Beispiel einer integrierbaren, aber nicht stetigen Funktion


Für die durch  g(x){ x 2 sin 1 x , falls  x0 0, falls  x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHflY1ciGGZbGaaiyAaiaac6gadaWcaaqaaiaaigdaaeaacaWG4baaaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyiyIKRaaGimaaqaaiaaicdacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabg2da9iaaicdaaaaacaGL7baaaaa@570F@   gegebene Funktion  g: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C63@ gilt:

  1. g ist differenzierbar mit  g (x)={ 2xsin 1 x cos 1 x , falls  x0 0, falls  x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikaiaadIhacaGGPaGaeyypa0ZaaiqaaeaafaqaaeGabaaabaGaaGOmaiaadIhacqGHflY1ciGGZbGaaiyAaiaac6gadaWcaaqaaiaaigdaaeaacaWG4baaaiabgkHiTiGacogacaGGVbGaai4CamaalaaabaGaaGymaaqaaiaadIhaaaGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadIhacqGHGjsUcaaIWaaabaGaaGimaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyypa0JaaGimaaaaaiaawUhaaaaa@5C6C@ .

  2. g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaaaaa@36E4@ ist (in 0) unstetig.

Beweis:  

1.  In einem x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@396A@ ist g nach Produkt- und Kettenregel [7.6.3/11] differenzierbar mit

g (x)=2xsin 1 x + x 2 cos 1 x ( 1 x 2 )=2xsin 1 x cos 1 x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikaiaadIhacaGGPaGaeyypa0JaaGOmaiaadIhacqGHflY1ciGGZbGaaiyAaiaac6gadaWcaaqaaiaaigdaaeaacaWG4baaaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHflY1ciGGJbGaai4BaiaacohadaWcaaqaaiaaigdaaeaacaWG4baaaiabgwSixlaacIcacqGHsisldaWcaaqaaiaaigdaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiaacMcacqGH9aqpcaaIYaGaamiEaiabgwSixlGacohacaGGPbGaaiOBamaalaaabaGaaGymaaqaaiaadIhaaaGaeyOeI0Iaci4yaiaac+gacaGGZbWaaSaaaeaacaaIXaaabaGaamiEaaaaaaa@6316@

als Ableitung. Für x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaaicdaaaa@38A9@ ist zu prüfen, ob die Differenzenquotientenfunktion gg(0) X0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGNbGaeyOeI0Iaam4zaiaacIcacaaIWaGaaiykaaqaaiaadIfacqGHsislcaaIWaaaaaaa@3D58@ einen Grenzwert besitzt. Die für alle x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@396A@ gültige Abschätzung (beachte: sin ist beschränkt durch 1)

0| g(x)g(0) x0 |=| x 2 sin 1 x x |=|x||sin 1 x ||x| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaacYhadaWcaaqaaiaadEgacaGGOaGaamiEaiaacMcacqGHsislcaWGNbGaaiikaiaaicdacaGGPaaabaGaamiEaiabgkHiTiaaicdaaaGaaiiFaiabg2da9iaacYhadaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHflY1ciGGZbGaaiyAaiaac6gadaWcaaqaaiaaigdaaeaacaWG4baaaaqaaiaadIhaaaGaaiiFaiabg2da9iaacYhacaWG4bGaaiiFaiabgwSixlaacYhaciGGZbGaaiyAaiaac6gadaWcaaqaaiaaigdaaeaacaWG4baaaiaacYhacqGHKjYOcaGG8bGaamiEaiaacYhaaaa@62C9@

garantiert lim x0 g(x)g(0) x0 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakmaalaaabaGaam4zaiaacIcacaWG4bGaaiykaiabgkHiTiaadEgacaGGOaGaaGimaiaacMcaaeaacaWG4bGaeyOeI0IaaGimaaaacqGH9aqpcaaIWaaaaa@4845@ , also die Differenzierbarkeit von g in 0 mit g (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaGimaaaa@3AB7@ .

2.  Weil z.B. 1 2πn 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWjaad6gaaaGaeyOKH4QaaGimaaaa@3CCA@ , aber g ( 1 2πn )= 1 πn sin(2πn)cos(2πn)=11 g (0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikamaalaaabaGaaGymaaqaaiaaikdacqaHapaCcaWGUbaaaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacqaHapaCcaWGUbaaaiGacohacaGGPbGaaiOBaiaacIcacaaIYaGaeqiWdaNaamOBaiaacMcacqGHsislciGGJbGaai4BaiaacohacaGGOaGaaGOmaiabec8aWjaad6gacaGGPaGaeyypa0JaeyOeI0IaaGymaiabgkziUkabgkHiTiaaigdacqGHGjsUceWGNbGbauaacaGGOaGaaGimaiaacMcaaaa@5C2C@ , kann g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaaaaa@36E4@ in 0 nicht stetig sein.
 

Mit  f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iqadEgagaqbaaaa@38D5@ liegt damit eine nicht stetige Funktion vor, die eine Stammfunktion besitzt.