9.7. Affine Unterräume


Mit Hilfe von Untervektorräumen konnten wir beliebige Ursprungsgeraden, Ursprungsebenen usw. des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ darstellen. Eine "gewöhnliche" Gerade etwa, die den Nullvektor 0 nicht enthält, ist kein Untervektorraum. Mit den bisherigen Mitteln läßt sie sich also nicht beschreiben.

Andererseits findet man unter ihren Parallelen (genau!) eine Ursprungsgerade, so dass wir sie als eine verschobene Urpsrungsgerade auffassen können. Wir erreichen eine solche Verschiebung, indem wir zu jedem Vektor der Ursprungsgeraden einen festen Verschiebevektor aufaddieren. Die folgende Definition setzt diesen Gedanken um.
 
Definition:  Es sei V ein Vektorraum, WV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgkOimlaadAfaaaa@399C@ ein Untervektorraum und aV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadAfaaaa@392E@ . Dann heißt die Menge

a+W={a+w|wW} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfacqGH9aqpcaGG7bGaamyyaiabgUcaRiaadEhacaGG8bGaam4DaiabgIGiolaadEfacaGG9baaaa@42B3@

ein affiner Unterraum (oder auch eine lineare Mannigfaltigkeit) von V.

Dabei heißt

  • a Aufpunkt (oder auch Ortsvektor) von a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfaaaa@388D@ .
  • W zugrundeliegender Raum von a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfaaaa@388D@ .
  • Ist speziell W=< v 1 ,, v n > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2da9iabgYda8iaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamOBaaqabaGccqGH+aGpaaa@4069@ , so heißen die Vektoren v 1 ,, v n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaaaaa@3C71@ die Richtungsvektoren von a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfaaaa@388D@ .

Wir setzen die Dimension eines affinen Unterraums fest durch: dima+W=dimW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacMgacaGGTbGaamyyaiabgUcaRiaadEfacqGH9aqpciGGKbGaaiyAaiaac2gacaWGxbaaaa@3FFF@ . Einige Sonderfälle werden sprachlich unterschieden: a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfaaaa@388D@ ist

  • ein Punkt, falls dimW=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacMgacaGGTbGaam4vaiabg2da9iaaicdaaaa@3B4D@ ,
  • eine Gerade, falls dimW=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacMgacaGGTbGaam4vaiabg2da9iaaigdaaaa@3B4E@ ,
  • eine Ebene, falls dimW=2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacMgacaGGTbGaam4vaiabg2da9iaaikdaaaa@3B4F@ ,
  • eine Hyperebene, falls V endlich und dimW=dimV1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacMgacaGGTbGaam4vaiabg2da9iGacsgacaGGPbGaaiyBaiaadAfacqGHsislcaaIXaaaaa@3FDE@ ist.

 

Beachte:

Die Zugehörigkeit eines Vektors zu einem affinen Unterraum ist eng gekoppelt mit der Zugehörigkeit zum zugrundeliegenden Raum. Die beiden folgenden Äquivalenzen sind leicht einzusehen; wir werden sie häufig einsetzen:

Der zugrundeliegende Raum eines affinen Unterraums ist eindeutig bestimmt! Wir können also von dem zugrundeliegenden Raum sprechen; ebenso ist der oben eingeführte Dimensionsbegriff erst dadurch sauber gefasst.
 
Bemerkung:  Es sei a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfaaaa@388D@ ein affiner Unterraum von V und W V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaCaaaleqabaGaey4fIOcaaOGaeyOGIWSaamOvaaaa@3AC2@ ein Untervektorraum. Dann gilt:

a+W=a+ W W= W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfacqGH9aqpcaWGHbGaey4kaSIaam4vamaaCaaaleqabaGaey4fIOcaaOGaaGzbVlabgsDiBlaaywW7caWGxbGaeyypa0Jaam4vamaaCaaaleqabaGaey4fIOcaaaaa@46AF@ .

Für den Beweis reicht es offensichtlich, diese Richtung " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ " nachzuweisen. Die Äquivalenz

wWa+wa+Wa+wa+ W w W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgIGiolaadEfacaaMf8Uaeyi1HSTaaGzbVlaadggacqGHRaWkcaWG3bGaeyicI4SaamyyaiabgUcaRiaadEfacaaMf8Uaeyi1HSTaaGzbVlaadggacqGHRaWkcaWG3bGaeyicI4SaamyyaiabgUcaRiaadEfadaahaaWcbeqaaiabgEHiQaaakiaaywW7cqGHuhY2caaMf8Uaam4DaiabgIGiolaadEfadaahaaWcbeqaaiabgEHiQaaaaaa@5D23@

zeigt aber, dass W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36C5@ und W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaCaaaleqabaGaey4fIOcaaaaa@37E1@ dieselben Elemente enthalten.


 Wir üben den neuen Begriff an einigen Beispielen:
Beispiel: 
  • ( 1 2 0 1 )+<0>={( 1 2 0 1 )} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeabbaaaaeaacaaIXaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8iaaicdacqGH+aGpcqGH9aqpcaGG7bWaaeWaaeaafaqabeabbaaaaeaacaaIXaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaac2haaaa@45A3@ ist ein Punkt in 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaI0aaaaaaa@3844@ . Der Nullvektor ist Richtungsvektor und ( 1 2 0 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeabbaaaaeaacaaIXaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaaaa@3A6F@ ein Aufpunkt.
     
  • ( 3 1 )+<( 1 1 )>={( 3+α 1+α )|α} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWZaaeWaaeaafaqabeGabaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaeyOpa4Jaeyypa0Jaai4EamaabmaabaqbaeqabiqaaaqaaiaaiodacqGHRaWkcqaHXoqyaeaacaaIXaGaey4kaSIaeqySdegaaaGaayjkaiaawMcaaiaacYhacqaHXoqycqGHiiIZcqWIDesOcaGG9baaaa@4F9A@ ist eine Gerade in 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ mit ( 1 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaaaaa@38F5@ als Richtungsvektor und ( 3 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaaaaa@38F7@ als einem Aufpunkt.
     
