7.5. Der zentrale Darstellungssatz für differenzierbare Funktionen
Um über die Differenzierbarkeit einer Funktion entscheiden zu können, muss man wissen, ob ihre Differenzenquotientenfunktion stetig fortsetzbar ist. Bei vielen Funktionen läßt sich dies, mehr oder weniger mühsam, erfolgreich nachprüfen.
Schwierigkeiten bereiten jedoch so wichtige Funktionen wie etwa sin, cos und exp.
Das in diesem Abschnitt vorgestellte äquivalente Kriterium, der zentrale Darstellungssatz, ist bei diesen Funktionen sehr hilfreich. Die eigentliche Bedeutung dieses Kriteriums liegt allerdings im theoretischen Bereich.
Bemerkung: Es sei
ein Häufungspunkt von . Für jede Funktion gilt:
f ist differenzierbar in a
| es gibt eine in a stetige Funktion , so dass
. |
|
[7.5.1] |
Im Differenzierbarkeitsfall hat man zusätzlich: r ist eindeutig bestimmt und .
Beweis: Zunächst betrachten wir für eine Funktion und für die folgende Äquivalenz:
[0]
"": Sei nun f in a
differenzierbar, die Differenzenquotientenfunktion also in a stetig
fortsetzbar, etwa durch die Funktion . Insbesondere ist r in a
stetig. Wir zeigen nun, dass f die geforderte
Darstellung besitzt. Beide Funktionen stimmen in ihren Definitions- und
Bildbereichen überein, es bleibt also nur noch für alle
zu zeigen: .
- Für ist dies offensichtlich:
.
- Für hat man
, so dass Behauptung aus [0] folgt.
Ferner weiß man in diesem Fall bereits: .
"": Hat man nun die Darstellung mit einer in a stetigen Funktion r, so können wir der Äquivalenz [0] entnehmen, dass
r eine stetige Fortsetzung von ist. ist also in a stetig fortsetzbar, f somit in a differenzierbar.
Sind nun
zwei Funktionen der angegebenen Art, so hat man zunächst nach [0]:
-
, also insbesondere
für alle .
Ferner ist im Differenzierbarkeitsfall
-
.
Man hat also insgesamt: .
|
Beachte:
-
Der Beweis zu [7.5.1] zeigt, dass die in der Darstellung benötigte Funktion r die stetige Fortsetzung der Differenzenquotientenfunktion ist.
Man kann daher die entsprechende Darstellung leicht angeben, wenn diese Fortsetzung zur Verfügung steht. Wir zeigen dies am Beispiel der Quadratfunktion und der Kehrwertfunktion:
-
Beachtet man, dass , so ergibt sich eine erstaunliche Ähnlichkeit zwischen der Funktion f und ihrer Tangentenfunktion
:
Benutzt man statt der eigentlichen Funktionswerte
die (leichter zu errechnenden) Werte der Tangentenfunktion, so läßt sich auf Grund unserer
Gegenüberstellung der Fehler folgendermaßen berechnen:
Aus Stetigkeitsgründen wird dabei dieser Fehler um so kleiner, je näher x bei a liegt. Man sagt auch, f wird in a durch die lineare Funktion approximiert,
bzw. f sei in a linear approximierbar.
-
Das gerade angedeutete Konzept der Approximierbarkeit läßt sich durch die folgende Definition erweitern:
Eine Funktion heißt in einem Häufungspunkt von k-ter Ordnung approximierbar, falls es eine in a
stetige Funktion gibt, so dass
ist. Wir gehen auf diese höhere Approximierbarkeit nicht ein.
Wir klären nun das Verhältnis zwischen den beiden Eigenschaften stetig und differenzierbar. Der zentrale Darstellungssatz macht diese Untersuchung leicht.
Bemerkung: Es sei
ein Häufungspunkt von . Für eine Funktion gilt:
Ist f differenzierbar in a, so ist f auch stetig in a.
|
[7.5.2] |
Die Umkehrung ist i.a. falsch.
Beweis: Ist f in a differenzierbar, so gibt es nach [7.5.1] die Darstellung
mit einer in a stetigen Funktion r. Neben r sind auch die konstante Funktion
und die lineare Funktion
stetig in a,
so dass aus den Stetigkeitssätzen [6.3.1,3] die Stetigkeit von f in a folgt.
Die in 0 zwar stetige, aber dort nicht differenzierbare Funktion zeigt, dass die gerade bewiesene Aussage nicht umkehrbar ist.
|
Die stetige Betragsfunktion ist lediglich in einem Punkt nicht differenzierbar, und dies reicht für ein Gegenbeispiel in [7.5.2] auch aus. Interessant mag die Frage sein, ob es stetige Funktionen gibt, die nirgendwo differenzierbar sind. Bereits 1872 konstruiert Karl Weierstraß eine solche Funktion.
