4.7. Umkehrbare Funktionen


Im Zusammenhang mit der Hintereinanderausführung studiert man auch das Problem der Umkehrbarkeit von Funktionen. Dahinter verbirgt sich die folgende Fragestellung:

Ist f:AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaamOqaaaa@3B0D@ irgendeine Funktion, so ist f eine Teilmenge von A×B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgEna0kaadkeaaaa@398E@ , die bestimmte Bedingungen erfüllt. Wenn man nun f "umkehrt", d.h. bei den Paaren, die f ausmachen, die Koordinaten vertauscht, also übergeht zur Teilmenge f 1 {(y,x)|(x,y)f}B×A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iaacUhacaGGOaGaamyEaiaacYcacaWG4bGaaiykaiaacYhacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabgIGiolaadAgacaGG9bGaeyOGIWSaamOqaiabgEna0kaadgeaaaa@4CD1@ , ist dann damit automatisch eine neue Funktion von B nach A gegeben oder nicht?

Nach den bisherigen Erfahrungen sind die Aussichten dafür eher gering; so ist etwa für die konstante Funktion 2 auf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@375A@ , also für die Teilmenge 2={(x,2)|x} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaaIYaGaaiykaiaacYhacaWG4bGaeyicI4SaeSyhHeQaaiyFaaaa@425F@ ,

2 1 ={(y,x)|(x,y)2}={(2,x)|x} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iaacUhacaGGOaGaamyEaiaacYcacaWG4bGaaiykaiaacYhacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabgIGiolaaikdacaGG9bGaeyypa0Jaai4EaiaacIcacaaIYaGaaiilaiaadIhacaGGPaGaaiiFaiaadIhacqGHiiIZcqWIDesOcaGG9baaaa@528C@

und hier wird außer der 2 keinem Element etwas zugeordnet und der 2 überdies auch noch unendlich viele!

Ist jedoch die Ausgangsfunktion f "gut genug", so ist auch ihre Umkehrung wieder eine Funktion:

Definition und Bemerkung:   Wir nennen eine Funktion f:AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaamOqaaaa@3B0D@ umkehrbar (oder bijektiv), falls jedes Element yB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaadkeaaaa@3933@ genau ein Urbild xA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadgeaaaa@3931@ besitzt. In diesem Fall stellt die Menge

f 1 {(y,x)|(x,y)f}B×A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iaacUhacaGGOaGaamyEaiaacYcacaWG4bGaaiykaiaacYhacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabgIGiolaadAgacaGG9bGaeyOGIWSaamOqaiabgEna0kaadgeaaaa@4CD1@
[4.7.1]

eine Funktion von B nach A dar. Sie ordnet jedem yB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaadkeaaaa@3933@ das einzige Urbild xA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadgeaaaa@3931@ zu.

Ist f bijektiv, so nennen wir f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38AA@ eine Umkehrfunktion von f.

Wir benutzen hier dasselbe Symbol wie bei einer Potenzfunktion mit Exponent −1. Aus dem Kontext geht aber immer hervor, welche Bedeutung gerade gemeint ist.

Wir beginnen unsere Untersuchungen zur Umkehrbarkeit von Funktionen mit der Rolle der leeren Funktion und fragen:

Kann die Funktion :AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyybIySaaiOoaiaadgeacqGHsgIRcaWGcbaaaa@3B9B@ überhaupt umkehrbar sein?

Ist A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgcMi5kabgwGigdaa@39F0@ , so liegt überhaupt keine Funktion vor; ist B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgcMi5kabgwGigdaa@39F1@ , so hat kein y aus B ein Urbild. Man hat also:

:AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyybIySaaiOoaiaadgeacqGHsgIRcaWGcbaaaa@3B9B@ ist umkehrbar A=      B= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caWGbbGaeyypa0JaeyybIySaaGjbVlabgEIizlaaysW7caWGcbGaeyypa0JaeyybIymaaa@46B5@ .