  • ( 0 3 0 )+<( 0 1 1 ),( 3 2 0 )>={( 3β 3α2β α )|α,β} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWabaaabaGaaGimaaqaaiaaiodaaeaacaaIWaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabmqaaaqaaiaaicdaaeaacqGHsislcaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacaGGSaWaaeWaaeaafaqabeWabaaabaGaaG4maaqaaiabgkHiTiaaikdaaeaacaaIWaaaaaGaayjkaiaawMcaaiabg6da+iabg2da9iaacUhadaqadaqaauaabeqadeaaaeaacaaIZaGaeqOSdigabaGaaG4maiabgkHiTiabeg7aHjabgkHiTiaaikdacqaHYoGyaeaacqaHXoqyaaaacaGLOaGaayzkaaGaaiiFaiabeg7aHjaacYcacqaHYoGycqGHiiIZcqWIDesOcaGG9baaaa@5DCF@ ist eine Ebene in 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3843@ . ( 0 3 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWabaaabaGaaGimaaqaaiaaiodaaeaacaaIWaaaaaGaayjkaiaawMcaaaaa@39B2@ ist ein Aufpunkt und ( 0 1 1 ),( 3 2 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWabaaabaGaaGimaaqaaiabgkHiTiaaigdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqadeaaaeaacaaIZaaabaGaeyOeI0IaaGOmaaqaaiaaicdaaaaacaGLOaGaayzkaaaaaa@4006@ sind die Richtungsvektoren.
     
  • 5+<X, X 2 >={p|p   ist Polynom vom   grad2,   das die   y-Achse in 5 schneidet} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiabgUcaRiabgYda8iaadIfacaGGSaGaamiwamaaCaaaleqabaGaaGOmaaaakiabg6da+iabg2da9iaacUhacaWGWbGaaiiFaiaadchacaaMe8UaaeyAaiaabohacaqG0bGaaeiiaiaabcfacaqGVbGaaeiBaiaabMhacaqGUbGaae4Baiaab2gacaqGGaGaaeODaiaab+gacaqGTbGaaGjbVlaadEgacaWGYbGaamyyaiaadsgacaaMc8UaeyizImQaaGOmaiaacYcacaaMe8UaaeizaiaabggacaqGZbGaaeiiaiaabsgacaqGPbGaaeyzaiaaysW7caWG5bGaaeylaiaabgeacaqGJbGaaeiAaiaabohacaqGLbGaaeiiaiaabMgacaqGUbGaaeiiaiaabwdacaqGGaGaae4CaiaabogacaqGObGaaeOBaiaabwgacaqGPbGaaeizaiaabwgacaqG0bGaaiyFaaaa@7802@ ist eine Ebene in 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFzecudaahaaWcbeqaaiaaikdaaaaaaa@4184@ . X 2 ,X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiaacYcacaWGybaaaa@3946@ sind die Richtungsvektoren und 5 ist ein Aufpunkt.
     
  • 3 X 4 2X+< e 2X , e 4X > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHsislcaaIYaGaamiwaiabgUcaRiabgYda8iaadwgadaahaaWcbeqaaiaaikdacaWGybaaaOGaaiilaiaadwgadaahaaWcbeqaaiabgkHiTiaaisdacaWGybaaaOGaeyOpa4daaa@44FF@ ist eine Ebene in 𝔽() MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrcaGGOaGaeSyhHeQaaiykaaaa@4495@ . Das Polynom 3 X 4 2X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaadIfadaahaaWcbeqaaiaaisdaaaGccqGHsislcaaIYaGaamiwaaaa@3AFE@ ist dabei ein Aufpunkt und die Funktionen e 2X , e 4X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaaGOmaiaadIfaaaGccaGGSaGaamyzamaaCaaaleqabaGaeyOeI0IaaGinaiaadIfaaaaaaa@3CF2@ sind die Richtungsvektoren.
     
  • Jeder Untervektorraum WV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgkOimlaadAfaaaa@399C@ ist ein affiner Unterraum von V, denn: W=0+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2da9iaaicdacqGHRaWkcaWGxbaaaa@3A43@ .

Die Berechnungen in den ersten drei Beispielen lassen sich natürlich auch umkehren:

  • {( 3+α 2 2α )|α}?=( 3 2 0 )+<( 1 0 2 )>. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EamaabmaabaqbaeqabmqaaaqaaiaaiodacqGHRaWkcqaHXoqyaeaacaaIYaaabaGaeyOeI0IaaGOmaiabeg7aHbaaaiaawIcacaGLPaaacaGG8bGaeqySdeMaeyicI4SaeSyhHeQaaiyFaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaiodaaeaacaaIYaaabaGaaGimaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacaaIXaaabaGaaGimaaqaaiabgkHiTiaaikdaaaaacaGLOaGaayzkaaGaeyOpa4daaa@52CB@
     
  • {( 2α+4β 4+α+2β 1α2β )|α,β}?=( 0 4 1 )+<( 2 1 1 ),( 4 2 2 )>=( 0 4 1 )+<( 2 1 1 )>. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EamaabmaabaqbaeqabmqaaaqaaiaaikdacqaHXoqycqGHRaWkcaaI0aGaeqOSdigabaGaaGinaiabgUcaRiabeg7aHjabgUcaRiaaikdacqaHYoGyaeaacaaIXaGaeyOeI0IaeqySdeMaeyOeI0IaaGOmaiabek7aIbaaaiaawIcacaGLPaaacaGG8bGaeqySdeMaaiilaiabek7aIjabgIGiolabl2riHkaac2hacqGH9aqpdaqadaqaauaabeqadeaaaeaacaaIWaaabaGaaGinaaqaaiaaigdaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWZaaeWaaeaafaqabeWabaaabaGaaGOmaaqaaiaaigdaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqadeaaaeaacaaI0aaabaGaaGOmaaqaaiabgkHiTiaaikdaaaaacaGLOaGaayzkaaGaeyOpa4Jaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaGimaaqaaiaaisdaaeaacaaIXaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabmqaaaqaaiaaikdaaeaacaaIXaaabaGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaacqGH+aGpaaa@7267@

