4.3. Die trigonometrischen Funktionen


Die trigonometrischen Funktionen spielen nicht nur in der Mathematik selbst, sondern auch in ihren Anwendungsgebieten, speziell in der Physik, eine bedeutende Rolle. Ihre Ursprünge reichen sehr weit zurück und im Gegensatz zu den bisherigen Funktionen liegen ihre Wurzeln deutlich im geometrischen Bereich, und zwar in der Dreieckslehre. Unsere Einführung der trigonometrischen Funktionen trägt zunächst dieser geometrischen Herkunft Rechnung.

Die in der Dreieckslehre übliche Methode, Winkel in Graden zu messen, ist allerdings für unsere Zwecke ungeeignet. Ein geeignetes Maß, Winkel in Zahlen und nicht in Graden zu messen, ist das Bogenmaß (engl. radian). Die Grundidee liegt dabei in der Beobachtung, dass jeder Winkel, im Mittelpunkt eines vorgelegten Kreises angetragen, einen Ausschnitt des Kreisesbogens liefert. Da allerdings ein Winkel bei verschieden großen Kreisen unterschiedliche große Bögen ausschneidet, ist eine Festlegung auf einen bestimmten Kreis zwingend. Zur Winkelmessung durch Bögen werden wir daher stets einen Kreis mit Radius 1 und Mittelpunkt im Ursprung des Koordinatensystems zu Grunde legen, den sog. Einheitskreis.

Jedem gemäß nebenstehender Skizze eingetragenem Winkel α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3787@ kommt nun neben seinem (orientierten) Gradmaß α° MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyiSaalaaa@3973@ auch sein (orientiertes) Bogenmaß α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaWbaaSqabeaacqGHPiYXaaaaaa@3952@ (auch: α rad), d.h. die Länge des von ihm ausgeschnittenen Bogens zu. Dabei bezieht sich der Zusatz "orientiert" auf die Vereinbarung, dass im Gegenuhrzeigersinn (wie in der Skizze) eingezeichnete Winkel positive Maßzahlen haben, und Winkeln, die im Uhrzeigersinn eingetragen sind, negative Maßzahlen zukommen.

Natürlich kann man die beiden Maßsysteme ineinander umrechnen. So liefert z.B. ein Winkel vom Gradmaß 180° MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiIdacaaIWaGaeyiSaalaaa@3A0B@ den halben Umfang des Einheitskreises, also die Zahl π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@37A5@ als Bogenmaß. Daraus ergibt sich für einen beliebigen Winkel α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3787@ :

Ist α° MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyiSaalaaa@3973@ das Gradmaß von α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3787@ , so ist α° 180° π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaHXoqycqGHWcaSaeaacaaIXaGaaGioaiaaicdacqGHWcaSaaGaeqiWdahaaa@3F63@ das Bogenmaß von α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3787@ .

Ist α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaWbaaSqabeaacqGHPiYXaaaaaa@3952@ das Bogenmaß von α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3787@ , so ist α π 180° MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaHXoqydaahaaWcbeqaaiabgMIihdaaaOqaaiabec8aWbaacaaIXaGaaGioaiaaicdacqGHWcaSaaa@3F4C@ das Gradmaß von α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3787@ .

Grad- und Bogenmaße einiger markanter Winkel kann man direkt aus der folgenden Tabelle ablesen. Für beliebige Winkel leistet das nachstehende Umrechnungsformular gute Dienste. Es berücksichtigt bis zu 8 Dezimalstellen.

α° 0° 30° 45° 60° 90° 180° 270° 360° 450° 720° 90° 180° 270° 360° α 0 π 6 π 4 π 3 π 2 π 3 π 2 2π 5 π 2 4π π 2 π 3 π 2 2π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiWdaaaaaaqaaiabeg7aHjabgclaWcqaaiaaicdacqGHWcaSaeaacaaIZaGaaGimaiabgclaWcqaaiaaisdacaaI1aGaeyiSaalabaGaaGOnaiaaicdacqGHWcaSaeaacaaI5aGaaGimaiabgclaWcqaaiaaigdacaaI4aGaaGimaiabgclaWcqaaiaaikdacaaI3aGaaGimaiabgclaWcqaaiaaiodacaaI2aGaaGimaiabgclaWcqaaiaaisdacaaI1aGaaGimaiabgclaWcqaaiaaiEdacaaIYaGaaGimaiabgclaWcqaaiabgkHiTiaaiMdacaaIWaGaeyiSaalabaGaeyOeI0IaaGymaiaaiIdacaaIWaGaeyiSaalabaGaeyOeI0IaaGOmaiaaiEdacaaIWaGaeyiSaalabaGaeyOeI0IaaG4maiaaiAdacaaIWaGaeyiSaalabaGaeqySde2aaWbaaSqabeaacqGHPiYXaaaakeaacaaIWaaabaWaaSaaaeaacqaHapaCaeaacaaI2aaaaaqaamaalaaabaGaeqiWdahabaGaaGinaaaaaeaadaWcaaqaaiabec8aWbqaaiaaiodaaaaabaWaaSaaaeaacqaHapaCaeaacaaIYaaaaaqaaiabec8aWbqaaiaaiodadaWcaaqaaiabec8aWbqaaiaaikdaaaaabaGaaGOmaiabec8aWbqaaiaaiwdadaWcaaqaaiabec8aWbqaaiaaikdaaaaabaGaaGinaiabec8aWbqaaiabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaaaeaacqGHsislcqaHapaCaeaacqGHsislcaaIZaWaaSaaaeaacqaHapaCaeaacaaIYaaaaaqaaiabgkHiTiaaikdacqaHapaCaaaaaa@9B71@
α° MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyiSaalaaa@3973@   α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaWbaaSqabeaacqGHPiYXaaaaaa@3952@
 

Nun können wir die beiden ersten trigonometrischen Funktionen, nämlich die Sinus- und die Cosinusfunktion

sin,cos: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiilaiGacogacaGGVbGaai4CaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@41CE@

einführen. Statt einer präzisen Funktionsvorschrift geben wir hier eine geometrisch ausgerichtete Konstruktionsvorschrift an und tragen die exakte Definition in einem späteren Abschnitt

 i

In [5.9] setzen wir sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaaaa@39BD@ , bzw. cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaamiEaaaa@39B8@ als Grenzwert einer konvergenten Potenzreihe fest, und zwar

sinx= i=0 (1) i x 2i+1 (2i+1)! cosx= i=0 (1) i x 2i (2i)! MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacohacaGGPbGaaiOBaiaadIhacqGH9aqpdaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaaaakmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaiaadMgacqGHRaWkcaaIXaaaaaGcbaGaaiikaiaaikdacaWGPbGaey4kaSIaaGymaiaacMcacaGGHaaaaaWcbaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaOqaaiGacogacaGGVbGaai4CaiaadIhacqGH9aqpdaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaaaakmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaiaadMgaaaaakeaacaGGOaGaaGOmaiaadMgacaGGPaGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaaaa@6523@

Da diese Definition auch im Komplexen möglich ist, liegen Sinus und Cosinus auch als Funktionen von MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHmQaeyOKH4QaeSOaHmkaaa@3A83@ vor. Darüber hinaus sind wir erst mit dieser analytischen Definition in der Lage, exakte Beweise zu führen.

nach. Eine gegebene reelle Zahl x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39D9@ interpretieren wir als das Bogenmaß eines Winkels und tragen dieses Maß am Einheitskreis ab (positive Zahlen im Gegenuhrzeigersinn, negative im Uhrzeigersinn). Dadurch legen wir eindeutig einen von x abhängigen Punkt (a,b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacaGGSaGaamOyaiaacMcaaaa@39BE@ auf dem Kreis fest. Seine beiden Koordinaten a und b sind nun die Funktionswerte.

Definition:  Für x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39D9@ setzen wir gemäß der vorgestellten Konstruktion fest:

cos(x)a sin(x)b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacogacaGGVbGaai4CaiaacIcacaWG4bGaaiykaiabg2da9iaadggaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiaacMcacqGH9aqpcaWGIbaaaaaa@4424@
[4.3.1]

Es ist üblich, die Funktionswerte klammerfrei zu schreiben, also: sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaaaa@39BD@ bzw. cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaamiEaaaa@39B8@ .

Im allgemeinen wird man mit dieser Methode keine exakten Funktionswerte ermitteln können, für einige speziell gewählte x-Werte lassen sich sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaaaa@39BD@ und cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaamiEaaaa@39B8@ jedoch leicht am Einheitskreis ablesen:

x 0 π 2 π 3 π 2 2π π 2 π sinx 0 1 0 1 0 1 0 cosx 1 0 1 0 1 0 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmacaaaaaeaacaWG4baabaGaaGimaaqaamaalaaabaGaeqiWdahabaGaaGOmaaaaaeaacqaHapaCaeaacaaIZaWaaSaaaeaacqaHapaCaeaacaaIYaaaaaqaaiaaikdacqaHapaCaeaacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaaabaGaeyOeI0IaeqiWdahabaGaci4CaiaacMgacaGGUbGaamiEaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiabgkHiTiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGymaaqaaiaaicdaaeaaciGGJbGaai4BaiaacohacaWG4baabaGaaGymaaqaaiaaicdaaeaacqGHsislcaaIXaaabaGaaGimaaqaaiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGymaaaaaaa@5D7B@

Wir erläutern das Ablesen an zwei Beispielen:

  • Der zu x= π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9maalaaabaGaeqiWdahabaGaaGOmaaaaaaa@3A74@ gehörige Bogen ist ein Viertelkreis, der bei (1,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacaGGSaGaaGimaiaacMcaaaa@3966@ startet und bei (0,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaicdacaGGSaGaaGymaiaacMcaaaa@3966@ endet. Die Koordinaten des Endpunkts sind die sin- bzw. cos-Werte: 1 ist der Sinuswert und 0 der Cosinuswert.

  • Zu x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaaicdaaaa@38A5@ gehört ein Bogen der Länge 0. Er endet also bereits im Startpunkt (1,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacaGGSaGaaGimaiaacMcaaaa@3966@ , d.h. der Sinuswert ist hier 0 und der Cosinuswert 1.

Um einen Funktionsgraphen zu zeichnen, reichen diese Daten allein natürlich nicht aus. Das folgende Applet simuliert jedoch die geometrische Konstruktion für die Sinusfunktion und stellt ausreichend viele Werte zur Verfügung. Mit dem Schieber kann man den Graphen bequem erzeugen.

sin und cos besitzen eine Fülle von Eigenschaften. Viele ergeben sich zwar direkt aus der Konstruktion über den Einheitskreis, ihre Gültigkeit aber können wir damit nicht sicherstellen. Für die weiteren Ausführungen legen wir daher die Definition aus [5.9] zu Grunde, also:

sinx= i=0 (1) i x 2i+1 (2i+1)! cosx= i=0 (1) i x 2i (2i)! MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacohacaGGPbGaaiOBaiaadIhacqGH9aqpdaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaaaakmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaiaadMgacqGHRaWkcaaIXaaaaaGcbaGaaiikaiaaikdacaWGPbGaey4kaSIaaGymaiaacMcacaGGHaaaaaWcbaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaOqaaiGacogacaGGVbGaai4CaiaadIhacqGH9aqpdaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaaaakmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaiaadMgaaaaakeaacaGGOaGaaGOmaiaadMgacaGGPaGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaaaa@6523@ [0]

Da durch [0] auch die komplexen Funktionen sin und cos definiert sind, hat dies zudem den Vorteil, dass (fast) jede der hier notierten Aussagen automatisch auch im Komplexen gültig ist.