In diesem Fall ist 1 = MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyybIy8aaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaeyybIymaaa@3BC1@ und X A = X B = MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBaaaleaacaWGbbaabeaakiabg2da9iaadIfadaWgaaWcbaGaamOqaaqabaGccqGH9aqpcqGHfiIXaaa@3D22@ . Alle folgenden Bemerkungen sind auch für die leere Funktion gültig; der Beweis ergibt sich dabei stets aus den gerade genannten Beziehungen. Die im Weiteren notierten Beweise berücksichtigen nur den nicht-leeren Fall.

Die Formulierung eine Umkehrfunktion in [4.7.1] ist unnötig vorsichtig: Bijektive Funktionen haben genau eine Umkehrfunktion.

Definition:  Ist f:AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaamOqaaaa@3B0D@ umkehrbar, so heben sich f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36D5@ und f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38AA@ in ihrer Wirkung gegenseitig auf:

f 1 f= X A f f 1 = X B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiablIHiVjaadAgacqGH9aqpcaWGybWaaSbaaSqaaiaadgeaaeqaaOGaaGzbVlabgEIizlaaywW7caWGMbGaeSigI8MaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iaadIfadaWgaaWcbaGaamOqaaqabaaaaa@4A47@
[4.7.2]

Diese Eigenschaft charakterisiert darüber hinaus die Umkehrbarkeit bereits vollständig. Ist nämlich g:BA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGcbGaeyOKH4Qaamyqaaaa@3B0E@ eine Funktion, derart dass

gf= X A fg= X B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiablIHiVjaadAgacqGH9aqpcaWGybWaaSbaaSqaaiaadgeaaeqaaOGaaGzbVlabgEIizlaaywW7caWGMbGaeSigI8Maam4zaiabg2da9iaadIfadaWgaaWcbaGaamOqaaqabaaaaa@468B@ ,[*]

so ist f umkehrbar und g= f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@3A9C@ . Insbesondere ist damit f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38AA@ die einzige Funktion, die [*] erfüllt; wir nennen sie daher die Umkehrfunktion zu f .

Beweis:  Wir zeigen zunächst die beiden Eigenschaften von f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38AA@ :

  1. f 1 f:{xA|f(x)B}=AA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiablIHiVjaadAgacaGG6aGaai4EaiaadIhacqGHiiIZcaWGbbGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHiiIZcaWGcbGaaiyFaiabg2da9iaadgeacqGHsgIRcaWGbbaaaa@4BE9@ und für alle xA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadgeaaaa@3931@ ist
    f 1 f(x)= f 1 (f(x))=x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiablIHiVjaadAgacaGGOaGaamiEaiaacMcacqGH9aqpcaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikaiaadAgacaGGOaGaamiEaiaacMcacaGGPaGaeyypa0JaamiEaaaa@479C@ , denn x ist das einzige Urbild von f(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaaaa@392B@ .
     
  2. f f 1 :{xB| f 1 (x)A}=BB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGG6aGaai4EaiaadIhacqGHiiIZcaWGcbGaaiiFaiaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaamiEaiaacMcacqGHiiIZcaWGbbGaaiyFaiabg2da9iaadkeacqGHsgIRcaWGcbaaaa@4DCA@ und für alle xB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadkeaaaa@3932@ hat man:
    f f 1 (x)=f( f 1 (x))=x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaamiEaiaacMcacqGH9aqpcaWGMbGaaiikaiaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaamiEaiaacMcacaGGPaGaeyypa0JaamiEaaaa@479C@ , denn f 1 (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaaaa@3B0A@ ist nach Definition ein Urbild von x.

Sei nun g:BA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGcbGaeyOKH4Qaamyqaaaa@3B0E@ mit genannten Eigenschaften gegeben. Wir zeigen die Umkehrbarkeit von f und geben dazu ein yB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaadkeaaaa@3933@ vor. Da fg= X B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgacqGH9aqpcaWGybWaaSbaaSqaaiaadkeaaeqaaaaa@3BD1@ hat man: y= X B (y)=f(g(y)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadIfadaWgaaWcbaGaamOqaaqabaGccaGGOaGaamyEaiaacMcacqGH9aqpcaWGMbGaaiikaiaadEgacaGGOaGaamyEaiaacMcacaGGPaaaaa@42AC@ , d.h. y ist das f-Bild von g(y)A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWG5bGaaiykaiabgIGiolaadgeaaaa@3B77@ . Also hat y überhaupt ein Urbild. Hätte y nun zwei Urbilder, etwa x 1 , x 2 A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyicI4Saamyqaaaa@3CC1@ , so wäre