 

Die beiden folgenden Beispiele machen einige affine Unterräume sichtbar:
Beispiel: Im folgenden Applet können (null- und) eindimensionale affine Unterräume des 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ , also die Mengen der Form

M=a+<v> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcqGH8aapcaWG2bGaeyOpa4daaa@3C90@

mit Hilfe der Maus graphisch erzeugt werden. Neben der zeichnerischen Darstellung wird M sowohl in der dieser Form angegeben als auch als Lösungsmenge eines linearen Gleichungssystems (vgl. Kapitel 9_9).

Den Aufpunkt a (rot) setzt man durch Klicken in die Zeichenebene. Der Richtungsvektor v (blau) kann durch Ziehen der Spitze verändert werden.

 

 
Beispiel: Die (ein- und) zweidimensionalen affinen Unterräume des 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3843@ , also die Mengen der Form

M=a+< v 1 , v 2 > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcqGH8aapcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGH+aGpaaa@401E@

lassen sich nur mit persektivischen Tricks darstellen.

Im nachfolgenden Applet kann man den affinen Unterraum M durch Variieren der Blickwinkel

phi und theta

von verschiedenen Seiten betrachten.

Die Erzeuger v1 und v2 haben (ohne Einschränkung) die Länge 1; sie werden über die beiden rechten Halbkugeln gewählt.

Die Richtung des Aufpunkts a wird über die linke Halbkugel eingestellt. Zuvor kann man über die Schieberleiste einen Streckungsfaktor (von -6 bis 6) wählen. Ist die checkbox Aufpunkt aktiviert, so wird Position des Aufpunkts durch zusätzliche Hilfslinien verdeutlicht.

Alle Einstellungen werden durch Klicken oder Ziehen vorgenommen. Die Achsen sind in Einerschritten markiert.

   

 


Kehren wir nun zurück zu den allgemeinen Eigenschaften. Zunächst erhalten wir ein oft nützliches Ergebnis: Aufpunkte von affinen Unterräume sind austauschbar! Allerdings darf man dazu nur Vektoren aus demselben affinen Unterraum  nehmen.
 
Bemerkung:  M=a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcaWGxbaaaa@3A65@ sei ein affiner Unterraum in V. Dann gilt:
  1. aM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaad2eaaaa@3925@ .
  2. x,yMxyW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaamytaiaaywW7cqGHshI3caaMf8UaamiEaiabgkHiTiaadMhacqGHiiIZcaWGxbaaaa@45AB@ .
  3. M=b+W   für alle   bM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadkgacqGHRaWkcaWGxbGaaGjbVlaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaaGjbVlaadkgacqGHiiIZcaWGnbaaaa@4867@ .

Beweis:

Zu 1.: a=a+0   und   0W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaadggacqGHRaWkcaaIWaGaaGjbVlaabwhacaqGUbGaaeizaiaaysW7caaIWaGaeyicI4Saam4vaaaa@435B@ .

Zu 2.: Sind x und  y Vektoren aus M, so besitzen sie eine dem entsprechende Darstellung; es gibt also w, w W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacYcacaWG3bWaaWbaaSqabeaacqGHxiIkaaGccqGHiiIZcaWGxbaaaa@3C17@ , so dass

x=a+w y=a+ w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadIhacqGH9aqpcaWGHbGaey4kaSIaam4DaaqaaiaadMhacqGH9aqpcaWGHbGaey4kaSIaam4DamaaCaaaleqabaGaey4fIOcaaaaaaaa@40A0@

Weil nun W ein Untervektoraum ist, hat man: xy=a+w(a+ w )=w w W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgkHiTiaadMhacqGH9aqpcaWGHbGaey4kaSIaam4DaiabgkHiTiaacIcacaWGHbGaey4kaSIaam4DamaaCaaaleqabaGaey4fIOcaaOGaaiykaiabg2da9iaadEhacqGHsislcaWG3bWaaWbaaSqabeaacqGHxiIkaaGccqGHiiIZcaWGxbaaaa@4A3C@ .

Zu 3.: Sei b ein beliebiger Vektor aus M. Wir zeigen wieder, dass M und b+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgUcaRiaadEfaaaa@388E@ dieselben Elemente enthalten:

xM xaW xb+(ba)W xbW,   denn nach1. und 2. ist   baW xb+W. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamiEaiabgIGiolaad2eacaaMf8oabaGaeyi1HSTaaGzbVlaadIhacqGHsislcaWGHbGaeyicI4Saam4vaaqaaaqaaiabgsDiBlaaywW7caWG4bGaeyOeI0IaamOyaiabgUcaRiaacIcacaWGIbGaeyOeI0IaamyyaiaacMcacqGHiiIZcaWGxbaabaaabaGaeyi1HSTaaGzbVlaadIhacqGHsislcaWGIbGaeyicI4Saam4vaiaacYcacaaMe8UaaeizaiaabwgacaqGUbGaaeOBaiaabccacaqGUbGaaeyyaiaabogacaqGObGaaeymaiaab6cacaqGGaGaaeyDaiaab6gacaqGKbGaaeiiaiaabkdacaqGUaGaaeiiaiaabMgacaqGZbGaaeiDaiaaysW7caWGIbGaeyOeI0IaamyyaiabgIGiolaadEfaaeaaaeaacqGHuhY2caaMf8UaamiEaiabgIGiolaadkgacqGHRaWkcaWGxbaaaaaa@7F6F@

Die nächste Bemerkung stellt eine zentrale Konstruktionsmethode für affine Unterräume vor. Wir verallgemeinern dabei das bekannte Prinzip "eine Gerade bereits durch zwei (verschiedene) Punkte eindeutig bestimmt" zu: 

Durch n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@3879@ viele Punkte kann man genau einen kleinsten affinen Unterraum ziehen.