Allerdings müssen wir erst sicherstellen, dass die durch [0] definierten Funktionen mit den geometrisch eingeführten identisch sind! Wir zeigen dies mit Techniken der Integralrechnung auf einer eigenen Seite. Ferner benötigen wir genauere Informationen über die Zahl π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@37A5@ . Dazu vergewissern wir uns zunächst, dass die Sinusfunktion positive Nullstellen besitzt.

Bemerkung:  Es gibt eine reelle Zahl x>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6da+iaaicdaaaa@38A7@ , so dass

sinx=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaiabg2da9iaaicdaaaa@3B7D@
[4.3.2]

Beweis:  Wir benötigen einige Abschätzungen. Zunächst hat man für i1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgwMiZkaaigdaaaa@3957@ und 0<x< 6 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadIhacqGH8aapdaGcaaqaaiaaiAdaaSqabaaaaa@3A82@ :

(1) 2i x 4i+1 (4i+1)! + (1) 2i+1 x 4i+3 (4i+3)! = x 4i+1 (4i+1)! (1 x 2 (4i+2)(4i+3) ) = x 4i+1 (4i+1)! 16 i 2 +20i+6 x 2 (4i+2)(4i+3) > x 4i+1 (4i+1)! 16 i 2 +20i+66 (4i+2)(4i+3) >0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaaabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaaIYaGaamyAaaaakmaalaaabaGaamiEamaaCaaaleqabaGaaGinaiaadMgacqGHRaWkcaaIXaaaaaGcbaGaaiikaiaaisdacaWGPbGaey4kaSIaaGymaiaacMcacaGGHaaaaiabgUcaRiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaaGOmaiaadMgacqGHRaWkcaaIXaaaaOWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaI0aGaamyAaiabgUcaRiaaiodaaaaakeaacaGGOaGaaGinaiaadMgacqGHRaWkcaaIZaGaaiykaiaacgcaaaaabaGaeyypa0dabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaI0aGaamyAaiabgUcaRiaaigdaaaaakeaacaGGOaGaaGinaiaadMgacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaaiikaiaaigdacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaGGOaGaaGinaiaadMgacqGHRaWkcaaIYaGaaiykaiaacIcacaaI0aGaamyAaiabgUcaRiaaiodacaGGPaaaaiaacMcaaeaacqGH9aqpaeaadaWcaaqaaiaadIhadaahaaWcbeqaaiaaisdacaWGPbGaey4kaSIaaGymaaaaaOqaaiaacIcacaaI0aGaamyAaiabgUcaRiaaigdacaGGPaGaaiyiaaaacqGHflY1daWcaaqaaiaaigdacaaI2aGaamyAamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaaIWaGaamyAaiabgUcaRiaaiAdacqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaiikaiaaisdacaWGPbGaey4kaSIaaGOmaiaacMcacaGGOaGaaGinaiaadMgacqGHRaWkcaaIZaGaaiykaaaaaeaacqGH+aGpaeaadaWcaaqaaiaadIhadaahaaWcbeqaaiaaisdacaWGPbGaey4kaSIaaGymaaaaaOqaaiaacIcacaaI0aGaamyAaiabgUcaRiaaigdacaGGPaGaaiyiaaaacqGHflY1daWcaaqaaiaaigdacaaI2aGaamyAamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaaIWaGaamyAaiabgUcaRiaaiAdacqGHsislcaaI2aaabaGaaiikaiaaisdacaWGPbGaey4kaSIaaGOmaiaacMcacaGGOaGaaGinaiaadMgacqGHRaWkcaaIZaGaaiykaaaacqGH+aGpcaaIWaaaaaaa@B2DA@

Für diese x gilt daher:

sinx=x x 3 6 + i=2 (1) i x 2i+1 (2i+1)! =x x 3 6 + i=1 (1) 2i x 4i+1 (4i+1)! + (1) 2i+1 x 4i+3 (4i+3)! >0 x x 3 6 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaiabg2da9iaadIhacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaiodaaaaakeaacaaI2aaaaiabgUcaRmaaqahabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaOWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaGaamyAaiabgUcaRiaaigdaaaaakeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaGaaiykaiaacgcaaaaaleaacaWGPbGaeyypa0JaaGOmaaqaaiabg6HiLcqdcqGHris5aOGaeyypa0JaamiEaiabgkHiTmaalaaabaGaamiEamaaCaaaleqabaGaaG4maaaaaOqaaiaaiAdaaaGaey4kaSYaaabCaeaadaagaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaaGOmaiaadMgaaaGcdaWcaaqaaiaadIhadaahaaWcbeqaaiaaisdacaWGPbGaey4kaSIaaGymaaaaaOqaaiaacIcacaaI0aGaamyAaiabgUcaRiaaigdacaGGPaGaaiyiaaaacqGHRaWkcaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaaikdacaWGPbGaey4kaSIaaGymaaaakmaalaaabaGaamiEamaaCaaaleqabaGaaGinaiaadMgacqGHRaWkcaaIZaaaaaGcbaGaaiikaiaaisdacaWGPbGaey4kaSIaaG4maiaacMcacaGGHaaaaaWcbaGaeyOpa4JaaGimaaGccaGL44paaSqaaiaadMgacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGccqGHLjYScaWG4bGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGOnaaaaaaa@8BD4@ ,

und damit schließlich:

sinxx x 3 6 = 1 6 x(6 x 2 )>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaiabgwMiZkaadIhacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaiodaaaaakeaacaaI2aaaaiabg2da9maalaaabaGaaGymaaqaaiaaiAdaaaGaamiEaiaacIcacaaI2aGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaakiaacMcacqGH+aGpcaaIWaaaaa@4A74@   für alle 0<x< 6 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadIhacqGH8aapdaGcaaqaaiaaiAdaaSqabaaaaa@3A82@ .[+]

Somit ist z.B. sin2>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaGOmaiabg6da+iaaicdaaaa@3B3E@ und mit einer weiteren Abschätzung finden wir:

sin4 = i=0 (1) i 4 2i+1 (2i+1)! = i=0 4 (1) i 4 2i+1 (2i+1)! + i=0 (1) i+5 4 2i+11 (2i+11)! = i=0 4 (1) i 4 2i+1 (2i+1)! + i=0 (1) 2i+5 4 4i+11 (4i+11)! + (1) 2i+6 4 4i+13 (4i+13)! = 268 405 + i=0 4 4i+11 4 2 (4i+12)(4i+13) (4i+13)! 0 268 405 <0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaci4CaiaacMgacaGGUbGaaGinaaqaaiabg2da9maaqahabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaOWaaSaaaeaacaaI0aWaaWbaaSqabeaacaaIYaGaamyAaiabgUcaRiaaigdaaaaakeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaGaaiykaiaacgcaaaaaleaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaGcbaaabaGaeyypa0ZaaabCaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgaaaGcdaWcaaqaaiaaisdadaahaaWcbeqaaiaaikdacaWGPbGaey4kaSIaaGymaaaaaOqaaiaacIcacaaIYaGaamyAaiabgUcaRiaaigdacaGGPaGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaaGinaaqdcqGHris5aOGaey4kaSYaaabCaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgacqGHRaWkcaaI1aaaaOWaaSaaaeaacaaI0aWaaWbaaSqabeaacaaIYaGaamyAaiabgUcaRiaaigdacaaIXaaaaaGcbaGaaiikaiaaikdacaWGPbGaey4kaSIaaGymaiaaigdacaGGPaGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaakeaaaeaacqGH9aqpdaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaaaakmaalaaabaGaaGinamaaCaaaleqabaGaaGOmaiaadMgacqGHRaWkcaaIXaaaaaGcbaGaaiikaiaaikdacaWGPbGaey4kaSIaaGymaiaacMcacaGGHaaaaaWcbaGaamyAaiabg2da9iaaicdaaeaacaaI0aaaniabggHiLdGccqGHRaWkdaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaaGOmaiaadMgacqGHRaWkcaaI1aaaaOWaaSaaaeaacaaI0aWaaWbaaSqabeaacaaI0aGaamyAaiabgUcaRiaaigdacaaIXaaaaaGcbaGaaiikaiaaisdacaWGPbGaey4kaSIaaGymaiaaigdacaGGPaGaaiyiaaaacqGHRaWkcaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaaikdacaWGPbGaey4kaSIaaGOnaaaakmaalaaabaGaaGinamaaCaaaleqabaGaaGinaiaadMgacqGHRaWkcaaIXaGaaG4maaaaaOqaaiaacIcacaaI0aGaamyAaiabgUcaRiaaigdacaaIZaGaaiykaiaacgcaaaaaleaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaGcbaaabaGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaaGOnaiaaiIdaaeaacaaI0aGaaGimaiaaiwdaaaGaey4kaSYaaabCaeaacaaI0aWaaWbaaSqabeaacaaI0aGaamyAaiabgUcaRiaaigdacaaIXaaaaOWaaGbaaeaadaWcaaqaaiaaisdadaahaaWcbeqaaiaaikdaaaGccqGHsislcaGGOaGaaGinaiaadMgacqGHRaWkcaaIXaGaaGOmaiaacMcacaGGOaGaaGinaiaadMgacqGHRaWkcaaIXaGaaG4maiaacMcaaeaacaGGOaGaaGinaiaadMgacqGHRaWkcaaIXaGaaG4maiaacMcacaGGHaaaaaWcbaGaeyizImQaaGimaaGccaGL44paaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGHKjYOcqGHsisldaWcaaqaaiaaikdacaaI2aGaaGioaaqaaiaaisdacaaIWaGaaGynaaaacqGH8aapcaaIWaaaaaaa@EE91@

Da sin stetig ist ([6.2.17]), gibt es gemäß Nullstellensatz [6.6.1] eine Nullstelle zwischen 2 und 4.

In MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3758@ gilt das Vollständigkeitsaxiom, d.h. jede nicht-leere, nach unten beschränkte Teilmenge besitzt eine größte untere Schranke, das Infimum. Mit [4.3.2] können wir daher festsetzen:

πinf{x>0|sinx=0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaeyypa0JaciyAaiaac6gacaGGMbGaai4EaiaadIhacqGH+aGpcaaIWaGaaiiFaiGacohacaGGPbGaaiOBaiaadIhacqGH9aqpcaaIWaGaaiyFaaaa@46CA@
[4.3.3]

Dabei garantieren [+] und die letzte Abschätzung dass 6 π4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaI2aaaleqaaOGaeyizImQaeqiWdaNaeyizImQaaGinaaaa@3CB2@ . Insbesondere ist damit π>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaeyOpa4JaaGimaaaa@3967@ .