f( x 1 )=y=f( x 2 ) x 1 =gf( x 1 )=g(y)=gf( x 2 )= x 2 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaaqaaiaadAgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcacqGH9aqpcaWG5bGaeyypa0JaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaqaaiabgkDiElaaywW7aeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Jaam4zaiablIHiVjaadAgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcacqGH9aqpcaWGNbGaaiikaiaadMhacaGGPaGaeyypa0Jaam4zaiablIHiVjaadAgacaGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaaa@5D32@

Daher hat y auch nur ein Urbild, d.h. f ist umkehrbar. Schließlich ist g= f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@3A9C@ , denn:

g=g X B =g(f f 1 )=(gf) f 1 = X A f 1 = f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadEgacqWIyiYBcaWGybWaaSbaaSqaaiaadkeaaeqaaOGaeyypa0Jaam4zaiablIHiVjaacIcacaWGMbGaeSigI8MaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacMcacqGH9aqpcaGGOaGaam4zaiablIHiVjaadAgacaGGPaGaeSigI8MaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iaadIfadaWgaaWcbaGaamyqaaqabaGccqWIyiYBcaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@596D@ .

In konkreten Fällen benötigen wir geeignete Verfahren, um Umkehrfunktionen zu finden. Kann man f graphisch darstellen, so lässt sich auch die Teilmenge f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38AA@ , also die Menge {(y,x)|(x,y)f} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaacIcacaWG5bGaaiilaiaadIhacaGGPaGaaiiFaiaacIcacaWG4bGaaiilaiaadMhacaGGPaGaeyicI4SaamOzaiaac2haaaa@4361@ , überblicken, denn sie entsteht aus f durch Vertauschen der Koordinaten, so dass ihr Bild durch Spiegeln an der 1. Winkelhalbierenden gewonnen werden kann.

Spiegelt man z.B. den Graphen der Funktion 2X+3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadIfacqGHRaWkcaaIZaaaaa@3922@ , so sieht das Spiegelbild durchaus wie ein Funktionsgraph aus; 2X+3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadIfacqGHRaWkcaaIZaaaaa@3922@ ist also wahrscheinlich umkehrbar.

Eine Berechnung der Umkehrfunktion ersetzt dieses Grafik natürlich nicht. Hierzu benutzt man meist die folgende Überlegung:

Bemerkung:  Eine Funktion f:AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaamOqaaaa@3B0D@ ist genau dann umkehrbar, wenn sich für jedes yB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaadkeaaaa@3933@ die Gleichung

f(x)=y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadMhaaaa@3B2F@
[4.7.3]

eindeutig nach x auflösen lässt. In diesem Fall stellt die Zuordnung yx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiablAAiHjaadIhaaaa@399E@ die Umkehrfunktion dar.

Beweis:  Es ist eigentlich nichts zu zeigen, denn die eindeutige Lösbarbarkeit der Gleichung bedeutet nichts anderes, als dass jedes y genau ein Urbild hat.

Wir demonstrieren dieses Prinzip an unserem Eingangsbeispiel 2X+3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadIfacqGHRaWkcaaIZaaaaa@3922@ : Für ein beliebiges y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolabl2riHcaa@39DC@ hat man:

2X+3(x)=y2x+3=yx= 1 2 (y3) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadIfacqGHRaWkcaaIZaGaaiikaiaadIhacaGGPaGaeyypa0JaamyEaiaaywW7cqGHuhY2caaMf8UaaGOmaiaadIhacqGHRaWkcaaIZaGaeyypa0JaamyEaiaaywW7cqGHuhY2caaMf8UaamiEaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaadMhacqGHsislcaaIZaGaaiykaaaa@5553@ .

Also ist 2X+3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadIfacqGHRaWkcaaIZaaaaa@3922@ umkehrbar und die Zuordnung y 1 2 (y3) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiablAAiHnaalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaadMhacqGHsislcaaIZaGaaiykaaaa@3E29@ liefert 1 2 (X3) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamiwaiabgkHiTiaaiodacaGGPaaaaa@3B51@ als Umkehrfunktion.

