaiaadggacaGGPaaaaa@48A3@

[7.6.11]

Beweis:  Wir setzen hier den Darstellungssatz [7.5.1] ein. Es gibt also zwei Funktionen r:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BC4@ und s:B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacQdacaWGcbGaeyOKH4QaeSyhHekaaa@3BC6@ , r stetig in a, s stetig in g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWGHbGaaiykaaaa@3917@ mit r(a)= g (a),s(g(a))= f (g(a)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacIcacaWGHbGaaiykaiabg2da9iqadEgagaqbaiaacIcacaWGHbGaaiykaiaacYcacaaMc8Uaam4CaiaacIcacaWGNbGaaiikaiaadggacaGGPaGaaiykaiabg2da9iqadAgagaqbaiaacIcacaWGNbGaaiikaiaadggacaGGPaGaaiykaaaa@4B97@ , so dass

g=g(a)+(Xa)r f=f(g(a))+(Xg(a))s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadEgacqGH9aqpcaWGNbGaaiikaiaadggacaGGPaGaey4kaSIaaiikaiaadIfacqGHsislcaWGHbGaaiykaiabgwSixlaadkhaaeaacaWGMbGaeyypa0JaamOzaiaacIcacaWGNbGaaiikaiaadggacaGGPaGaaiykaiabgUcaRiaacIcacaWGybGaeyOeI0Iaam4zaiaacIcacaWGHbGaaiykaiaacMcacqGHflY1caWGZbaaaaaa@5513@

Die Komposition  fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgaaaa@38FD@ errechnet sich damit zu (beachte: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSigI8gaaa@3726@ verhält sich rechtsdistributiv zu den Grundrechenarten, X ist neutral und konstante Funktionen reproduzieren sich als linke Partner selbst!)

fg =(f(g(a))+(Xg(a))s)(g(a)+(Xa)r) =f(g(a))+(g(a)+(Xa)rg(a))s(g(a)+(Xa)r) =fg(a)+(Xa)rs(g(a)+(Xa)r) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaadAgacqWIyiYBcaWGNbaabaGaeyypa0JaaiikaiaadAgacaGGOaGaam4zaiaacIcacaWGHbGaaiykaiaacMcacqGHRaWkcaGGOaGaamiwaiabgkHiTiaadEgacaGGOaGaamyyaiaacMcacaGGPaGaeyyXICTaam4CaiaacMcacqWIyiYBcaGGOaGaam4zaiaacIcacaWGHbGaaiykaiabgUcaRiaacIcacaWGybGaeyOeI0IaamyyaiaacMcacqGHflY1caWGYbGaaiykaaqaaaqaaiabg2da9iaadAgacaGGOaGaam4zaiaacIcacaWGHbGaaiykaiaacMcacqGHRaWkcaGGOaGaam4zaiaacIcacaWGHbGaaiykaiabgUcaRiaacIcacaWGybGaeyOeI0IaamyyaiaacMcacqGHflY1caWGYbGaeyOeI0Iaam4zaiaacIcacaWGHbGaaiykaiaacMcacqGHflY1caWGZbGaeSigI8MaaiikaiaadEgacaGGOaGaamyyaiaacMcacqGHRaWkcaGGOaGaamiwaiabgkHiTiaadggacaGGPaGaeyyXICTaamOCaiaacMcaaeaaaeaacqGH9aqpcaWGMbGaeSigI8Maam4zaiaacIcacaWGHbGaaiykaiabgUcaRiaacIcacaWGybGaeyOeI0IaamyyaiaacMcacqGHflY1caWGYbGaeyyXICTaam4CaiablIHiVjaacIcacaWGNbGaaiikaiaadggacaGGPaGaey4kaSIaaiikaiaadIfacqGHsislcaWGHbGaaiykaiabgwSixlaadkhacaGGPaaaaaaa@A232@

Nach den Voraussetzungen über r und s ist die Funktion trs(g(a)+(Xa)r) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2da9iaadkhacqGHflY1caWGZbGaeSigI8MaaiikaiaadEgacaGGOaGaamyyaiaacMcacqGHRaWkcaGGOaGaamiwaiabgkHiTiaadggacaGGPaGaeyyXICTaamOCaiaacMcaaaa@4A0E@ stetig in a (Rechenregeln für stetige Funktionen!),  fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgaaaa@38FD@ gemäß Darstellungssatz damit differenzierbar in a, wobei