Von entscheidender Bedeutung für die Eigenschaften der trigonometrischen Funktionen sind die sog. Additionstheoreme.

Satz (Additionstheoreme):  Für alle x,y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaeSyhHekaaa@3B87@ ist

  1. sin(x+y)=sinxcosy+sinycosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaadIhacqGHflY1ciGGJbGaai4BaiaacohacaWG5bGaey4kaSIaci4CaiaacMgacaGGUbGaamyEaiabgwSixlGacogacaGGVbGaai4CaiaadIhaaaa@52BE@

  2. cos(x+y)=cosxcosysinxsiny MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabg2da9iGacogacaGGVbGaai4CaiaadIhacqGHflY1ciGGJbGaai4BaiaacohacaWG5bGaeyOeI0Iaci4CaiaacMgacaGGUbGaamiEaiabgwSixlGacohacaGGPbGaaiOBaiaadMhaaaa@52C4@

[4.3.4]

Beweis:  Mit den Abkürzungen

a i { (1) i1 2 i!   falls i ungerade  0  falls i gerade  MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaakiabg2da9maaceaabaqbaeqabiqaaaqaamaalaaabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaadaWcaaqaaiaadMgacqGHsislcaaIXaaabaGaaGOmaaaaaaaakeaacaWGPbGaaiyiaaaacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadMgacaqG1bGaaeOBaiaabEgacaqGLbGaaeOCaiaabggacaqGKbGaaeyzaaqaaiaaicdacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadMgacaqGNbGaaeyzaiaabkhacaqGHbGaaeizaiaabwgaaaaacaGL7baaaaa@5B11@   und   b i { (1) i 2 i!   falls i gerade  0  falls i ungerade  MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaakiabg2da9maaceaabaqbaeqabiqaaaqaamaalaaabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaadaWcaaqaaiaadMgaaeaacaaIYaaaaaaaaOqaaiaadMgacaGGHaaaaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamyAaiaabEgacaqGLbGaaeOCaiaabggacaqGKbGaaeyzaaqaaiaaicdacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadMgacaqG1bGaaeOBaiaabEgacaqGLbGaaeOCaiaabggacaqGKbGaaeyzaaaaaiaawUhaaaaa@596A@

können wir [0] umschreiben zu

sinx= i=0 (1) i x 2i+1 (2i+1)! = i=0 a i x i cosx= i=0 (1) i x 2i (2i)! = i=0 b i x i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacohacaGGPbGaaiOBaiaadIhacqGH9aqpdaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaaaakmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaiaadMgacqGHRaWkcaaIXaaaaaGcbaGaaiikaiaaikdacaWGPbGaey4kaSIaaGymaiaacMcacaGGHaaaaaWcbaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabg2da9maaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaadIhadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaOqaaiGacogacaGGVbGaai4CaiaadIhacqGH9aqpdaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaaaakmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaiaadMgaaaaakeaacaGGOaGaaGOmaiaadMgacaGGPaGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGH9aqpdaaeWbqaaiaadkgadaWgaaWcbaGaamyAaaqabaGccaWG4bWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaaaa@7C34@ [1]

Wir beweisen jetzt das Additionstheorem für den Sinus. Der Nachweis für den Cosinus verläuft ähnlich und kann hier aufgerufen werden.

Wir berechnen nun zunächst für 0ki MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadUgacqGHKjYOcaWGPbaaaa@3BEA@ :

a k b ik + b k a ik ={ (1) k1 2 k! (1) ik 2 (ik)!   falls k unger.,ik gerade (1) k 2 k! (1) ik1 2 (ik)!   falls k gerade,ik unger. 0  sonst ={ (1) i1 2 k!(ik)!   falls i unger. 0  sonst MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGRbaabeaakiaadkgadaWgaaWcbaGaamyAaiabgkHiTiaadUgaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGaamyAaiabgkHiTiaadUgaaeqaaOGaeyypa0ZaaiqaaeaafaqaaeWabaaabaWaaSaaaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaamaalaaabaGaam4AaiabgkHiTiaaigdaaeaacaaIYaaaaaaaaOqaaiaadUgacaGGHaaaaiabgwSixpaalaaabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaadaWcaaqaaiaadMgacqGHsislcaWGRbaabaGaaGOmaaaaaaaakeaacaGGOaGaamyAaiabgkHiTiaadUgacaGGPaGaaiyiaaaacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadUgacaqG1bGaaeOBaiaabEgacaqGLbGaaeOCaiaabggacaqGNbGaaeyzaiaacYcacaWGPbGaeyOeI0Iaam4AaiaabEgacaqGLbGaaeOCaiaabggacaqGKbGaaeyzaaqaamaalaaabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaadaWcaaqaaiaadUgaaeaacaaIYaaaaaaaaOqaaiaadUgacaGGHaaaaiabgwSixpaalaaabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaadaWcaaqaaiaadMgacqGHsislcaWGRbGaeyOeI0IaaGymaaqaaiaaikdaaaaaaaGcbaGaaiikaiaadMgacqGHsislcaWGRbGaaiykaiaacgcaaaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGRbGaae4zaiaabwgacaqGYbGaaeyyaiaabsgacaqGLbGaaiilaiaadMgacqGHsislcaWGRbGaaeyDaiaab6gacaqGNbGaaeyzaiaabkhacaqGHbGaaeizaiaabwgaaeaacaaIWaGaae4Caiaab+gacaqGUbGaae4CaiaabshaaaaacaGL7baacqGH9aqpdaGabaqaauaabaqaceaaaeaadaWcaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaWaaSaaaeaacaWGPbGaeyOeI0IaaGymaaqaaiaaikdaaaaaaaGcbaGaam4AaiaacgcacaGGOaGaamyAaiabgkHiTiaadUgacaGGPaGaaiyiaaaacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadMgacaqG1bGaaeOBaiaabEgacaqGLbGaaeOCaiaabggacaqGKbGaaeyzaaqaaiaaicdacaqGZbGaae4Baiaab6gacaqGZbGaaeiDaaaaaiaawUhaaaaa@C441@

Man beachte dabei:   k ungerade,ik gerade      k gerade,ik ungeradei ungerade MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaabwhacaqGUbGaae4zaiaabwgacaqGYbGaaeyyaiaabsgacaqGLbGaaiilaiaadMgacqGHsislcaWGRbGaae4zaiaabwgacaqGYbGaaeyyaiaabsgacaqGLbGaaGjbVlabgIIiAlaaysW7caWGRbGaae4zaiaabwgacaqGYbGaaeyyaiaabsgacaqGLbGaaiilaiaadMgacqGHsislcaWGRbGaaeyDaiaab6gacaqGNbGaaeyzaiaabkhacaqGHbGaaeizaiaabwgacaaMf8Uaeyi1HSTaaGzbVlaadMgacaqG1bGaaeOBaiaabEgacaqGLbGaaeOCaiaabggacaqGKbGaaeyzaaaa@6B0B@ .

Mit Hilfe des Binomialtheorems [5.2.5] und der Produktregel für konvergente Reihen

 i

i=0 a i i=0 b i = i=0 k=0 i a k b ik MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGHflY1daaeWbqaaiaadkgadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabg2da9maaqahabaWaaabCaeaacaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaeyyXICTaamOyamaaBaaaleaacaWGPbGaeyOeI0Iaam4AaaqabaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGPbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaaa@5E63@
haben wir jetzt:

sinxcosy+sinycosx = i=0 a i x i i=0 b i y i + i=0 b i x i i=0 a i y i = i=0 k=0 i ( a k b ik + b k a ik ) x k y ik = i=0 k=0 i { (1) i1 2 i!   falls i ungerade 0  falls i gerade } i! k!(ik)! x k y ik = i=0 a i k=0 i (T i k )T x k y ik = i=0 a i (x+y) i = sin(x+y). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabCGaaaaabaaabaGaci4CaiaacMgacaGGUbGaamiEaiabgwSixlGacogacaGGVbGaai4CaiaadMhacqGHRaWkciGGZbGaaiyAaiaac6gacaWG5bGaeyyXICTaci4yaiaac+gacaGGZbGaamiEaaqaaiabg2da9aqaamaaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaadIhadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabgwSixpaaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadMhadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabgUcaRmaaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadIhadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabgwSixpaaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaadMhadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaOqaaiabg2da9aqaamaaqahabaWaaabCaeaacaGGOaGaamyyamaaBaaaleaacaWGRbaabeaakiaadkgadaWgaaWcbaGaamyAaiabgkHiTiaadUgaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGaamyAaiabgkHiTiaadUgaaeqaaOGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaWG5bWaaWbaaSqabeaacaWGPbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaadMgaa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaakeaacqGH9aqpaeaadaaeWbqaamaaqahabaWaaiWaaeaafaqaaeGabaaabaWaaSaaaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaaaaOqaaiaadMgacaGGHaaaaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamyAaiaabwhacaqGUbGaae4zaiaabwgacaqGYbGaaeyyaiaabsgacaqGLbaabaGaaGimaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamyAaiaabEgacaqGLbGaaeOCaiaabggacaqGKbGaaeyzaaaaaiaawUhacaGL9baadaWcaaqaaiaadMgacaGGHaaabaGaam4AaiaacgcacaGGOaGaamyAaiabgkHiTiaadUgacaGGPaGaaiyiaaaacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaamyEamaaCaaaleqabaGaamyAaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGPbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaGcbaGaeyypa0dabaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaOWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaadMgaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaamyEamaaCaaaleqabaGaamyAaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGPbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaGcbaGaeyypa0dabaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaGcbaGaeyypa0dabaGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaaaaaaa@0AE6@

Wir stellen nun weitere Eigenschaften der trigonometrischen Funktionen zusammen und beginnen mit einer Information zur Symmetrie: sin ist punkt- und cos achsensymmetrisch.

Bemerkung:  Für alle x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39D9@ ist

  1. sin(x)=sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiabgkHiTiaadIhacaGGPaGaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaamiEaaaa@41CB@

  2. cos(x)=cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiabgkHiTiaadIhacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbGaamiEaaaa@40D4@

[4.3.5]

Beweis:

1.   sin(x)= i=0 (1) i (x) 2i+1 (2i+1)! = i=0 (1) i x 2i+1 (2i+1)! = i=0 (1) i x 2i+1 (2i+1)! =sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiabgkHiTiaadIhacaGGPaGaeyypa0ZaaabCaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgaaaGcdaWcaaqaaiaacIcacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaaGOmaiaadMgacqGHRaWkcaaIXaaaaaGcbaGaaiikaiaaikdacaWGPbGaey4kaSIaaGymaiaacMcacaGGHaaaaaWcbaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabg2da9maaqahabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaOWaaSaaaeaacqGHsislcaWG4bWaaWbaaSqabeaacaaIYaGaamyAaiabgUcaRiaaigdaaaaakeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaGaaiykaiaacgcaaaaaleaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeyypa0JaeyOeI0YaaabCaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgaaaGcdaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdacaWGPbGaey4kaSIaaGymaaaaaOqaaiaacIcacaaIYaGaamyAaiabgUcaRiaaigdacaGGPaGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGH9aqpcqGHsislciGGZbGaaiyAaiaac6gacaWG4baaaa@8620@ .

