Beispiel einer lokal nicht injektiven, regulären Funktion


Die Funktion  f: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C62@ sei gegeben durch

f(x){ x+ x 2 cos π x  ,  falls  x0 0 ,  falls  x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaadIhacqGHRaWkcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaci4yaiaac+gacaGGZbWaaSaaaeaacqaHapaCaeaacaWG4baaaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyiyIKRaaGimaaqaaiaaicdacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabg2da9iaaicdaaaaacaGL7baaaaa@57A0@
 

f ist eine Beispielfunktion der gesuchten Art. Genauer zeigen wir nämlich:

  1. f ist in 0 differenzierbar mit  f (0)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaGymaaaa@3AB7@ .

  2. f ist in keiner Umgebung von 0 injektiv.

Beweis:  

1. ►  Aus der für alle x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@396A@ gültigen Ungleichung

0| m 0 (x)1|=| f(x)f(0) x0 1|=|xcos π x ||x| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaacYhacaWGTbWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadIhacaGGPaGaeyOeI0IaaGymaiaacYhacqGH9aqpcaGG8bWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaaIWaGaaiykaaqaaiaadIhacqGHsislcaaIWaaaaiabgkHiTiaaigdacaGG8bGaeyypa0JaaiiFaiaadIhacqGHflY1ciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaadIhaaaGaaiiFaiabgsMiJkaacYhacaWG4bGaaiiFaaaa@5F65@

folgt aus dem Schachtelsatz [6.9.10] zunächst lim x0 | m 0 (x)1|=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakiaacYhacaWGTbWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadIhacaGGPaGaeyOeI0IaaGymaiaacYhacqGH9aqpcaaIWaaaaa@4643@ und mit [6.9.11] dann auch die Behauptung lim x0 m 0 (x)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakiaad2gadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpcaaIXaaaaa@429C@ .

2. ►  f ist stetig (in 0 als Folge von 1. und in x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@396A@ aufgrund der Rechenregeln für stetige Funktionen). Wir betrachten nun für ein beliebiges k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ die Zahlen

1 2k+2 < 1 2k+1 < 1 2k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiaadUgacqGHRaWkcaaIYaaaaiabgYda8maalaaabaGaaGymaaqaaiaaikdacaWGRbGaey4kaSIaaGymaaaacqGH8aapdaWcaaqaaiaaigdaaeaacaaIYaGaam4Aaaaaaaa@4294@

und zeigen dann

f( 1 2k+1 ) < [1] f( 1 2k+2 ) < [2] f( 1 2k ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaiabgUcaRiaaigdaaaGaaiykamaaxababaGaeyipaWdaleaacaGGBbGaaGymaiaac2faaeqaaOGaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaiabgUcaRiaaikdaaaGaaiykamaaxababaGaeyipaWdaleaacaGGBbGaaGOmaiaac2faaeqaaOGaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaaaacaGGPaaaaa@4EDD@

Nach Zwischenwertsatz ([6.6.2]) existiert dann ein x ˜ ] 1 2k+1 , 1 2k [ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxamaalaaabaGaaGymaaqaaiaaikdacaWGRbGaey4kaSIaaGymaaaacaGGSaWaaSaaaeaacaaIXaaabaGaaGOmaiaadUgaaaGaai4waaaa@4177@ , also insbesondere x ˜ 1 2k+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyiyIK7aaSaaaeaacaaIXaaabaGaaGOmaiaadUgacqGHRaWkcaaIYaaaaaaa@3CD4@ , mit  f( x ˜ )=f( 1 2k+2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcaceWG4bGbaGaacaGGPaGaeyypa0JaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaiabgUcaRiaaikdaaaGaaiykaaaa@409B@ . Das bedeutet aber:  f ist in ] 1 2k , 1 2k [ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGRbaaaiaacYcadaWcaaqaaiaaigdaaeaacaaIYaGaam4AaaaacaGGBbaaaa@3E37@ nicht injektiv.

Zum Nachweis von [1] und [2] beachte man, dass der Cosinus an den geraden Vielfachen von π den Wert 1, und an den ungeraden den Wert −1 annimmt. Es ist daher

f( 1 n )={ 1 n + 1 n 2 = n+1 n 2 , falls n gerade 1 n 1 n 2 = n1 n 2 , falls n ungerade MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcacqGH9aqpdaGabaqaauaabaqaceaaaeaadaWcaaqaaiaaigdaaeaacaWGUbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaad6gadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaad6gadaahaaWcbeqaaiaaikdaaaaaaOGaaeilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiaabEgacaqGLbGaaeOCaiaabggacaqGKbGaaeyzaaqaamaalaaabaGaaGymaaqaaiaad6gaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqaaiaad6gacqGHsislcaaIXaaabaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccaqGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaaeyDaiaab6gacaqGNbGaaeyzaiaabkhacaqGHbGaaeizaiaabwgaaaaacaGL7baaaaa@6B4D@

Der Nachweis von [1] ergibt sich daher durch die folgende Rechnung:

f( 1 2k+1 )<f( 1 2k+2 ) 2k (2k+1) 2 < 2k+3 (2k+2) 2 8 k 3 +16 k 2 +8k<8 k 3 +20 k 2 +14k+3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiaadAgacaGGOaWaaSaaaeaacaaIXaaabaGaaGOmaiaadUgacqGHRaWkcaaIXaaaaiaacMcacqGH8aapcaWGMbGaaiikamaalaaabaGaaGymaaqaaiaaikdacaWGRbGaey4kaSIaaGOmaaaacaGGPaaabaGaeyi1HSTaaGzbVdqaamaalaaabaGaaGOmaiaadUgaaeaacaGGOaGaaGOmaiaadUgacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGH8aapdaWcaaqaaiaaikdacaWGRbGaey4kaSIaaG4maaqaaiaacIcacaaIYaGaam4AaiabgUcaRiaaikdacaGGPaWaaWbaaSqabeaacaaIYaaaaaaaaOqaaiabgsDiBlaaywW7aeaacaaI4aGaam4AamaaCaaaleqabaGaaG4maaaakiabgUcaRiaaigdacaaI2aGaam4AamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiIdacaWGRbGaeyipaWJaaGioaiaadUgadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaaGimaiaadUgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGinaiaadUgacqGHRaWkcaaIZaaaaaaa@7316@

[2] bestätigt man auf die gleiche Weise:

f( 1 2k+2 )<f( 1 2k ) 2k+3 (2k+2) 2 < 2k+1 (2k) 2 8 k 3 +12 k 2 <8 k 3 +20 k 2 +16k+4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiaadAgacaGGOaWaaSaaaeaacaaIXaaabaGaaGOmaiaadUgacqGHRaWkcaaIYaaaaiaacMcacqGH8aapcaWGMbGaaiikamaalaaabaGaaGymaaqaaiaaikdacaWGRbaaaiaacMcaaeaacqGHuhY2caaMf8oabaWaaSaaaeaacaaIYaGaam4AaiabgUcaRiaaiodaaeaacaGGOaGaaGOmaiaadUgacqGHRaWkcaaIYaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGH8aapdaWcaaqaaiaaikdacaWGRbGaey4kaSIaaGymaaqaaiaacIcacaaIYaGaam4AaiaacMcadaahaaWcbeqaaiaaikdaaaaaaaGcbaGaeyi1HSTaaGzbVdqaaiaaiIdacaWGRbWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGymaiaaikdacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeyipaWJaaGioaiaadUgadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaaGimaiaadUgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGOnaiaadUgacqGHRaWkcaaI0aaaaaaa@6EE4@