Mit [7.5.1] gelingt es oft, weitere Eigenschaften differenzierbarer Funktionen - wie etwa die gerade gezeigte Stetigkeit - nachzuweisen. In einem zweiten Beispiel zeigen wir jetzt, dass die Umkehrung einer injektiven, differenzierbaren Funktion f bereits dann ebenfalls differenzierbar ist, wenn f in a regulär ist, d.h. wenn ist.
Bemerkung: Die injektive Funktion sei differenzierbar in a. Ist , so gilt für die Umkehrfunktion
-
ist stetig in .
|
[7.5.3] |
-
ist differenzierbar in und .
|
[7.5.4] |
Beweis: Wir benutzen die Darstellung mit einem in a stetigen r, so dass .
1. ► Ist eine Folge in die gegen konvergiert, so ist
Da , muss gelten und damit hat man
2. ► Wir zeigen zunächst, dass ein Häufungspunkt von ist: Weil a ein Häufungspunkt von A ist ( f könnte sonst dort nicht differenzierbar sein), gibt es eine Folge in A mit . Da f in a stetig ist, folgt daraus: .
Weiter finden wir aufgrund der Stetigkeit von in eine relative ε-Umgebung
, so dass für alle . Für diese x gewinnen wir aus der Gleichung
die folgende Darstellung von auf
:
Da in stetig ist, garantiert [7.5.1] die Differenzierbarkeit von in . Die Ableitungszahl errechnet sich dabei zu
|
In einem späteren Abschnitt werden wir sehen, dass die Regularität von f in einem ganzen Intervall die Injektivität von f bereits garantiert. Für punktweise reguläre Funktionen ist dies allerdings nicht einmal lokal richtig, wie ein Beispiel zeigt.
In den nächsten Abschnitten werden mit dem zentralen Darstellungssatz weitere Ergebnisse gewinnen. Jetzt setzen wir ihn ein, um die Differenzierbarkeit von Funktionen eines wichtigen Typs nachzuweisen.
Bemerkung: Die Grenzfunktion einer konvergenten Potenzreihe ist in ihrem Entwicklungspunkt a differenzierbar und
|
[7.5.5] |
Beweis: Nach [5.11.9] konvergiert die Potenzreihe in jedem Punkt x ihres Konvergenzbereichs. Für ein solches konvergiert dann auch die Reihe
wobei ihre Grenzfunktion nach [6.2.18] stetig ist.
Mit der Darstellung
folgt daher aus [7.5.1] die Differenzierbarkeit von f in a mit der Ableitung .
|
[7.5.5] garantiert die Differenzierbarkeit einer großen Funktionengruppe: Ist nämlich eine analytische Funktion, so ist f in jedem lokal identisch mit der Grenzfunktion einer konvergenten Potenzreihe mit Entwicklungspunkt a. Wir wissen also:
Eine analytische Funktion ist in jedem Häufungspunkt von A differenzierbar.
|
|
[7.5.6] |
Mit Hilfe des Umordnungssatzes für konvergente Potenzreihen können wir [7.5.5] erheblich erweitern: Die Grenzfunktion einer konvergenten Potenzreihe ist im gesamten Konvergenzbereich differenzierbar, ihre Ableitung folgt einem überschaubaren Schema!
Bemerkung: Die Grenzfunktion einer konvergenten Potenzreihe ist in jedem Punkt b ihres Konvergenzbereichs differenzierbar und
|
[7.5.7] |
Beweis: Gemäß Umordnungssatz [5.11.20] gibt es eine konvergente Potenzreihe deren Grenzfunktion in einer Umgebung von b mit f übereinstimmt. g, und damit auch f, ist nach [7.5.5] in b differenzierbar mit
Mit den Koeffizienten aus dem Beweis zu [5.11.20] folgt also:
|
In einer ersten Anwendung berechnen wir die Ableitung der analytischen (siehe [5.12.4]), also auch überall differenzierbaren Funktionen exp, sin und cos. Wir benutzen dabei die Darstellungen
aus [5.11.12]. Man beachte dabei, dass der erste Summand in [7.5.7] den Wert hat. Für den Sinus erreichen wir dies im Beweis zu 2. durch den Startwert . Beim Cosinus ist , so dass in 3. die Ableitung mit dem Summanden beginnen darf.
Bemerkung:
-
|
[7.5.8] |
-
|
[7.5.9] |
-
|
[7.5.10] |
Beweis:
1. ►
2. ►
3. ►
|
|
|
|