2.   cos(x)= i=0 (1) i (x) 2i (2i)! = i=0 (1) i x 2i (2i)! =cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiabgkHiTiaadIhacaGGPaGaeyypa0ZaaabCaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgaaaGcdaWcaaqaaiaacIcacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaaGOmaiaadMgaaaaakeaacaGGOaGaaGOmaiaadMgacaGGPaGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGH9aqpdaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaaaakmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaiaadMgaaaaakeaacaGGOaGaaGOmaiaadMgacaGGPaGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGH9aqpciGGJbGaai4BaiaacohacaWG4baaaa@6774@ .

Nun gelingt es auch, einige der anschaulich gewonnenen Funktionswerte rechnerisch zu bestätigen.

Bemerkung:  

sin0=0 cos0=1 sin π 2 =1 cos π 2 =0 sinπ=0 cosπ=1 sin3 π 2 =1 cos3 π 2 =0 sin2π=0 cos2π=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaci4CaiaacMgacaGGUbGaaGimaiabg2da9iaaicdaaeaaciGGJbGaai4BaiaacohacaaIWaGaeyypa0JaaGymaaqaaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdahabaGaaGOmaaaacqGH9aqpcaaIXaaabaGaci4yaiaac+gacaGGZbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiabg2da9iaaicdaaeaaciGGZbGaaiyAaiaac6gacqaHapaCcqGH9aqpcaaIWaaabaGaci4yaiaac+gacaGGZbGaeqiWdaNaeyypa0JaeyOeI0IaaGymaaqaaiGacohacaGGPbGaaiOBaiaaiodadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyypa0JaeyOeI0IaaGymaaqaaiGacogacaGGVbGaai4CaiaaiodadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyypa0JaaGimaaqaaiGacohacaGGPbGaaiOBaiaaikdacqaHapaCcqGH9aqpcaaIWaaabaGaci4yaiaac+gacaGGZbGaaGOmaiabec8aWjabg2da9iaaigdaaaaaaa@7B34@
[4.3.6]

Beweis:  

  • Da 0 n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimamaaCaaaleqabaGaamOBaaaaaaa@37C2@ ist gleich 0 für n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaicdaaaa@389D@ und gleich 1 für n=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaicdaaaa@389B@ hat man sofort:

    sin0= i=0 (1) i 0 2i+1 (2i+1)! =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaGimaiabg2da9maaqahabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaOWaaSaaaeaacaaIWaWaaWbaaSqabeaacaaIYaGaamyAaiabgUcaRiaaigdaaaaakeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaGaaiykaiaacgcaaaaaleaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeyypa0JaaGimaaaa@505E@   und   cos0= i=0 (1) i 0 2i (2i)! = (1) 0 0 0 0! =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaGimaiabg2da9maaqahabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaOWaaSaaaeaacaaIWaWaaWbaaSqabeaacaaIYaGaamyAaaaaaOqaaiaacIcacaaIYaGaamyAaiaacMcacaGGHaaaaaWcbaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabg2da9iaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaaGimaaaakmaalaaabaGaaGimamaaCaaaleqabaGaaGimaaaaaOqaaiaaicdacaGGHaaaaiabg2da9iaaigdaaaa@5532@ .
     
  • sinπ=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaeqiWdaNaeyypa0JaaGimaaaa@3C3D@ :  Gemäß [4.3.3] kann es unterhalb von π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@37A5@ keine positiven Nullstellen des Sinus geben, also ist sinx0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaiabgcMi5kaaicdaaaa@3C3E@ für alle 0<x<π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadIhacqGH8aapcqaHapaCaaa@3B64@ . Ist nun sinπ0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaeqiWdaNaeyiyIKRaaGimaaaa@3CFE@ , so gilt dies aus Stetigkeitsgründen in ganzen Umgebung von π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@37A5@ . Es gibt also ein ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3951@ , o.E. ε<π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyipaWJaeqiWdahaaa@3A50@ , so dass sinx0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaiabgcMi5kaaicdaaaa@3C3E@ in ]πε,π+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiabec8aWjabgkHiTiabew7aLjaacYcacqaHapaCcqGHRaWkcqaH1oqzcaGGBbaaaa@40EF@ . Damit aber hat man

    sinx0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaiabgcMi5kaaicdaaaa@3C3E@ für alle 0<x<π+ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadIhacqGH8aapcqaHapaCcqGHRaWkcqaH1oqzaaa@3DED@

    und folglich: π+επ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaey4kaSIaeqyTduMaeyizImQaeqiWdahaaa@3DA0@ - Widerspruch.

  • cos π 2 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiabg2da9iaaicdaaaa@3D04@ :  Mit dem Additionstheorem für den Sinus erhält man

    0=sinπ=sin( π 2 + π 2 )=sin π 2 cos π 2 +sin π 2 cos π 2 =2 sin π 2 0 cos π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iGacohacaGGPbGaaiOBaiabec8aWjabg2da9iGacohacaGGPbGaaiOBaiaacIcadaWcaaqaaiabec8aWbqaaiaaikdaaaGaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcacqGH9aqpciGGZbGaaiyAaiaac6gadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyyXICTaci4yaiaac+gacaGGZbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiabgUcaRiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHflY1ciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyypa0JaaGOmamaayaaabaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaIYaaaaaWcbaGaeyiyIKRaaGimaaGccaGL44pacqGHflY1ciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaaikdaaaaaaa@76A8@ .

    Man beachte, dass sin π 2 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiabgcMi5kaaicdaaaa@3DCA@ , da 0< π 2 <π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8maalaaabaGaeqiWdahabaGaaGOmaaaacqGH8aapcqaHapaCaaa@3CF0@ (siehe [4.3.3]). Also ist cos π 2 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiabg2da9iaaicdaaaa@3D04@ .

  • sin π 2 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiabg2da9iaaigdaaaa@3D0A@ :  Diesmal setzen wir das Additionstheorem für den Cosinus ein und erhalten unter Beachtung der Symmetrie [4.3.5]:

    1=cos( π 2 π 2 )= (cos π 2 ) 2 + (sin π 2 ) 2 = (sin π 2 ) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabg2da9iGacogacaGGVbGaai4CaiaacIcadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcacqGH9aqpcaGGOaGaci4yaiaac+gacaGGZbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaGGOaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@5BBA@ ,

    also |sin π 2 |=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdahabaGaaGOmaaaacaGG8bGaeyypa0JaaGymaaaa@3F0A@ . Das aber ist nach [+] die Behauptung, denn da π4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaeyizImQaaGinaaaa@3A18@ , ist 0< π 2 2< 6 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8maalaaabaGaeqiWdahabaGaaGOmaaaacqGHKjYOcaaIYaGaeyipaWZaaOaaaeaacaaI2aaaleqaaaaa@3E7F@ .

  • cosπ=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaeqiWdaNaeyypa0JaeyOeI0IaaGymaaaa@3D26@ :  Wir greifen auf die beiden letzten Ergebnisse und das Additionstheorem zurück:

    cosπ=cos( π 2 + π 2 )= (cos π 2 ) 2 (sin π 2 ) 2 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaeqiWdaNaeyypa0Jaci4yaiaac+gacaGGZbGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkdaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9iaacIcaciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaacIcaciGGZbGaaiyAaiaac6gadaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykamaaCaaaleqabaGaaGOmaaaakiabg2da9iabgkHiTiaaigdaaaa@5994@ .
     
  • sin3 π 2 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaG4mamaalaaabaGaeqiWdahabaGaaGOmaaaacqGH9aqpcqGHsislcaaIXaaaaa@3EB4@ :   sin3 π 2 =sin(π+ π 2 )=sinπcos π 2 +sin π 2 cosπ=00+1(1)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaG4mamaalaaabaGaeqiWdahabaGaaGOmaaaacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaeqiWdaNaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacqaHapaCcqGHflY1ciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaaikdaaaGaey4kaSIaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiabgwSixlGacogacaGGVbGaai4Caiabec8aWjabg2da9iaaicdacqGHflY1caaIWaGaey4kaSIaaGymaiabgwSixlaacIcacqGHsislcaaIXaGaaiykaiabg2da9iabgkHiTiaaigdaaaa@6F1D@ .

  • cos3 π 2 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaG4mamaalaaabaGaeqiWdahabaGaaGOmaaaacqGH9aqpcaaIWaaaaa@3DC1@ :   cos3 π 2 =cos(π+ π 2 )=cosπcos π 2 sin π 2 sinπ=(1)010=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaG4mamaalaaabaGaeqiWdahabaGaaGOmaaaacqGH9aqpciGGJbGaai4BaiaacohacaGGOaGaeqiWdaNaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcacqGH9aqpciGGJbGaai4BaiaacohacqaHapaCcqGHflY1ciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyOeI0Iaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaIYaaaaiabgwSixlGacohacaGGPbGaaiOBaiabec8aWjabg2da9iaacIcacqGHsislcaaIXaGaaiykaiabgwSixlaaicdacqGHsislcaaIXaGaeyyXICTaaGimaiabg2da9iaaicdaaaa@6E3B@ .

  • sin2π=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaGOmaiabec8aWjabg2da9iaaicdaaaa@3CF9@ :   sin2π=sin(π+π)=2sinπcosπ=20(1)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaGOmaiabec8aWjabg2da9iGacohacaGGPbGaaiOBaiaacIcacqaHapaCcqGHRaWkcqaHapaCcaGGPaGaeyypa0JaaGOmaiGacohacaGGPbGaaiOBaiabec8aWjabgwSixlGacogacaGGVbGaai4Caiabec8aWjabg2da9iaaikdacqGHflY1caaIWaGaeyyXICTaaiikaiabgkHiTiaaigdacaGGPaGaeyypa0JaaGimaaaa@5DCE@ .

  • cos2π=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaGOmaiabec8aWjabg2da9iaaigdaaaa@3CF5@ :   cos2π=cos(π+π)= (cosπ) 2 (sinπ) 2 =10=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaGOmaiabec8aWjabg2da9iGacogacaGGVbGaai4CaiaacIcacqaHapaCcqGHRaWkcqaHapaCcaGGPaGaeyypa0JaaiikaiGacogacaGGVbGaai4Caiabec8aWjaacMcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaGGOaGaci4CaiaacMgacaGGUbGaeqiWdaNaaiykamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaigdacqGHsislcaaIWaGaeyypa0JaaGymaaaa@599B@ .

Da nun einige markante Funktionswerte sicher sind, lassen sich weitere Eigenschaften nachweisen. Wir haben u.a. eine zusätzliche Notiz zur Symmetrie, zur Periodizität und zum Nullstellenverhalten.

Bemerkung:  Für alle x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39D9@ gilt:

  1. sin(x+ π 2 )=cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHRaWkdaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9iGacogacaGGVbGaai4CaiaadIhaaaa@4357@
    cos(x π 2 )=sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaadIhaaaa@4362@

[4.3.7]

sin und cos lassen sich durch waagerechtes Verschieben in die jeweils andere Funktion überführen: Verschiebt man sin um π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYaaaaaaa@395E@ Einheiten erhält man den Cosinus, Verschiebt man cos um π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaHapaCaeaacaaIYaaaaaaa@3871@ Einheiten erhält man den Sinus. In 4.6 wird diese Technik näher beschrieben.