Affine Unterräume können also maßgeschneidert werden.
Bemerkung:  Sind v 0 ,, v n V   n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIWaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaakiabgIGiolaadAfacaaMe8UaamOBaiabgUcaRiaaigdaaaa@42F6@ viele Vektoren aus V, so ist

v 0 +< v 1 v 0 ,, v n v 0 > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIWaaabeaakiabgUcaRiabgYda8iaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaakiabg6da+aaa@4704@

der kleinste affine Unterraum von V, der v 0 , v 1 ,, v n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIWaaabeaakiaacYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaaaa@3F0C@ enthält.

Beweis:

Zunächst gehört der Aufpunkt v 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIWaaabeaaaaa@37CA@ zu v 0 +< v 1 v 0 ,, v n v 0 > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIWaaabeaakiabgUcaRiabgYda8iaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaakiabg6da+aaa@4704@ . Die restlichen Vektoren v 1 ,, v n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaaaaa@3C71@ lassen die Darstellung v i = v 0 + j=1 n δ i,j ( v j v 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaWGPbaabeaakiabg2da9iaadAhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaaeWbqaaiabes7aKnaaBaaaleaacaWGPbGaaiilaiaadQgaaeqaaOGaaiikaiaadAhadaWgaaWcbaGaamOAaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaWcbaGaamOAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@4C79@ zu und gehören somit ebenfalls zu v 0 +< v 1 v 0 ,, v n v 0 > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIWaaabeaakiabgUcaRiabgYda8iaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaakiabg6da+aaa@4704@ .

Sei nun M=a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcaWGxbaaaa@3A65@ ein ein weiterer affiner Unterraum, der auch die Vektoren v 0 , v 1 ,, v n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIWaaabeaakiaacYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaaaa@3F0C@ enthält. Wir müssen zeigen: 

v 0 +< v 1 v 0 ,, v n v 0 >M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIWaaabeaakiabgUcaRiabgYda8iaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaakiabg6da+iabgkOimlaad2eaaaa@49D2@ .

Zunächst tauschen wir den Aufpunkt von M aus, denn da v 0 M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIWaaabeaakiabgIGiolaad2eaaaa@3A2A@ , ist M= v 0 +W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadAhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGxbaaaa@3B6A@ . Nun argumentieren wir folgendermaßen: Da Differenzen von Vektoren aus M in W liegen, hat man:

v 1 v 0 ,, v n v 0 W < v 1 v 0 ,, v n v 0 >W v 0 +< v 1 v 0 ,, v n v 0 > v 0 +W=M. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaakiabgIGiolaadEfacaaMf8oabaGaeyO0H4TaaGzbVlabgYda8iaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaakiabg6da+iabgkOimlaadEfaaeaaaeaacqGHshI3caaMf8UaamODamaaBaaaleaacaaIWaaabeaakiabgUcaRiabgYda8iaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaakiabg6da+iabgkOimlaadAhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGxbGaeyypa0Jaamytaaaaaaa@77BC@

 

 
Beispiel:
  • ( 3 2 )+<( 1 7 )( 3 2 )>=( 3 2 )+<( 2 5 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaikdaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWZaaeWaaeaafaqabeGabaaabaGaaGymaaqaaiaaiEdaaaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaikdaaaaacaGLOaGaayzkaaGaeyOpa4Jaeyypa0ZaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaikdaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWZaaeWaaeaafaqabeGabaaabaGaeyOeI0IaaGOmaaqaaiaaiwdaaaaacaGLOaGaayzkaaGaeyOpa4daaa@4DF5@ ist der kleinste affine Unterraum von 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ , der durch ( 3 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@38F8@ und ( 1 7 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaGymaaqaaiaaiEdaaaaacaGLOaGaayzkaaaaaa@38FB@ geht.

  •  
  • ( 2 0 2 )+<( 3 1 4 )( 2 0 2 ),( 7 4 4 )( 2 0 2 )>=( 2 0 2 )+<( 1 1 2 ),( 5 4 2 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWabaaabaGaaGOmaaqaaiaaicdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabmqaaaqaaiaaiodaaeaacaaIXaaabaGaaGinaaaaaiaawIcacaGLPaaacqGHsisldaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGimaaqaaiaaikdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabmqaaaqaaiaaiEdaaeaacaaI0aaabaGaaGinaaaaaiaawIcacaGLPaaacqGHsisldaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGimaaqaaiaaikdaaaaacaGLOaGaayzkaaGaeyOpa4Jaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaGOmaaqaaiaaicdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaacaGGSaWaaeWaaeaafaqabeWabaaabaGaaGynaaqaaiaaisdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabg6da+aaa@5E6B@ ist der kleinste affine Unterraum von 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3843@ , der durch ( 2 0 2 ),( 3 1 4 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWabaaabaGaaGOmaaqaaiaaicdaaeaacaaIYaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqadeaaaeaacaaIZaaabaGaaGymaaqaaiaaisdaaaaacaGLOaGaayzkaaaaaa@3E31@ und ( 7 4 4 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWabaaabaGaaG4naaqaaiaaisdaaeaacaaI0aaaaaGaayjkaiaawMcaaaaa@39BE@ geht.