(fg ) (a)=t(a)=r(a)s(g(a))= g (a) f (g(a)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqWIyiYBcaWGNbGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0JaamiDaiaacIcacaWGHbGaaiykaiabg2da9iaadkhacaGGOaGaamyyaiaacMcacqGHflY1caWGZbGaaiikaiaadEgacaGGOaGaamyyaiaacMcacaGGPaGaeyypa0Jabm4zayaafaGaaiikaiaadggacaGGPaGaeyyXICTabmOzayaafaGaaiikaiaadEgacaGGOaGaamyyaiaacMcacaGGPaaaaa@58E3@

Beachte:

  • Die Kettenregel ist eine leicht anzuwendende Regel, denn es sind ja nur zwei Ableitungen zu multiplizieren. In diesem Zusammenhang haben sie eigene Namen:

    f (g(a)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadEgacaGGOaGaamyyaiaacMcacaGGPaaaaa@3B67@ ist die äußere Ableitung von  fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgaaaa@38FD@

    (eigentlich: die Ableitung der äußeren Funktion  f an der inneren Stelle g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWGHbGaaiykaaaa@3917@ )

    g (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikaiaadggacaGGPaaaaa@3923@ ist die innere Ableitung von  fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgaaaa@38FD@

    (eigentlich: die Ableitung der inneren Funktion g an der ursprünglichen Stelle a)

  • Die innere Ableitung wird leicht übersehen, man sollte sich also merken:

    Nach Ableiten der äußeren Funktion muss man noch nachdifferenzieren, d.h. mit der inneren Ableitung multiplizieren.

  • In Beispielen greift die Kettenregel fast immer auf Funktionen zu, die nicht über das Symbol MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSigI8gaaa@3726@ dargestellt sind! Man beachte daher die folgenden Identitäten:

    f = X f z.B.   | X 2 5| = X | X 2 5| |f|=|X|f z.B.  | X 2 5|=|X|( X 2 5) f n = X n f z.B.   sin 8 = X 8 sin MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaamaakaaabaGaamOzaaWcbeaakiabg2da9maakaaabaGaamiwaaWcbeaakiablIHiVjaadAgaaeaacaqG6bGaaeOlaiaabccacaqGcbGaaeOlamaakaaabaGaaiiFaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI1aGaaiiFaaWcbeaakiabg2da9maakaaabaGaamiwaaWcbeaakiablIHiVjaacYhacaWGybWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGynaiaacYhaaeaacaGG8bGaamOzaiaacYhacqGH9aqpcaGG8bGaamiwaiaacYhacqWIyiYBcaWGMbaabaGaaeOEaiaab6cacaqGGaGaaeOqaiaab6cacaGG8bGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdacaGG8bGaeyypa0JaaiiFaiaadIfacaGG8bGaeSigI8MaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI1aGaaiykaaqaaiaadAgadaahaaWcbeqaaiaad6gaaaGccqGH9aqpcaWGybWaaWbaaSqabeaacaWGUbaaaOGaeSigI8MaamOzaaqaaiaabQhacaqGUaGaaeiiaiaabkeacaqGUaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaI4aaaaOGaeyypa0JaamiwamaaCaaaleqabaGaaGioaaaakiablIHiVjGacohacaGGPbGaaiOBaaaaaaa@7F56@

Mit der letzten Darstellung gelingt es, die Ableitungsregel für die Potenzfunktion X n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOBaaaaaaa@37E9@ zu verallgemeinern:

Bemerkung:  Ist  f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB8@ differenzierbar in a, so ist für n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ auch  f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaamOBaaaaaaa@37F7@ differenzierbar in a und

  1.   ( f n ) (a)=n f n1 (a) f (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaahaaWcbeqaaiaad6gaaaGcceGGPaGbauaacaGGOaGaamyyaiaacMcacqGH9aqpcaWGUbGaamOzamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccaGGOaGaamyyaiaacMcacqGHflY1ceWGMbGbauaacaGGOaGaamyyaiaacMcaaaa@491A@

[7.6.12]

Beweis:  Da X n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOBaaaaaaa@37E9@ in jedem Punkt, also auch in  f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaaaa@3916@ , differenzierbar ist, ist  f n = X n f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaamOBaaaakiabg2da9iaadIfadaahaaWcbeqaaiaad6gaaaGccqWIyiYBcaWGMbaaaa@3D33@ gemäß Kettenregel in a differenzierbar. Die Ableitung errechen wir dabei zu