  1. sin( π 2 +x)=sin( π 2 x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWG4bGaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaacIcadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyOeI0IaamiEaiaacMcaaaa@482B@
    cos( π 2 +x)=cos( π 2 x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWG4bGaaiykaiabg2da9iabgkHiTiGacogacaGGVbGaai4CaiaacIcadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyOeI0IaamiEaiaacMcaaaa@490E@

[4.3.8]

Der Sinus ist symmetrisch zur Senkrechten x= π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9maalaaabaGaeqiWdahabaGaaGOmaaaaaaa@3A74@ und der Cosinus punktsymmetrisch zu ( π 2 ,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacaGGSaGaaGimaiaacMcaaaa@3B34@ .

  1. sin(x+2kπ)=sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHRaWkcaaIYaGaam4Aaiabec8aWjaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacaWG4baaaa@443C@   für jedes k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D4@
    cos(x+2kπ)=cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHRaWkcaaIYaGaam4Aaiabec8aWjaacMcacqGH9aqpciGGJbGaai4BaiaacohacaWG4baaaa@4432@   für jedes k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D4@

[4.3.9]

sin und cos wiederholen ihre Werte im Abstand von 2π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec8aWbaa@3861@ , sie sind also 2π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec8aWbaa@3861@ -periodisch.

  1. sinx=0x=kπ=2k π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaiabg2da9iaaicdacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpcaWGRbGaeqiWdaNaeyypa0JaaGOmaiaadUgadaWcaaqaaiabec8aWbqaaiaaikdaaaaaaa@4AE0@   für ein k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D4@
    cosx=0x=(2k1) π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaamiEaiabg2da9iaaicdacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpcaGGOaGaaGOmaiaadUgacqGHsislcaaIXaGaaiykamaalaaabaGaeqiWdahabaGaaGOmaaaaaaa@4A29@   für ein k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D4@

[4.3.10]

Die Nullstellen des (reellen) Sinus sind genau die geraden Vielfachen von π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaHapaCaeaacaaIYaaaaaaa@3871@ , die des Cosinus genau die ungeraden. Im Komplexen gibt es keine weiteren Nullstellen.

  1. (sinx) 2 + (cosx) 2 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiGacohacaGGPbGaaiOBaiaadIhacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiikaiGacogacaGGVbGaai4CaiaadIhacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGymaaaa@44C8@

[4.3.11]

Diese Gleichheit, oft abgekürzt zu sin 2 x+ cos 2 x=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaamiEaiabgUcaRiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaadIhacqGH9aqpcaaIXaaaaa@4216@ , ist der Satz des Pythagoras, denn |sinx| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiGacohacaGGPbGaaiOBaiaadIhacaGG8baaaa@3BBD@ und |cosx| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiGacogacaGGVbGaai4CaiaadIhacaGG8baaaa@3BB8@ sind die Kathetenlängen eines rechtwinkligen Dreiecks dessen Hypotenuse die Länge 1 hat.

 i

  1. 1sinx1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGymaiabgsMiJkGacohacaGGPbGaaiOBaiaadIhacqGHKjYOcaaIXaaaaa@3F8A@
    1cosx1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGymaiabgsMiJkGacogacaGGVbGaai4CaiaadIhacqGHKjYOcaaIXaaaaa@3F85@

[4.3.12]

Diese Abschätzungen belegen die Beschränktheit von sin und cos, eine Eigenschaft die nur im Reellen gültig ist!

Beweis:  Wir benötigen lediglich die Additionstheoreme und das Symmetrieverhalten.

1.   sin(x+ π 2 )=sinx cos π 2 =0 + sin π 2 =1 cosx=cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHRaWkdaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaadIhacqGHflY1daagaaqaaiGacogacaGGVbGaai4CamaalaaabaGaeqiWdahabaGaaGOmaaaaaSqaaiabg2da9iaaicdaaOGaayjo+dGaey4kaSYaaGbaaeaaciGGZbGaaiyAaiaac6gadaWcaaqaaiabec8aWbqaaiaaikdaaaaaleaacqGH9aqpcaaIXaaakiaawIJ=aiabgwSixlGacogacaGGVbGaai4CaiaadIhacqGH9aqpciGGJbGaai4BaiaacohacaWG4baaaa@63B6@ .

cos(x π 2 )=sin(x π 2 + π 2 )=sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaacIcacaWG4bGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYaaaaiabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGPaGaeyypa0Jaci4CaiaacMgacaGGUbGaamiEaaaa@5077@ .

2.   sin( π 2 +x) = 1. cosx=cos(x) = 1. sin( π 2 x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWG4bGaaiykamaayaaabaGaeyypa0daleaacaaIXaGaaiOlaaGccaGL44paciGGJbGaai4BaiaacohacaWG4bGaeyypa0Jaci4yaiaac+gacaGGZbGaaiikaiabgkHiTiaadIhacaGGPaWaaGbaaeaacqGH9aqpaSqaaiaaigdacaGGUaaakiaawIJ=aiGacohacaGGPbGaaiOBaiaacIcadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyOeI0IaamiEaiaacMcaaaa@5AF7@ .

cos( π 2 +x)=cos(x π 2 ) = 1. sin(x)=sinx = 1. cos(x π 2 )=cos( π 2 x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWG4bGaaiykaiabg2da9iGacogacaGGVbGaai4CaiaacIcacqGHsislcaWG4bGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcadaagaaqaaiabg2da9aWcbaGaaGymaiaac6caaOGaayjo+dGaci4CaiaacMgacaGGUbGaaiikaiabgkHiTiaadIhacaGGPaGaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaamiEamaayaaabaGaeyypa0daleaacaaIXaGaaiOlaaGccaGL44pacqGHsislciGGJbGaai4BaiaacohacaGGOaGaamiEaiabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGPaGaeyypa0JaeyOeI0Iaci4yaiaac+gacaGGZbGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHsislcaWG4bGaaiykaaaa@71F5@ .

3.  Wir zeigen zunächst per Induktion:

sin(x±2kπ)=sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHXcqScaaIYaGaam4Aaiabec8aWjaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacaWG4baaaa@4548@   für alle k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLcaa@39C8@ .

Für k=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaicdaaaa@3898@ ist nichts zu zeigen, der Induktionsanfang also trivial. Ist nun die Aussage für ein k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLcaa@39C8@ bereits gültig, so hat man:

sin(x±2(k+1)π) =sin(x±2kπ±2π) =sin(x±2kπ) cos2π =1 ± sin2π =0 cos(x±2kπ) =sin(x±2kπ) =sinx. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHXcqScaaIYaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiabec8aWjaacMcaaeaacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgglaXkaaikdacaWGRbGaeqiWdaNaeyySaeRaaGOmaiabec8aWjaacMcaaeaaaeaacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgglaXkaaikdacaWGRbGaeqiWdaNaaiykaiabgwSixpaayaaabaGaci4yaiaac+gacaGGZbGaaGOmaiabec8aWbWcbaGaeyypa0JaaGymaaGccaGL44pacqGHXcqSdaagaaqaaiGacohacaGGPbGaaiOBaiaaikdacqaHapaCaSqaaiabg2da9iaaicdaaOGaayjo+dGaeyyXICTaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHXcqScaaIYaGaam4Aaiabec8aWjaacMcaaeaaaeaacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgglaXkaaikdacaWGRbGaeqiWdaNaaiykaaqaaaqaaiabg2da9iGacohacaGGPbGaaiOBaiaadIhaaaaaaa@927B@

Damit ist 3. für den Sinus bewiesen. Weiterhin haben wir damit für ein beliebiges k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D4@ :

cos(x+2kπ)=sin(x+ π 2 +2kπ)=sin(x+ π 2 )=cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHRaWkcaaIYaGaam4Aaiabec8aWjaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaaIYaGaam4Aaiabec8aWjaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbGaamiEaaaa@5BBB@ .

4.  Wir betrachten zunächst nur den Sinus und haben hier wegen der Periodizität:

sin(2kπ)=sin(0+2kπ)=sin0=0 sin((2k+1)π)=sin(π+2kπ)=sinπ=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacohacaGGPbGaaiOBaiaacIcacaaIYaGaam4Aaiabec8aWjaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaaGimaiabgUcaRiaaikdacaWGRbGaeqiWdaNaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaaicdacqGH9aqpcaaIWaaabaGaci4CaiaacMgacaGGUbGaaiikaiaacIcacaaIYaGaam4AaiabgUcaRiaaigdacaGGPaGaeqiWdaNaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaacIcacqaHapaCcqGHRaWkcaaIYaGaam4Aaiabec8aWjaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacqaHapaCcqGH9aqpcaaIWaaaaaaa@6B4C@

sin ist also sowohl an den geraden wie auch an den ungeraden Vielfachen von π gleich Null, d.h. jedes Vielfache von π ist eine Nullstelle.

Sei jetzt x eine beliebige Nullstelle des Sinus. Wir müssen zeigen, dass x ein Vielfaches von π ist. O.E. sei dabei x>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6da+iaaicdaaaa@38A7@ , denn für x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaaicdaaaa@38A5@ ist nichts zu zeigen und nach [4.3.5] ist mit x auch x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamiEaaaa@37D2@ eine Nullstelle.

Mit kmax{j|2jπ<x} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iGac2gacaGGHbGaaiiEaiaacUhacaWGQbGaeyicI4SaeSyfHuQaaiiFaiaaikdacaWGQbGaeqiWdaNaeyipaWJaamiEaiaac2haaaa@46FA@ grenzen wir zunächst die Lage von x ein: 2kπ<x2(k+1)π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadUgacqaHapaCcqGH8aapcaWG4bGaeyizImQaaGOmaiaacIcacaWGRbGaey4kaSIaaGymaiaacMcacqaHapaCaaa@4366@ . Für

x x2kπ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafaGaeyypa0JaamiEaiabgkHiTiaaikdacaWGRbGaeqiWdahaaa@3D4A@

ist dann 0< x 2π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iqadIhagaqbaiabgsMiJkaaikdacqaHapaCaaa@3CDD@ , ja sogar π x 2π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaeyizImQabmiEayaafaGaeyizImQaaGOmaiabec8aWbaa@3E91@ , denn wegen der Periodizität ist sin x =sinx=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGabmiEayaafaGaeyypa0Jaci4CaiaacMgacaGGUbGaamiEaiabg2da9iaaicdaaaa@4064@ und gemäß [4.3.3] liegen unterhalb von π keine positiven Nullstellen. Ist nun x =π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafaGaeyypa0JaeqiWdahaaa@39B4@ , also

x= x +2kπ=π+2kπ=(2k+1)π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iqadIhagaqbaiabgUcaRiaaikdacaWGRbGaeqiWdaNaeyypa0JaeqiWdaNaey4kaSIaaGOmaiaadUgacqaHapaCcqGH9aqpcaGGOaGaaGOmaiaadUgacqGHRaWkcaaIXaGaaiykaiabec8aWbaa@4BB2@ ,

so ist nichts weiter zu zeigen. Ist dagegen x >π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafaGaeyOpa4JaeqiWdahaaa@39B6@ , so hat man 02π x <π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaaikdacqaHapaCcqGHsislceWG4bGbauaacqGH8aapcqaHapaCaaa@3F87@ , und da

sin(2π x )=sin( x )=sin x =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiaaikdacqaHapaCcqGHsislceWG4bGbauaacaGGPaGaeyypa0Jaci4CaiaacMgacaGGUbGaaiikaiabgkHiTiqadIhagaqbaiaacMcacqGH9aqpcqGHsislciGGZbGaaiyAaiaac6gaceWG4bGbauaacqGH9aqpcaaIWaaaaa@4D49@ ,

muss 2π x =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec8aWjabgkHiTiqadIhagaqbaiabg2da9iaaicdaaaa@3C17@ , also x =2π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafaGaeyypa0JaaGOmaiabec8aWbaa@3A70@ , gelten (wieder mit [4.3.3]) und damit:

x= x +2kπ=2π+2kπ=(2k+2)π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iqadIhagaqbaiabgUcaRiaaikdacaWGRbGaeqiWdaNaeyypa0JaaGOmaiabec8aWjabgUcaRiaaikdacaWGRbGaeqiWdaNaeyypa0JaaiikaiaaikdacaWGRbGaey4kaSIaaGOmaiaacMcacqaHapaCaaa@4C6F@ .