  •  
  • ( 6 3 )+<( 7 3 )( 6 3 ),( 6 4 )( 6 3 ),( 8 8 )( 6 3 )>=( 6 3 )+<( 1 0 ),( 0 1 ),( 2 5 )>= 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaGOnaaqaaiaaiodaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWZaaeWaaeaafaqabeGabaaabaGaaG4naaqaaiaaiodaaaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaafaqabeGabaaabaGaaGOnaaqaaiaaiodaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabiqaaaqaaiaaiAdaaeaacaaI0aaaaaGaayjkaiaawMcaaiabgkHiTmaabmaabaqbaeqabiqaaaqaaiaaiAdaaeaacaaIZaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqaceaaaeaacaaI4aaabaGaaGioaaaaaiaawIcacaGLPaaacqGHsisldaqadaqaauaabeqaceaaaeaacaaI2aaabaGaaG4maaaaaiaawIcacaGLPaaacqGH+aGpcqGH9aqpdaqadaqaauaabeqaceaaaeaacaaI2aaabaGaaG4maaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqaceaaaeaacaaIXaaabaGaaGimaaaaaiaawIcacaGLPaaacaGGSaWaaeWaaeaafaqabeGabaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabiqaaaqaaiaaikdaaeaacaaI1aaaaaGaayjkaiaawMcaaiabg6da+iabg2da9iabl2riHoaaCaaaleqabaGaaGOmaaaaaaa@6779@ ist der kleinste affine Unterraum von 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ , der durch ( 6 3 ),( 7 3 ),( 6 4 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaGOnaaqaaiaaiodaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabiqaaaqaaiaaiEdaaeaacaaIZaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqaceaaaeaacaaI2aaabaGaaGinaaaaaiaawIcacaGLPaaaaaa@4084@ und ( 8 8 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaGioaaqaaiaaiIdaaaaacaGLOaGaayzkaaaaaa@3903@ geht.

  •  
  • ( 3 1 )+<>={( 3 1 )} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWJaeyybIySaeyOpa4Jaeyypa0Jaai4EamaabmaabaqbaeqabiqaaaqaaiaaiodaaeaacaaIXaaaaaGaayjkaiaawMcaaiaac2haaaa@4372@ ist der kleinste affine Unterraum von 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ , der durch ( 3 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaaaaa@38F7@ geht.

  •  
  • sin+<Xsin,cossin> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaey4kaSIaeyipaWJaamiwaiabgkHiTiGacohacaGGPbGaaiOBaiaacYcaciGGJbGaai4BaiaacohacqGHsislciGGZbGaaiyAaiaac6gacqGH+aGpaaa@4799@ ist der kleinste affine Unterraum von 𝔽() MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrcaGGOaGaeSyhHeQaaiykaaaa@4495@ , der durch sin,X   und   cos MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiilaiaadIfacaaMe8UaaeyDaiaab6gacaqGKbGaaGjbVlGacogacaGGVbGaai4Caaaa@430B@ geht.

  •  

 
Aufgabe:  Berechne den kleinsten affinen Unterraum M
  • von 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaI0aaaaaaa@3844@ , der durch ( 6 3 1 1 ),( 2 0 1 0 ),( 1 3 3 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeabbaaaaeaacaaI2aaabaGaaG4maaqaaiaaigdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqaeeaaaaqaaiaaikdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabqqaaaaabaGaaGymaaqaaiaaiodaaeaacaaIZaaabaGaaGymaaaaaiaawIcacaGLPaaaaaa@44E5@ geht:   M=?( 6 3 1 1 )+<( 2 0 1 0 )( 6 3 1 1 ),( 1 3 3 1 )( 6 3 1 1 )>=( 6 3 1 1 )+<( 4 3 0 1 ),( 5 0 2 0 )>. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9maabmaabaqbaeqabqqaaaaabaGaaGOnaaqaaiaaiodaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqaeeaaaaqaaiaaikdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaafaqabeabbaaaaeaacaaI2aaabaGaaG4maaqaaiaaigdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqaeeaaaaqaaiaaigdaaeaacaaIZaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaafaqabeabbaaaaeaacaaI2aaabaGaaG4maaqaaiaaigdaaeaacaaIXaaaaaGaayjkaiaawMcaaiabg6da+iabg2da9maabmaabaqbaeqabqqaaaaabaGaaGOnaaqaaiaaiodaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqaeeaaaaqaaiabgkHiTiaaisdaaeaacqGHsislcaaIZaaabaGaaGimaaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabqqaaaaabaGaeyOeI0IaaGynaaqaaiaaicdaaeaacaaIYaaabaGaaGimaaaaaiaawIcacaGLPaaacqGH+aGpaaa@69E7@
     
  • von 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3843@ , der durch ( 2 0 1 ),( 5 4 3 ),( 4 8 3 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWabaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqadeaaaeaacaaI1aaabaGaeyOeI0IaaGinaaqaaiaaiodaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabmqaaaqaaiabgkHiTiaaisdaaeaacaaI4aaabaGaeyOeI0IaaG4maaaaaiaawIcacaGLPaaaaaa@4580@ geht:   M=?( 2 0 1 )+<( 5 4 3 )( 2 0 1 ),( 4 8 3 )( 2 0 1 )>=( 2 0 1 )+<( 3 4 2 ),( 6 8 4 )>=( 2 0 1 )+<( 3 4 2 )>. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaikdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacaaI1aaabaGaeyOeI0IaaGinaaqaaiaaiodaaaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaafaqabeWabaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqadeaaaeaacqGHsislcaaI0aaabaGaaGioaaqaaiabgkHiTiaaiodaaaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaafaqabeWabaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiabg6da+iabg2da9maabmaabaqbaeqabmqaaaqaaiaaikdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacaaIZaaabaGaeyOeI0IaaGinaaqaaiaaikdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabmqaaaqaaiabgkHiTiaaiAdaaeaacaaI4aaabaGaeyOeI0IaaGinaaaaaiaawIcacaGLPaaacqGH+aGpcqGH9aqpdaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWZaaeWaaeaafaqabeWabaaabaGaaG4maaqaaiabgkHiTiaaisdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabg6da+aaa@7256@
     