( f n ) (a)=( X n ) (f(a)) f (a)=n f n1 (a) f (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaahaaWcbeqaaiaad6gaaaGcceGGPaGbauaacaGGOaGaamyyaiaacMcacqGH9aqpcaGGOaGaamiwamaaCaaaleqabaGaamOBaaaakiqacMcagaqbaiaacIcacaWGMbGaaiikaiaadggacaGGPaGaaiykaiabgwSixlqadAgagaqbaiaacIcacaWGHbGaaiykaiabg2da9iaad6gacaWGMbWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiaacIcacaWGHbGaaiykaiabgwSixlqadAgagaqbaiaacIcacaWGHbGaaiykaaaa@578F@

 

Beispiel:  Alle eingesetzten Funktionen sind im jeweils benötigten Punkt differenzierbar. Mit 8. und 9. kann man daher die folgenden Ableitungen berechnen.

  • ( sin 8 ) (0)=8 sin 7 (0)sin (0)=801=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGioaaaakiqacMcagaqbaiaacIcacaaIWaGaaiykaiabg2da9iaaiIdacqGHflY1ciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaiEdaaaGccaGGOaGaaGimaiaacMcacqGHflY1ciGGZbGaaiyAaiaac6gacaGGNaGaaiikaiaaicdacaGGPaGaeyypa0JaaGioaiabgwSixlaaicdacqGHflY1caaIXaGaeyypa0JaaGimaaaa@589B@

  • ( ( X 3 3X ) 5 ) (2)=5 ( 2 3 32 ) 4 ( X 3 3X ) (2)=5 2 4 (3 2 2 3)=720 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaWGybWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaaG4maiaadIfacaGGPaWaaWbaaSqabeaacaaI1aaaaOGabiykayaafaGaaiikaiaaikdacaGGPaGaeyypa0JaaGynaiaacIcacaaIYaWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaaG4maiabgwSixlaaikdacaGGPaWaaWbaaSqabeaacaaI0aaaaOGaeyyXICTaaiikaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHsislcaaIZaGaamiwaiqacMcagaqbaiaacIcacaaIYaGaaiykaiabg2da9iaaiwdacqGHflY1caaIYaWaaWbaaSqabeaacaaI0aaaaOGaeyyXICTaaiikaiaaiodacqGHflY1caaIYaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaG4maiaacMcacqGH9aqpcaaI3aGaaGOmaiaaicdaaaa@679C@

  • | X 2 5 | (1)=|X | (4)( X 2 5 ) (1)=2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI1aGabiiFayaafaGaaiikaiaaigdacaGGPaGaeyypa0JaaiiFaiaadIfaceGG8bGbauaacaGGOaGaeyOeI0IaaGinaiaacMcacqGHflY1caGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdaceGGPaGbauaacaGGOaGaaGymaiaacMcacqGH9aqpcqGHsislcaaIYaaaaa@5069@

  • | X 2 5| (3)= X (4)| X 2 5 | (3)= X (4)|X | (4)( X 2 5 ) (3)= 1 2 4 16= 3 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaGG8bGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdacaGG8baaleqaaOWaaWbaaSqabeaakiadacUHYaIOaaGaaiikaiaaiodacaGGPaGaeyypa0ZaaOaaaeaacaWGybaaleqaaOWaaWbaaSqabeaakiadacUHYaIOaaGaaiikaiaaisdacaGGPaGaeyyXICTaaiiFaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI1aGabiiFayaafaGaaiikaiaaiodacaGGPaGaeyypa0ZaaOaaaeaacaWGybaaleqaaOWaaWbaaSqabeaakiadacUHYaIOaaGaaiikaiaaisdacaGGPaGaeyyXICTaaiiFaiaadIfaceGG8bGbauaacaGGOaGaaGinaiaacMcacqGHflY1caGGOaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdaceGGPaGbauaacaGGOaGaaG4maiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaWaaOaaaeaacaaI0aaaleqaaaaakiabgwSixlaaigdacqGHflY1caaI2aGaeyypa0ZaaSaaaeaacaaIZaaabaGaaGOmaaaaaaa@75BF@


7.5. 7.7.