Die Nullstellen des Cosinus sind jetzt mit [4.3.7] leicht zu beschreiben:

cosx=0 sin(x+ π 2 )=0 x+ π 2 =kπ   für ein   k x=kπ π 2 =(2k1) π 2    für ein   k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiGacogacaGGVbGaai4CaiaadIhacqGH9aqpcaaIWaGaaGzbVdqaaiabgsDiBlaaywW7ciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGPaGaeyypa0JaaGimaaqaaaqaaiabgsDiBlaaywW7caWG4bGaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaiabg2da9iaadUgacqaHapaCcaaMe8UaaeOzaiaabYpacaqGYbGaaeiiaiaabwgacaqGPbGaaeOBaiaaysW7caWGRbGaeyicI4SaeSijHikabaaabaGaeyi1HSTaaGzbVlaadIhacqGH9aqpcaWGRbGaeqiWdaNaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYaaaaiabg2da9iaacIcacaaIYaGaam4AaiabgkHiTiaaigdacaGGPaWaaSaaaeaacqaHapaCaeaacaaIYaaaaiaaysW7caqGMbGaaei=aiaabkhacaqGGaGaaeyzaiaabMgacaqGUbGaaGjbVlaadUgacqGHiiIZcqWIKeIOaaaaaa@8742@

5.  Mit dem Additionstheorem [4.3.4] für den Cosinus und dem Symmetrieverhalten hat man:

1=cos(xx)=cosxcos(x)sinxsin(x)=cosxcosx+sinxsinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabg2da9iGacogacaGGVbGaai4CaiaacIcacaWG4bGaeyOeI0IaamiEaiaacMcacqGH9aqpciGGJbGaai4BaiaacohacaWG4bGaeyyXICTaci4yaiaac+gacaGGZbGaaiikaiabgkHiTiaadIhacaGGPaGaeyOeI0Iaci4CaiaacMgacaGGUbGaamiEaiabgwSixlGacohacaGGPbGaaiOBaiaacIcacqGHsislcaWG4bGaaiykaiabg2da9iGacogacaGGVbGaai4CaiaadIhacqGHflY1ciGGJbGaai4BaiaacohacaWG4bGaey4kaSIaci4CaiaacMgacaGGUbGaamiEaiabgwSixlGacohacaGGPbGaaiOBaiaadIhaaaa@6EDF@ .

6.  Da (in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3758@ ) Quadrate stets positiv sind, hat man nach 5. z.B. für den Sinus:

(sinx) 2 =1 (cosx) 2 0 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiGacohacaGGPbGaaiOBaiaadIhacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGymaiabgkHiTmaayaaabaGaaiikaiGacogacaGGVbGaai4CaiaadIhacaGGPaWaaWbaaSqabeaacaaIYaaaaaqaaiabgwMiZkaaicdaaOGaayjo+dGaeyizImQaaGymaaaa@4BAE@ ,

also: |sinx|1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiGacohacaGGPbGaaiOBaiaadIhacaGG8bGaeyizImQaaGymaaaa@3E2D@ . Das ist die Behauptung.

Mit einem kleinen Exkurs in die Physik, und zwar in die Schwingungslehre, stellen wir Modifikationen der Sinusfunktion vor. Dort beschreibt eine Funktion des Typs

f=asin(ωX+φ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadggacaaMc8Uaci4CaiaacMgacaGGUbGaaiikaiabeM8a3jaadIfacqGHRaWkcqaHgpGzcaGGPaaaaa@43C0@

eine ungedämpfte Schwingung, wie sie etwa bei einer idealen Pendelbewegung auftritt. Die x-Achse wird hier als "Zeitachse" interpretiert, so dass π als Einheit ungünstig ist; statt dessen kehren wir wieder zu 1 als Einheit zurück und messen mit ihr z.B. Sekunden. Auch die Namen der Parameter haben hier ihren Ursprung:

  • Die Amplitude | a | gibt die maximale Auslenkung (Elongation) der Schwingung an.

  • Mit der Kreisfrequenz ω berechnet man die Frequenz ν der Schwingung: ν= ω 2π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maeyypa0ZaaSaaaeaacqaHjpWDaeaacaaIYaGaeqiWdahaaaaa@3CFC@ ist die Anzahl der Perioden pro Zeiteinheit. Die Schwingungsdauer T= 1 ν = 2π ω MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2da9maalaaabaGaaGymaaqaaiabe27aUbaacqGH9aqpdaWcaaqaaiaaikdacqaHapaCaeaacqaHjpWDaaaaaa@3FA6@ gibt die für eine Periode benötigte Zeit an.

  • Allgemein nennt man ωX+φ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaamiwaiabgUcaRiabeA8aMbaa@3B2D@ den Phasenwinkel und speziell φ den Nullphasenwinkel, bzw. die Phasenverschiebung der Schwingung. Sie bestimmt die Anfangselongation   f(0)=asinφ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadggacaaMc8Uaci4CaiaacMgacaGGUbGaeqOXdygaaa@40EE@ .

Unter den Schwingungen kommen Sinus ( a=ω=1,   φ=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iabeM8a3jabg2da9iaaigdacaGGSaGaaGjbVlabeA8aMjabg2da9iaaicdaaaa@4118@ ) und Cosinus ( a=ω=1,   φ= π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iabeM8a3jabg2da9iaaigdacaGGSaGaaGjbVlabeA8aMjabg2da9maalaaabaGaeqiWdahabaGaaGOmaaaaaaa@42E7@ ) natürlich auch vor. Man beachte, dass die Pixelgrafik bei hohen Frequenzen überfordert ist. Die Darstellung entspricht dann nicht mehr der angegebenen Funktion, zeigt aber z.T. eine interessante Periodiztät. Ich habe daher in diesen Fällen auf ein Ausblenden verzichtet.

 i

3sin(4X+5) ( MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG4maiaaykW7ciGGZbGaaiyAaiaac6gacaGGOaGaeyOeI0IaaGinaiaadIfacqGHRaWkcaaI1aGaaiykaaaa@4177@

Amplitude
1

Frequenz
0.1591545

Schwingungs-
dauer
6.2831853

Anfangs-
elongation
0

It looks like you don't have Java installed, please go to www.java.com


 

Mit Hilfe von Sinus und Cosinus führen wir nun zwei weitere trigonometrische Funktionen ein. Allerdings werden bei den Funktionsvorschriften Divisionen durchgeführt, so dass die Definitionsbereiche geeignet zu wählen sind. [4.3.10] gibt uns dabei Auskunft über die Lage der Nullstellen von sin und cos.

Definition:  Die Funktionen

tan:\{(2k1) π 2 |k} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiOoaiabl2riHIqaaiaa=XfacaGG7bGaaiikaiaaikdacaWGRbGaeyOeI0IaaGymaiaacMcadaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiiFaiaadUgacqGHiiIZcqWIKeIOcaGG9bGaeyOKH4QaeSyhHekaaa@4D4C@ gegeben durch  tan(x) sinx cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiikaiaadIhacaGGPaGaeyypa0ZaaSaaaeaaciGGZbGaaiyAaiaac6gacaWG4baabaGaci4yaiaac+gacaGGZbGaamiEaaaaaaa@43CA@

[4.3.13]

cot:\{kπ|k} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiOoaiabl2riHIqaaiaa=XfacaGG7bGaam4Aaiabec8aWjaacYhacaWGRbGaeyicI4SaeSijHiQaaiyFaiabgkziUkabl2riHcaa@48C6@ gegeben durch  cot(x) cosx sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiikaiaadIhacaGGPaGaeyypa0ZaaSaaaeaaciGGJbGaai4BaiaacohacaWG4baabaGaci4CaiaacMgacaGGUbGaamiEaaaaaaa@43CD@

[4.3.14]

sind der Tangens und der Cotangens.

Auch hier werden die Funktionswerte meist klammerfrei geschrieben: tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaamiEaaaa@39B6@ bzw. cotx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaamiEaaaa@39B9@ . Man beachte ferner, dass beide Funktionen unendliche viele Definitionslücken besitzen, und zwar Polstellen. Dabei sind die Polstellen des Tangens genau die Nullstellen des Cosinus und die des Cotangens genau die Nullstellen des Sinus.

Die Werte tan0=0=cot π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaGimaiabg2da9iaaicdacqGH9aqpciGGJbGaai4BaiaacshadaWcaaqaaiabec8aWbqaaiaaikdaaaaaaa@4196@ sind direkt einsehbar. Mit ein wenig Mühe finden wir auch einen nicht trivialen Wert: Mit dem Additionstheorem hat man zunächst

1=sin π 2 =sin( π 4 + π 4 )=2sin π 4 cos π 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabg2da9iGacohacaGGPbGaaiOBamaalaaabaGaeqiWdahabaGaaGOmaaaacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaWaaSaaaeaacqaHapaCaeaacaaI0aaaaiabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaacaGGPaGaeyypa0JaaGOmaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdahabaGaaGinaaaacqGHflY1ciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaaisdaaaaaaa@5706@ ,

und daraus mit Pythagoras:

(sin π 4 cos π 4 ) 2 = sin 2 π 4 2sin π 4 cos π 4 + cos 2 π 4 =11=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdahabaGaaGinaaaacqGHsislciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaaisdaaaGaaiykamaaCaaaleqabaGaaGOmaaaakiabg2da9iGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaeqiWdahabaGaaGinaaaacqGHsislcaaIYaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaI0aaaaiabgwSixlGacogacaGGVbGaai4CamaalaaabaGaeqiWdahabaGaaGinaaaacqGHRaWkciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiabec8aWbqaaiaaisdaaaGaeyypa0JaaGymaiabgkHiTiaaigdacqGH9aqpcaaIWaaaaa@664E@ .