  • von 𝔽() MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrcaGGOaGaeSyhHeQaaiykaaaa@4495@ , der durch 3 X 2    und    X 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaadIfadaahaaWcbeqaaiaaikdaaaGccaaMe8UaaeyDaiaab6gacaqGKbGaaGjbVlaadIfadaahaaWcbeqaaiaaikdaaaaaaa@4026@ geht:   M=?3 X 2 +<3 X 2 X 2 >=3 X 2 +<2 X 2 >=< X 2 >. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaaiodacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeyipaWJaaG4maiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaOGaeyOpa4Jaeyypa0JaaG4maiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqGH8aapcaaIYaGaamiwamaaCaaaleqabaGaaGOmaaaakiabg6da+iabg2da9iabgYda8iaadIfadaahaaWcbeqaaiaaikdaaaGccqGH+aGpaaa@5075@

In einem der ersten Beispiele sind Untervektorräume als spezielle affine Unterräume erkannt worden. Die nachfolgende Bemerkung stellt einige Kriterien zusammen, die diesen Sonderfall ausmachen.
Bemerkung:  Für einen affinen Unterraum M=a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcaWGxbaaaa@3A65@ von V sind die folgenden Aussagen äquivalent:
  1. M ist ein Vektorraum
  2. 0M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaad2eaaaa@38F9@
  3. aW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadEfaaaa@392F@
  4. M=W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadEfaaaa@389D@

Beweis:

1.        MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlabgkDiElaaysW7aaa@3B60@ 2.: Hier ist nichts zu zeigen.
2.        MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlabgkDiElaaysW7aaa@3B60@ 3.: Es gibt also ein wW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgIGiolaadEfaaaa@3945@ , so dass 0=a+w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iaadggacqGHRaWkcaWG3baaaa@3A6D@ . Folgt: a=wW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iabgkHiTiaadEhacqGHiiIZcaWGxbaaaa@3C1E@ .
3.        MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlabgkDiElaaysW7aaa@3B60@ 4.: Mit a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36CF@ ist auch aW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamyyaiabgIGiolaadEfaaaa@3A1C@ , also hat man: 0=a+(a)M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iaadggacqGHRaWkcaGGOaGaeyOeI0IaamyyaiaacMcacqGHiiIZcaWGnbaaaa@3EF3@ . Man kann somit den Aufpunkt von M austauschen: M=0+W=W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaaicdacqGHRaWkcaWGxbGaeyypa0Jaam4vaaaa@3C1B@ .
4.        MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlabgkDiElaaysW7aaa@3B60@ 1.: Hier ist wieder nichts zu zeigen.

Treffen zwei affine Unterräume aufeinander, so führt lediglich die Schnittbildung nicht aus der Klasse der affinen Unterräume heraus.
Bemerkung:  M=a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcaWGxbaaaa@3A65@ und N= a + W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2da9iaadggadaahaaWcbeqaaiabgEHiQaaakiabgUcaRiaadEfadaahaaWcbeqaaiabgEHiQaaaaaa@3CA8@ seien zwei affine Unterräume von V. Ist MN MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgMIihlaad6eacqGHGjsUcqGHfiIXaaa@3C6C@ , so ist MN MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgMIihlaad6eaaaa@392C@ wieder ein affiner Unterraum von V.

Beweis:

Sei b ein gemeinsamer Vektor von M und N. Wir können b sowohl bei M als auch bei N als neuen Aufpunkt einsetzen:

M=b+W N=b+ W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaad2eacqGH9aqpcaWGIbGaey4kaSIaam4vaaqaaiaad6eacqGH9aqpcaWGIbGaey4kaSIaam4vamaaCaaaleqabaGaey4fIOcaaaaaaaa@400C@

Nun zeigen wir: MN=b+W W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgMIihlaad6eacqGH9aqpcaWGIbGaey4kaSIaam4vaiabgMIihlaadEfadaahaaWcbeqaaiabgEHiQaaaaaa@406D@ . Da W W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgMIihlaadEfadaahaaWcbeqaaiabgEHiQaaaaaa@3A5B@ ein Untervektorraum ist, ist durch diese Gleichheit die Aussage bewiesen.

xMN xM      xN xbW      xb W xbW W xb+W W . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamiEaiabgIGiolaad2eacqGHPiYXcaWGobGaaGzbVdqaaiabgsDiBlaaywW7caWG4bGaeyicI4SaamytaiaaysW7cqGHNis2caaMe8UaamiEaiabgIGiolaad6eaaeaaaeaacqGHuhY2caaMf8UaamiEaiabgkHiTiaadkgacqGHiiIZcaWGxbGaaGjbVlabgEIizlaaysW7caWG4bGaeyOeI0IaamOyaiabgIGiolaadEfadaahaaWcbeqaaiabgEHiQaaaaOqaaaqaaiabgsDiBlaaywW7caWG4bGaeyOeI0IaamOyaiabgIGiolaadEfacqGHPiYXcaWGxbWaaWbaaSqabeaacqGHxiIkaaaakeaaaeaacqGHuhY2caaMf8UaamiEaiabgIGiolaadkgacqGHRaWkcaWGxbGaeyykICSaam4vamaaCaaaleqabaGaey4fIOcaaaaaaaa@7A44@

Zur effektiven Berechnung des Schnittraums MN MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgMIihlaad6eaaaa@392C@ werden wir allerdings erst dann kommen, wenn wir ein sicheres Verfahren zur Lösung linearer Gleichungssysteme entwickelt haben. Dies ist u.a. Aufgabe des nächsten Abschnitts. Hier charakterisieren wir zunächst die möglichen Lagebeziehungen zweier affiner Unterräume zu einander:
 