Mit Hilfe des gerade beschriebenen Verfahrens gelingt es, die konstanten und die linearen Funktionen auf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@375A@ vollständig zu überblicken.

Bemerkung:  

  1. Keine konstante Funktion c: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C5D@ ist umkehrbar.
[4.7.4]
  1. Jede lineare Funktion mX+b: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaadIfacqGHRaWkcaWGIbGaaiOoaiabl2riHkabgkziUkabl2riHcaa@3F0D@ , mit m0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgcMi5kaaicdaaaa@395D@ ist umkehrbar. Die Umkehrfunktion ist wieder linear; ihre Steigungszahl ist der Kehrwert der alten: 1 m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamyBaaaaaaa@37A7@ .
[4.7.5]

Beweis:  

1. ►   c+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgUcaRiaaigdaaaa@386F@ etwa hat kein Urbild.

2. ►  Für jedes y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolabl2riHcaa@39DC@ ist

mX+b(x)=ymx+b=yx= yb m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaadIfacqGHRaWkcaWGIbGaaiikaiaadIhacaGGPaGaeyypa0JaamyEaiaaywW7cqGHuhY2caaMf8UaamyBaiaadIhacqGHRaWkcaWGIbGaeyypa0JaamyEaiaaywW7cqGHuhY2caaMf8UaamiEaiabg2da9maalaaabaGaamyEaiabgkHiTiaadkgaaeaacaWGTbaaaaaa@545F@ .

Daher ist mX+b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaadIfacqGHRaWkcaWGIbaaaa@3982@ umkehrbar und 1 m X b m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamyBaaaacaWGybGaeyOeI0YaaSaaaeaacaWGIbaabaGaamyBaaaaaaa@3B5A@ die Umkehrfunktion.

Bei der Umkehrbarkeit von Funktionen spielen Definitions- und Bildbereich eine entscheidendere Rolle als bisher. Dies zeigt sich sehr deutlich am Beispiel der Quadratfunktion.

Beispiel:  

  1. Die Quadratfunktion X 2 : MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3D45@ ist nicht umkehrbar.
[4.7.6]
  1. Die Funktion f: 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaaaaa@3F0D@ ist nicht umkehrbar.
[4.7.7]
  1. Die Funktion f: 0 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaaaaa@41C4@ gegeben durch f(x)= x 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadIhadaahaaWcbeqaaiaaikdaaaaaaa@3C17@ ist umkehrbar. Ihre Umkehrfunktion ist nicht die Wurzelfunktion X : 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGybaaleqaaOGaaiOoaiabl2riHoaaCaaaleqabaGaeyyzImRaaGimaaaakiabgkziUkabl2riHcaa@3F2E@ , sondern die Funktion g: 0 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaaaaa@41C5@ gegeben durch g(x)= x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWG4bGaaiykaiabg2da9maakaaabaGaamiEaaWcbeaaaaa@3B4A@ .
[4.7.8]

Beweis:  

1. ►   1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGymaaaa@3792@ z.B. hat kein Urbild.

2. ►  4 etwa hat zwei Urbilder: 2 und −2.

3. ►  Für x,y 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaeSyhHe6aaWbaaSqabeaacqGHLjYScaaIWaaaaaaa@3E36@ hat man:

f(x)=y x 2 =yx= y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadMhacaaMf8Uaeyi1HSTaaGzbVlaadIhadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWG5bGaaGzbVlabgsDiBlaaywW7caWG4bGaeyypa0ZaaOaaaeaacaWG5baaleqaaaaa@4D2F@ .