Also sind sin π 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaI0aaaaaaa@3B4B@ und cos π 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbWaaSaaaeaacqaHapaCaeaacaaI0aaaaaaa@3B46@ identisch.

 i

und zwar ist

sin π 4 = 1 2 =cos π 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaI0aaaaiabg2da9maalaaabaGaaGymaaqaamaakaaabaGaaGOmaaWcbeaaaaGccqGH9aqpciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaaisdaaaaaaa@4461@ ,

denn wieder mit Pythagoras ist

1= sin 2 π 4 + cos 2 π 4 =2 sin 2 π 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabg2da9iGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaeqiWdahabaGaaGinaaaacqGHRaWkciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiabec8aWbqaaiaaisdaaaGaeyypa0JaaGOmaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaeqiWdahabaGaaGinaaaaaaa@4D4A@

Also ist sin π 4 =|sin π 4 |= 1 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaI0aaaaiabg2da9iaacYhaciGGZbGaaiyAaiaac6gadaWcaaqaaiabec8aWbqaaiaaisdaaaGaaiiFaiabg2da9maakaaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaSqabaaaaa@465C@ , denn nach [+] ist sin π 4 >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCaeaacaaI0aaaaiabg6da+iaaicdaaaa@3D0D@ .

  Das aber bedeutet:

tan π 4 =1=cot π 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbWaaSaaaeaacqaHapaCaeaacaaI0aaaaiabg2da9iaaigdacqGH9aqpciGGJbGaai4BaiaacshadaWcaaqaaiabec8aWbqaaiaaisdaaaaaaa@436A@ .

Wir stellen den Tangens in einer Skizze vor. Dabei verzichten wir auf Bezüge zur Physik und betrachten jetzt Funktionen der Form

f=atan(bXcπ)+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadggaciGG0bGaaiyyaiaac6gacaGGOaGaamOyaiaadIfacqGHsislcaWGJbGaeqiWdaNaaiykaiabgUcaRiaadsgaaaa@440A@

 i

3tan(4X+5π)8 ( MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG4maiGacshacaGGHbGaaiOBaiaacIcacqGHsislcaaI0aGaamiwaiabgUcaRiaaiwdacqaHapaCcaGGPaGaeyOeI0IaaGioaaaa@4351@

It looks like you don't have Java installed, please go to www.java.com

Tangens und Cotangens besitzen zahlreiche Eigenschaften. Naturgemäß sind sie in der Regel direkt auf entsprechende Sachverhalte bei sin und cos zurückzuführen. Die folgende Bemerkung stellt einige Eigenschaften zusammen.

Bemerkung:  Für alle x,y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaeSyhHekaaa@3B87@ mit x,y(2k1) π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyiyIKRaaiikaiaaikdacaWGRbGaeyOeI0IaaGymaiaacMcadaWcaaqaaiabec8aWbqaaiaaikdaaaaaaa@4190@ bzw. x,ykπ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyiyIKRaam4Aaiabec8aWbaa@3D07@ gilt:

  1. tan(x π 2 )=cotx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaciiDaiaacggacaGGUbGaaiikaiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9iGacogacaGGVbGaaiiDaiaadIhaaaa@4449@
    cot(x π 2 )=tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaci4yaiaac+gacaGG0bGaaiikaiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9iGacshacaGGHbGaaiOBaiaadIhaaaa@4449@

[4.3.15]

Die beiden Funktionen gehen durch waagerechtes Verschieben um π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaHapaCaeaacaaIYaaaaaaa@3871@ und anschließendes Spiegeln an der x-Achse ineinander über.

  1. tanx=0x=kπ=2k π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaamiEaiabg2da9iaaicdacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpcaWGRbGaeqiWdaNaeyypa0JaaGOmaiaadUgadaWcaaqaaiabec8aWbqaaiaaikdaaaaaaa@4AD9@   für ein k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D4@
    cotx=0x=(2k1) π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaamiEaiabg2da9iaaicdacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpcaGGOaGaaGOmaiaadUgacqGHsislcaaIXaGaaiykamaalaaabaGaeqiWdahabaGaaGOmaaaaaaa@4A2A@   für ein k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D4@

[4.3.16]

Der Tangens hat also dieselben Nullstellen wie sin, der Cotangens dieselben wie cos.

  1. tanxcotx=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaamiEaiabgwSixlGacogacaGGVbGaaiiDaiaadIhacqGH9aqpcaaIXaaaaa@4192@

[4.3.17]

Sind beide Funktionswerte gleichzeitig vorhanden, so ist der eine stets Kehrwert des anderen.

  1. tan(x)=tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiikaiabgkHiTiaadIhacaGGPaGaeyypa0JaeyOeI0IaciiDaiaacggacaGGUbGaamiEaaaa@41BD@
    cot(x)=cotx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiikaiabgkHiTiaadIhacaGGPaGaeyypa0JaeyOeI0Iaci4yaiaac+gacaGG0bGaamiEaaaa@41C3@

[4.3.18]

Tangens und Cotangens sind punktsymmetrisch.

  1. tan(x+kπ)=tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiikaiaadIhacqGHRaWkcaWGRbGaeqiWdaNaaiykaiabg2da9iGacshacaGGHbGaaiOBaiaadIhaaaa@4372@   für jedes k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D4@
    cot(x+kπ)=cotx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiikaiaadIhacqGHRaWkcaWGRbGaeqiWdaNaaiykaiabg2da9iGacogacaGGVbGaaiiDaiaadIhaaaa@4378@   für jedes k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D4@

[4.3.19]

Tangens und Cotangens sind π-periodisch.

  1. 1+ tan 2 x= 1 cos 2 x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgUcaRiGacshacaGGHbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaadIhacqGH9aqpdaWcaaqaaiaaigdaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaWG4baaaaaa@42DA@
    1+ cot 2 x= 1 sin 2 x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgUcaRiGacogacaGGVbGaaiiDamaaCaaaleqabaGaaGOmaaaakiaadIhacqGH9aqpdaWcaaqaaiaaigdaaeaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaWG4baaaaaa@42E2@

[4.3.20]

  1. tan(x+y)= tanx+tany 1tanxtany MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabg2da9maalaaabaGaciiDaiaacggacaGGUbGaamiEaiabgUcaRiGacshacaGGHbGaaiOBaiaadMhaaeaacaaIXaGaeyOeI0IaciiDaiaacggacaGGUbGaamiEaiabgwSixlGacshacaGGHbGaaiOBaiaadMhaaaaaaa@5213@ für tanxtany1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaamiEaiabgwSixlGacshacaGGHbGaaiOBaiaadMhacqGHGjsUcaaIXaaaaa@4251@
    cot(x+y)= cotxcoty1 cotx+coty MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabg2da9maalaaabaGaci4yaiaac+gacaGG0bGaamiEaiabgwSixlGacogacaGGVbGaaiiDaiaadMhacqGHsislcaaIXaaabaGaci4yaiaac+gacaGG0bGaamiEaiabgUcaRiGacogacaGGVbGaaiiDaiaadMhaaaaaaa@5222@ für cotx+coty0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaamiEaiabgUcaRiGacogacaGGVbGaaiiDaiaadMhacqGHGjsUcaaIWaaaaa@40EE@

[4.3.21]

Das sind die Additionstheoreme für Tangens und Cotangens.

Beweis:  

1.  Mit [4.3.8] und [4.3.7] ergibt sich:

tan(x π 2 )= sin(x π 2 ) cos(x π 2 ) = sin(x+ π 2 ) cos(x π 2 ) = sin(x+ π 2 ) cos(x π 2 ) = cosx sinx =cotx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaciiDaiaacggacaGGUbGaaiikaiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9maalaaabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaaqaaiGacogacaGGVbGaai4CaiaacIcacaWG4bGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcaaaGaeyypa0ZaaSaaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaeyOeI0IaamiEaiabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGPaaabaGaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaaaacqGH9aqpdaWcaaqaaiGacohacaGGPbGaaiOBaiaacIcacaWG4bGaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcaaeaaciGGJbGaai4BaiaacohacaGGOaGaamiEaiabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGPaaaaiabg2da9maalaaabaGaci4yaiaac+gacaGGZbGaamiEaaqaaiGacohacaGGPbGaaiOBaiaadIhaaaGaeyypa0Jaci4yaiaac+gacaGG0bGaamiEaaaa@85D3@ ,

und damit:

cot(x π 2 )= 1 tan(x π 2 ) = 1 cotx =tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaci4yaiaac+gacaGG0bGaaiikaiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9maalaaabaGaaGymaaqaaiabgkHiTiGacshacaGGHbGaaiOBaiaacIcacaWG4bGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGG0bGaamiEaaaacqGH9aqpciGG0bGaaiyyaiaac6gacaWG4baaaa@5546@ .

2.   tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaamiEaaaa@39B6@ wird genau dann Null, wenn der Zähler sinx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaamiEaaaa@39BD@ gleich Null ist. Nach [4.3.10] also genau dann, wenn x=kπ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadUgacqaHapaCaaa@3A98@ ist. Beim Cotangens argumentiert man analog.

3.   tanxcotx= sinx cosx cosx sinx =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaamiEaiabgwSixlGacogacaGGVbGaaiiDaiaadIhacqGH9aqpdaWcaaqaaiGacohacaGGPbGaaiOBaiaadIhaaeaaciGGJbGaai4BaiaacohacaWG4baaaiabgwSixpaalaaabaGaci4yaiaac+gacaGGZbGaamiEaaqaaiGacohacaGGPbGaaiOBaiaadIhaaaGaeyypa0JaaGymaaaa@544C@ .

4.  Wir benutzen das Symmetrieverhalten [4.3.5]:

tan(x)= sin(x) cos(x) = sinx cosx =tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiikaiabgkHiTiaadIhacaGGPaGaeyypa0ZaaSaaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaeyOeI0IaamiEaiaacMcaaeaaciGGJbGaai4BaiaacohacaGGOaGaeyOeI0IaamiEaiaacMcaaaGaeyypa0ZaaSaaaeaacqGHsislciGGZbGaaiyAaiaac6gacaWG4baabaGaci4yaiaac+gacaGGZbGaamiEaaaacqGH9aqpcqGHsislciGG0bGaaiyyaiaac6gacaWG4baaaa@58AC@ .

Die entsprechende Eigenschaft des Cotangens erhält man analog.