Definition:  M=a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcaWGxbaaaa@3A65@ und N= a + W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2da9iaadggadaahaaWcbeqaaiabgEHiQaaakiabgUcaRiaadEfadaahaaWcbeqaaiabgEHiQaaaaaa@3CA8@ seien zwei affine Unterräume von V. Wir sagen:
  • W W        W W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgkOimlaadEfadaahaaWcbeqaaiabgEHiQaaakiaaysW7cqGHOiI2caaMe8Uaam4vamaaCaaaleqabaGaey4fIOcaaOGaeyOGIWSaam4vaaaa@4467@ .
  • M und N sind echt parallel, falls sie parallel sind und MN= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgMIihlaad6eacqGH9aqpcqGHfiIXaaa@3BAB@ .
  • M und N sind windschief, falls sie nicht parallel sind und MN= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgMIihlaad6eacqGH9aqpcqGHfiIXaaa@3BAB@ .

 


Die Bedeutung der affinen Unterräume ist nicht auf den geometrischen Bereich beschränkt. Bei einer wichtigen Methode zur Konstruktion neuer Vektorräume, der sog. Quotientenräume, übernehmen sie die Rolle der neuen Vektoren!

 
Definition:  Es sei V ein Vektorraum und WV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgkOimlaadAfaaaa@399C@ ein Untervektorraum. Dann heißt die Menge
 
V / W ={a+W|aV} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaabaGaai4lamaaBaaabaGaam4vaaqabaaabeaacqGH9aqpcaGG7bGaamyyaiabgUcaRiaadEfacaGG8bGaamyyaiabgIGiolaadAfacaGG9baaaa@4284@

der Quotientenraum von V nach W. Die Elemente von V / W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaabaGaai4lamaaBaaabaGaam4vaaqabaaabeaaaaa@3895@ werden in diesem Zusammenhang auch Nebenklassen von W genannt.
 

Beachte:
Da die Aufpunkte affiner Unterräume austauschbar sind, kann ein Element von V / W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaabaGaai4lamaaBaaabaGaam4vaaqabaaabeaaaaa@3895@ verschiedene Darstellungsformen haben. Entscheidend ist in diesem Zusammenhang die folgende Äquivalenz:
 

a+W=a'+Waa'W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfacqGH9aqpcaWGHbGaai4jaiabgUcaRiaadEfacaaMf8Uaeyi1HSTaaGzbVlaadggacqGHsislcaWGHbGaai4jaiabgIGiolaadEfaaaa@481E@

 

Die Quotientenräume von V "erben" auf natürliche Weise eine Vektorraumstruktur. Wir führen zunächst eine Addition und eine Skalarenmultiplikation ein:
 
Definition und Bemerkung:  a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfaaaa@388D@ und b+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgUcaRiaadEfaaaa@388E@ Elemente von V / W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaabaGaai4lamaaBaaabaGaam4vaaqabaaabeaaaaa@3895@ und α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyicI4SaeSyhHekaaa@3A7C@ , so setzen wir:
  • (a+W)+(b+W)=(a+b)+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacqGHRaWkcaWGxbGaaiykaiabgUcaRiaacIcacaWGIbGaey4kaSIaam4vaiaacMcacqGH9aqpcaGGOaGaamyyaiabgUcaRiaadkgacaGGPaGaey4kaSIaam4vaaaa@4592@
  • α(a+W)=(αa)+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaiikaiaadggacqGHRaWkcaWGxbGaaiykaiabg2da9iaacIcacqaHXoqycaWGHbGaaiykaiabgUcaRiaadEfaaaa@4227@

Die so eingeführte Addition und die skalare Multiplikation hängen nicht von der speziellen Darstellung der Elemente ab, sie sind vertreterunabhängig definiert. Hat man nämlich
a+W=a'+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfacqGH9aqpcaWGHbGaai4jaiabgUcaRiaadEfaaaa@3CE2@ und b+W=b'+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgUcaRiaadEfacqGH9aqpcaWGIbGaai4jaiabgUcaRiaadEfaaaa@3CE4@ , also: aa'W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgkHiTiaadggacaGGNaGaeyicI4Saam4vaaaa@3BAD@ und bb'W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgkHiTiaadkgacaGGNaGaeyicI4Saam4vaaaa@3BAF@ , so gilt:

  • a+b(a'+b')=aa'+bb'W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadkgacqGHsislcaGGOaGaamyyaiaacEcacqGHRaWkcaWGIbGaai4jaiaacMcacqGH9aqpcaWGHbGaeyOeI0IaamyyaiaacEcacqGHRaWkcaWGIbGaeyOeI0IaamOyaiaacEcacqGHiiIZcaWGxbaaaa@49F5@ , d.h.aber: (a+b)+W=(a'+b')+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacqGHRaWkcaWGIbGaaiykaiabgUcaRiaadEfacqGH9aqpcaGGOaGaamyyaiaacEcacqGHRaWkcaWGIbGaai4jaiaacMcacqGHRaWkcaWGxbaaaa@43D1@ .
  • αaαa'=α(aa')W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaamyyaiabgkHiTiabeg7aHjaadggacaGGNaGaeyypa0JaeqySdeMaaiikaiaadggacqGHsislcaWGHbGaai4jaiaacMcacqGHiiIZcaWGxbaaaa@464D@ , also: (αa)+W=(αa')+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeg7aHjaadggacaGGPaGaey4kaSIaam4vaiabg2da9iaacIcacqaHXoqycaWGHbGaai4jaiaacMcacqGHRaWkcaWGxbaaaa@42D2@ .