Bei den trigonometrischen Funktionen auf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@375A@ führen Überlegungen zur Umkehrbarkeit zu neuen Funktionen. Ohne Beweis notieren wir hier das folgende Ergebnis:

Bemerkung:  

  1. sin und cos sind nicht umkehrbar, denn z.B. hat 0 in beiden Fällen unendlich viele Urbilder.
[4.7.9]
  1. Durch Reduktion auf geeignete Definitions- und Bildbereiche gelingt es, Einschränkungen dieser Funktionen umzukehren. Genauer gilt: Die Funktion
     
    • sin|[ π 2 , π 2 ]   :   [ π 2 , π 2 ][1,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiiFaiaacUfacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiilamaalaaabaGaeqiWdahabaGaaGOmaaaacaGGDbGaaGjbVlaacQdacaaMe8Uaai4waiabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGSaWaaSaaaeaacqaHapaCaeaacaaIYaaaaiaac2facqGHsgIRcaGGBbGaeyOeI0IaaGymaiaacYcacaaIXaGaaiyxaaaa@5538@ ist umkehrbar. Die Umkehrfunktion ist der Arcussinus
      arcsin:[1,1][ π 2 , π 2 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyyaiaackhacaGGJbGaai4CaiaacMgacaGGUbGaaiOoaiaacUfacqGHsislcaaIXaGaaiilaiaaigdacaGGDbGaeyOKH4Qaai4waiabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGSaWaaSaaaeaacqaHapaCaeaacaaIYaaaaiaac2faaaa@4B71@ .
       
    • cos|[0,π]   :   [0,π][1,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiFaiaacUfacaaIWaGaaiilaiabec8aWjaac2facaaMe8UaaiOoaiaaysW7caGGBbGaaGimaiaacYcacqaHapaCcaGGDbGaeyOKH4Qaai4waiabgkHiTiaaigdacaGGSaGaaGymaiaac2faaaa@4E23@ ist umkehrbar. Die Umkehrfunktion ist der Arcuscosinus
      arccos:[1,1][0,π] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbGaaiOoaiaacUfacqGHsislcaaIXaGaaiilaiaaigdacaGGDbGaeyOKH4Qaai4waiaaicdacaGGSaGaeqiWdaNaaiyxaaaa@47E4@ .
       
    • tan|[ π 2 , π 2 ]   :   [ π 2 , π 2 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaaiiFaiaacUfacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiilamaalaaabaGaeqiWdahabaGaaGOmaaaacaGGDbGaaGjbVlaacQdacaaMe8Uaai4waiabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaacaGGSaWaaSaaaeaacqaHapaCaeaacaaIYaaaaiaac2facqGHsgIRcqWIDesOaaa@51CE@ ist umkehrbar. Die Umkehrfunktion ist der Arcustangens
      arctan:[ π 2 , π 2 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyyaiaackhacaGGJbGaaiiDaiaacggacaGGUbGaaiOoaiabl2riHkabgkziUkaacUfacqGHsisldaWcaaqaaiabec8aWbqaaiaaikdaaaGaaiilamaalaaabaGaeqiWdahabaGaaGOmaaaacaGGDbaaaa@4807@ .
       
    • cot|[0,π]   :   [0,π] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaaiiFaiaacUfacaaIWaGaaiilaiabec8aWjaac2facaaMe8UaaiOoaiaaysW7caGGBbGaaGimaiaacYcacqaHapaCcaGGDbGaeyOKH4QaeSyhHekaaa@4AC1@ ist umkehrbar. Die Umkehrfunktion ist der Arcuscotangens
      arccot:[0,π] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyyaiaackhacaGGJbGaai4yaiaac+gacaGG0bGaaiOoaiabl2riHkabgkziUkaacUfacaaIWaGaaiilaiabec8aWjaac2faaaa@4482@ .
[4.7.10]

Das Kriterium [*] aus [4.7.2] ist oft die einzige Möglichkeit, theoretische Ergebnisse zu gewinnen. Die folgende Bemerkung zeigt, dass die bijektiven Funktionen eine algebraische Struktur besitzen.