5.  Wir benötigen einige Vorüberlegungen. Zunächst erhält man mit [4.3.8]:

sin(x+π)=sin( π 2 +x+ π 2 )=sin( π 2 x π 2 )=sin(x)=sinx cos(x+π)=cos( π 2 +x+ π 2 )=cos( π 2 x π 2 )=cos(x)=cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacohacaGGPbGaaiOBaiaacIcacaWG4bGaey4kaSIaeqiWdaNaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaacIcadaWcaaqaaiabec8aWbqaaiaaikdaaaGaey4kaSIaamiEaiabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGPaGaeyypa0Jaci4CaiaacMgacaGGUbGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHsislcaWG4bGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaeyOeI0IaamiEaiaacMcacqGH9aqpcqGHsislciGGZbGaaiyAaiaac6gacaWG4baabaGaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHRaWkcqaHapaCcaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbGaaiikamaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWG4bGaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacMcacqGH9aqpcqGHsislciGGJbGaai4BaiaacohacaGGOaWaaSaaaeaacqaHapaCaeaacaaIYaaaaiabgkHiTiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiykaiabg2da9iabgkHiTiGacogacaGGVbGaai4CaiaacIcacqGHsislcaWG4bGaaiykaiabg2da9iabgkHiTiGacogacaGGVbGaai4CaiaadIhaaaaaaa@9575@

und über die Periodizität von Sinus und Cosinus dann auch:

sin(xπ)=sin(xπ+2π)=sin(x+π)=sinx cos(xπ)=cos(xπ+2π)=cos(x+π)=cosx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacohacaGGPbGaaiOBaiaacIcacaWG4bGaeyOeI0IaeqiWdaNaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaacIcacaWG4bGaeyOeI0IaeqiWdaNaey4kaSIaaGOmaiabec8aWjaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgUcaRiabec8aWjaacMcacqGH9aqpcqGHsislciGGZbGaaiyAaiaac6gacaWG4baabaGaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHsislcqaHapaCcaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbGaaiikaiaadIhacqGHsislcqaHapaCcqGHRaWkcaaIYaGaeqiWdaNaaiykaiabg2da9iGacogacaGGVbGaai4CaiaacIcacaWG4bGaey4kaSIaeqiWdaNaaiykaiabg2da9iabgkHiTiGacogacaGGVbGaai4CaiaadIhaaaaaaa@7B38@

Damit schließlich haben wir:

tan(x±π)= sin(x±π) cos(x±π) = sinx cosx = sinx cosx =tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiikaiaadIhacqGHXcqScqaHapaCcaGGPaGaeyypa0ZaaSaaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaamiEaiabgglaXkabec8aWjaacMcaaeaaciGGJbGaai4BaiaacohacaGGOaGaamiEaiabgglaXkabec8aWjaacMcaaaGaeyypa0ZaaSaaaeaacqGHsislciGGZbGaaiyAaiaac6gacaWG4baabaGaeyOeI0Iaci4yaiaac+gacaGGZbGaamiEaaaacqGH9aqpdaWcaaqaaiGacohacaGGPbGaaiOBaiaadIhaaeaaciGGJbGaai4BaiaacohacaWG4baaaiabg2da9iGacshacaGGHbGaaiOBaiaadIhaaaa@69A1@ .[++]

Nun zeigen wir per Induktion: tan(x±kπ)=tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiikaiaadIhacqGHXcqScaWGRbGaeqiWdaNaaiykaiabg2da9iGacshacaGGHbGaaiOBaiaadIhaaaa@447E@ für alle k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLcaa@39C8@ . Da für k=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaicdaaaa@3898@ offensichtlich nichts zu tun ist, bleibt nur der Induktionsschluss: Mit [++] ergibt sich aus der Induktionsvoraussetzung:

tan(x±(k+1)π)=tan(x±kπ±π)=tan(x±kπ)=tanx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiikaiaadIhacqGHXcqScaGGOaGaam4AaiabgUcaRiaaigdacaGGPaGaeqiWdaNaaiykaiabg2da9iGacshacaGGHbGaaiOBaiaacIcacaWG4bGaeyySaeRaam4Aaiabec8aWjabgglaXkabec8aWjaacMcacqGH9aqpciGG0bGaaiyyaiaac6gacaGGOaGaamiEaiabgglaXkaadUgacqaHapaCcaGGPaGaeyypa0JaciiDaiaacggacaGGUbGaamiEaaaa@60AF@ .

Nun zum Cotangens: Ist x, und damit auch x+kπ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgUcaRiaadUgacqaHapaCaaa@3A74@ , ein ungerades Vielfaches von π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaHapaCaeaacaaIYaaaaaaa@3871@ , so hat man nach [4.3.16]:   cot(x+kπ)=0=cotx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiikaiaadIhacqGHRaWkcaWGRbGaeqiWdaNaaiykaiabg2da9iaaicdacqGH9aqpciGGJbGaai4BaiaacshacaWG4baaaa@4538@ . In allen anderen Fällen greift man auf das gerade Bewiesene zurück:

cot(x+kπ)= 1 tan(x+kπ) = 1 tanx =cotx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiikaiaadIhacqGHRaWkcaWGRbGaeqiWdaNaaiykaiabg2da9maalaaabaGaaGymaaqaaiGacshacaGGHbGaaiOBaiaacIcacaWG4bGaey4kaSIaam4Aaiabec8aWjaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaciiDaiaacggacaGGUbGaamiEaaaacqGH9aqpciGGJbGaai4BaiaacshacaWG4baaaa@539E@ .

6.  Diese Gleichungen ergeben sich aus dem Satz des Pythagoras [4.3.11], z.B. für den Tangens:

1+ tan 2 x=1+ sin 2 x cos 2 x = cos 2 x+ sin 2 x cos 2 x = 1 cos 2 x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgUcaRiGacshacaGGHbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaadIhacqGH9aqpcaaIXaGaey4kaSYaaSaaaeaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaamiEaaaacqGH9aqpdaWcaaqaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaadIhacqGHRaWkciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaamiEaaaacqGH9aqpdaWcaaqaaiaaigdaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaWG4baaaaaa@5F5E@ .

7.  Mit den Additionstheoremen [4.3.4] für Sinus und Cosinus beweisen wir die erste Gleichung:

tanx+tany 1tanxtany = sinx cosx + siny cosy 1 sinxsiny cosxcosy = sinxcosy+cosxsiny cosxcosy cosxcosysinxsiny cosxcosy = sinxcosy+cosxsiny cosxcosysinxsiny = sin(x+y) cos(x+y) =tan(x+y). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaWaaSaaaeaaciGG0bGaaiyyaiaac6gacaWG4bGaey4kaSIaciiDaiaacggacaGGUbGaamyEaaqaaiaaigdacqGHsislciGG0bGaaiyyaiaac6gacaWG4bGaeyyXICTaciiDaiaacggacaGGUbGaamyEaaaaaeaacqGH9aqpdaWcaaqaamaalaaabaGaci4CaiaacMgacaGGUbGaamiEaaqaaiGacogacaGGVbGaai4CaiaadIhaaaGaey4kaSYaaSaaaeaaciGGZbGaaiyAaiaac6gacaWG5baabaGaci4yaiaac+gacaGGZbGaamyEaaaaaeaacaaIXaGaeyOeI0YaaSaaaeaaciGGZbGaaiyAaiaac6gacaWG4bGaeyyXICTaci4CaiaacMgacaGGUbGaamyEaaqaaiGacogacaGGVbGaai4CaiaadIhacqGHflY1ciGGJbGaai4BaiaacohacaWG5baaaaaaaeaaaeaacqGH9aqpdaWcaaqaamaalaaabaGaci4CaiaacMgacaGGUbGaamiEaiabgwSixlGacogacaGGVbGaai4CaiaadMhacqGHRaWkciGGJbGaai4BaiaacohacaWG4bGaeyyXICTaci4CaiaacMgacaGGUbGaamyEaaqaaiGacogacaGGVbGaai4CaiaadIhacqGHflY1ciGGJbGaai4BaiaacohacaWG5baaaaqaamaalaaabaGaci4yaiaac+gacaGGZbGaamiEaiabgwSixlGacogacaGGVbGaai4CaiaadMhacqGHsislciGGZbGaaiyAaiaac6gacaWG4bGaeyyXICTaci4CaiaacMgacaGGUbGaamyEaaqaaiGacogacaGGVbGaai4CaiaadIhacqGHflY1ciGGJbGaai4BaiaacohacaWG5baaaaaaaeaaaeaacqGH9aqpdaWcaaqaaiGacohacaGGPbGaaiOBaiaadIhacqGHflY1ciGGJbGaai4BaiaacohacaWG5bGaey4kaSIaci4yaiaac+gacaGGZbGaamiEaiabgwSixlGacohacaGGPbGaaiOBaiaadMhaaeaaciGGJbGaai4BaiaacohacaWG4bGaeyyXICTaci4yaiaac+gacaGGZbGaamyEaiabgkHiTiGacohacaGGPbGaaiOBaiaadIhacqGHflY1ciGGZbGaaiyAaiaac6gacaWG5baaaaqaaaqaaiabg2da9maalaaabaGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaaqaaiGacogacaGGVbGaai4CaiaacIcacaWG4bGaey4kaSIaamyEaiaacMcaaaaabaaabaGaeyypa0JaciiDaiaacggacaGGUbGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaaaaaaa@F194@

Falls cot(x+y)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabgcMi5kaaicdaaaa@3F73@ (    cos(x+y)0      cosxcosysinxsiny      cotxcoty1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaaGjbVlGacogacaGGVbGaai4CaiaacIcacaWG4bGaey4kaSIaamyEaiaacMcacqGHGjsUcaaIWaGaaGjbVlabgsDiBlaaysW7ciGGJbGaai4BaiaacohacaWG4bGaeyyXICTaci4yaiaac+gacaGGZbGaamyEaiabgcMi5kGacohacaGGPbGaaiOBaiaadIhacqGHflY1ciGGZbGaaiyAaiaac6gacaWG5bGaaGjbVlabgsDiBlaaysW7ciGGJbGaai4BaiaacshacaWG4bGaeyyXICTaci4yaiaac+gacaGG0bGaamyEaiabgcMi5kaaigdaaaa@705D@ ), gelingt damit auch der Nachweis der zweiten Gleichung:

cot(x+y)= 1 tan(x+y) = 1tanxtany tanx+tany = 1 1 cotxcoty 1 cotx + 1 coty = cotxcoty1 cotx+coty MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiGacshacaGGHbGaaiOBaiaacIcacaWG4bGaey4kaSIaamyEaiaacMcaaaGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0IaciiDaiaacggacaGGUbGaamiEaiabgwSixlGacshacaGGHbGaaiOBaiaadMhaaeaaciGG0bGaaiyyaiaac6gacaWG4bGaey4kaSIaciiDaiaacggacaGGUbGaamyEaaaacqGH9aqpdaWcaaqaaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaaciGGJbGaai4BaiaacshacaWG4bGaeyyXICTaci4yaiaac+gacaGG0bGaamyEaaaaaeaadaWcaaqaaiaaigdaaeaaciGGJbGaai4BaiaacshacaWG4baaaiabgUcaRmaalaaabaGaaGymaaqaaiGacogacaGGVbGaaiiDaiaadMhaaaaaaiabg2da9maalaaabaGaci4yaiaac+gacaGG0bGaamiEaiabgwSixlGacogacaGGVbGaaiiDaiaadMhacqGHsislcaaIXaaabaGaci4yaiaac+gacaGG0bGaamiEaiabgUcaRiGacogacaGGVbGaaiiDaiaadMhaaaaaaa@87AF@ .

Ist cot(x+y)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabg2da9iaaicdaaaa@3EB2@ , so steht auf beiden Seiten der Gleichung Null.


4.2. 4.4.