Bemerkung:  Für beliebige, nicht-leere Mengen A, B und C gilt:

  1. X A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBaaaleaacaWGbbaabeaaaaa@37B9@ ist umkehrbar und X A 1 = X A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaDaaaleaacaWGbbaabaGaeyOeI0IaaGymaaaakiabg2da9iaadIfadaWgaaWcbaGaamyqaaqabaaaaa@3C41@ .
[4.7.11]
  1. Mit f:AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaamOqaaaa@3B0D@ ist auch f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38AA@ umkehrbar. Dabei ist ( f 1 ) 1 =f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaamOzaaaa@3DDD@ .
[4.7.12]
  1. Sind g:AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGbbGaeyOKH4QaamOqaaaa@3B0E@ und f:BC MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGcbGaeyOKH4Qaam4qaaaa@3B0F@ umkehrbar, so ist auch fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgaaaa@38FB@ umkehrbar und (fg) 1 = g 1 f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqWIyiYBcaWGNbGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iaadEgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqWIyiYBcaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@43FE@ .
[4.7.13]

Da MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSigI8gaaa@3724@ assoziativ, aber nicht kommutativ ist, hat man mit [4.7.11/12/13] für die Menge B(A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaacIcacaWGbbGaaiykaaaa@38D0@ aller bijektiven Funktionen von A nach A:

(B(A),) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkeacaGGOaGaamyqaiaacMcacaGGSaGaeSigI8Maaiykaaaa@3C13@ ist eine eine nicht-abelsche Gruppe.

Dabei ist X A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBaaaleaacaWGbbaabeaaaaa@37B9@ das neutrale und f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38AA@ das zu  f inverse Element.

Beweis:  In allen drei Fällen reicht es zu zeigen, dass die jeweils anstehende Funktion das Kriterium [*] in [4.7.2] erfüllt, also dort die Rolle von g übernimmt.

1. ►  Hier sind beide Gleichungen identisch und trivialerweise gültig: X A X A = X A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBaaaleaacaWGbbaabeaakiablIHiVjaadIfadaWgaaWcbaGaamyqaaqabaGccqGH9aqpcaWGybWaaSbaaSqaaiaadgeaaeqaaaaa@3DAB@ .

2. ►  Man hat für die Umkehrfunktion f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38AA@ :

f 1 f= X A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiablIHiVjaadAgacqGH9aqpcaWGybWaaSbaaSqaaiaadgeaaeqaaaaa@3DAE@  und  f f 1 = X A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaWGybWaaSbaaSqaaiaadgeaaeqaaaaa@3DAE@

Damit aber erfüllt f (in vertauschter Reihenfolge) genau die definierenden Gleichungen für ( f 1 ) 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@3BE2@ .

3. ►  Wir rechnen nach, dass g 1 f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCaaaleqabaGaeyOeI0IaaGymaaaakiablIHiVjaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@3CAF@ [*] erfüllt. Da MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSigI8gaaa@3724@ assoziativ ist hat man:

( g 1 f 1 )(fg)= g 1 (( f 1 f)g)= g 1 ( X A g)= g 1 g= X A (fg)( g 1 f 1 )=f((g g 1 ) f 1 )=f( X A f 1 )=f f 1 = X A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr=epeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaacIcacaWGNbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeSigI8MaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacMcacqWIyiYBcaGGOaGaamOzaiablIHiVjaadEgacaGGPaGaeyypa0Jaam4zamaaCaaaleqabaGaeyOeI0IaaGymaaaakiablIHiVjaacIcacaGGOaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiablIHiVjaadAgacaGGPaGaeSigI8Maam4zaiaacMcacqGH9aqpcaWGNbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeSigI8MaaiikaiaadIfadaWgaaWcbaGaamyqaaqabaGccqWIyiYBcaWGNbGaaiykaiabg2da9iaadEgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqWIyiYBcaWGNbGaeyypa0JaamiwamaaBaaaleaacaWGbbaabeaaaOqaaiaacIcacaWGMbGaeSigI8Maam4zaiaacMcacqWIyiYBcaGGOaGaam4zamaaCaaaleqabaGaeyOeI0IaaGymaaaakiablIHiVjaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaGaeyypa0JaamOzaiablIHiVjaacIcacaGGOaGaam4zaiablIHiVjaadEgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaGaeSigI8MaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacMcacqGH9aqpcaWGMbGaeSigI8MaaiikaiaadIfadaWgaaWcbaGaamyqaaqabaGccqWIyiYBcaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiykaiabg2da9iaadAgacqWIyiYBcaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaamiwamaaBaaaleaacaWGbbaabeaaaaaaaa@9596@


4.6. 4.8.