 

 
Bemerkung:  Es sei V ein Vektorraum und WV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgkOimlaadAfaaaa@399C@ ein Untervektorraum. Mit den zuvor eingeführten Rechenoperationen + und · gilt:
 
( V / W ,+,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAfadaWgaaqaaiaac+cadaWgaaqaaiaadEfaaeqaaaqabaGaaiilaiabgUcaRiaacYcacqGHflY1caGGPaaaaa@3E7A@ ist ein Vektorraum.

Beweis:

Wir überprüfen die 8 definierenden Eigenschaften, wobei wir auf die entsprechen Eigenschaften in (V,+,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAfacaGGSaGaey4kaSIaaiilaiabgwSixlaacMcaaaa@3CA9@ zurückgreifen:

  1. + ist assoziativ:
    ((a+W)+(b+W))+(c+W) = ((a+b)+c)+W = (a+(b+c))+W = (a+W)+((b+W)+(c+W)). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaaabaGaaiikaiaacIcacaWGHbGaey4kaSIaam4vaiaacMcacqGHRaWkcaGGOaGaamOyaiabgUcaRiaadEfacaGGPaGaaiykaiabgUcaRiaacIcacaWGJbGaey4kaSIaam4vaiaacMcaaeaacqGH9aqpaeaacaGGOaGaaiikaiaadggacqGHRaWkcaWGIbGaaiykaiabgUcaRiaadogacaGGPaGaey4kaSIaam4vaaqaaiabg2da9aqaaiaacIcacaWGHbGaey4kaSIaaiikaiaadkgacqGHRaWkcaWGJbGaaiykaiaacMcacqGHRaWkcaWGxbaabaGaeyypa0dabaGaaiikaiaadggacqGHRaWkcaWGxbGaaiykaiabgUcaRiaacIcacaGGOaGaamOyaiabgUcaRiaadEfacaGGPaGaey4kaSIaaiikaiaadogacqGHRaWkcaWGxbGaaiykaiaacMcaaaaaaa@6910@ .
     
  2. + ist kommutativ:
    (a+W)+(b+W) = (a+b)+W = (b+a)+W = (b+W)+(a+W) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaaabaGaaiikaiaadggacqGHRaWkcaWGxbGaaiykaiabgUcaRiaacIcacaWGIbGaey4kaSIaam4vaiaacMcaaeaacqGH9aqpaeaacaGGOaGaamyyaiabgUcaRiaadkgacaGGPaGaey4kaSIaam4vaaqaaiabg2da9aqaaiaacIcacaWGIbGaey4kaSIaamyyaiaacMcacqGHRaWkcaWGxbaabaGaeyypa0dabaGaaiikaiaadkgacqGHRaWkcaWGxbGaaiykaiabgUcaRiaacIcacaWGHbGaey4kaSIaam4vaiaacMcaaaaaaa@5656@ .
     
  3. Es gibt ein neutrales Element 0 bzgl. +, und zwar ist dies 0+W=W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgUcaRiaadEfacqGH9aqpcaWGxbaaaa@3A43@ :
    (0+W)+(a+W)=(0+a)+W=a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaicdacqGHRaWkcaWGxbGaaiykaiabgUcaRiaacIcacaWGHbGaey4kaSIaam4vaiaacMcacqGH9aqpcaGGOaGaaGimaiabgUcaRiaadggacaGGPaGaey4kaSIaam4vaiabg2da9iaadggacqGHRaWkcaWGxbaaaa@48E2@ .
     
  4. Jedes Element a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadEfaaaa@388D@ besitzt ein inverses Element, nämlich a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamyyaiabgUcaRiaadEfaaaa@397A@ :
    (a+W)+(a+W)=(a+(a))+W=0+W=W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacqGHRaWkcaWGxbGaaiykaiabgUcaRiaacIcacqGHsislcaWGHbGaey4kaSIaam4vaiaacMcacqGH9aqpcaGGOaGaamyyaiabgUcaRiaacIcacqGHsislcaWGHbGaaiykaiaacMcacqGHRaWkcaWGxbGaeyypa0JaaGimaiabgUcaRiaadEfacqGH9aqpcaWGxbaaaa@4E23@ .
     
  5. α(β(a+W))=α(βa+W)=α(βa)+W=(αβ)a+W=(αβ)(a+W) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaiikaiabek7aIjaacIcacaWGHbGaey4kaSIaam4vaiaacMcacaGGPaGaeyypa0JaeqySdeMaaiikaiabek7aIjaadggacqGHRaWkcaWGxbGaaiykaiabg2da9iabeg7aHjaacIcacqaHYoGycaWGHbGaaiykaiabgUcaRiaadEfacqGH9aqpcaGGOaGaeqySdeMaeqOSdiMaaiykaiaadggacqGHRaWkcaWGxbGaeyypa0Jaaiikaiabeg7aHjabek7aIjaacMcacaGGOaGaamyyaiabgUcaRiaadEfacaGGPaaaaa@60E4@ .
     
  6. 1(a+W)=1a+W=a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaacIcacaWGHbGaey4kaSIaam4vaiaacMcacqGH9aqpcaaIXaGaamyyaiabgUcaRiaadEfacqGH9aqpcaWGHbGaey4kaSIaam4vaaaa@42B0@ .
     
  7. (α+β)(a+W) = (α+β)a+W = (αa+βa)+W = (αa+W)+(βa+W) = α(a+W)+β(a+W). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaaabaGaaiikaiabeg7aHjabgUcaRiabek7aIjaacMcacaGGOaGaamyyaiabgUcaRiaadEfacaGGPaaabaGaeyypa0dabaGaaiikaiabeg7aHjabgUcaRiabek7aIjaacMcacaWGHbGaey4kaSIaam4vaaqaaiabg2da9aqaaiaacIcacqaHXoqycaWGHbGaey4kaSIaeqOSdiMaamyyaiaacMcacqGHRaWkcaWGxbaabaGaeyypa0dabaGaaiikaiabeg7aHjaadggacqGHRaWkcaWGxbGaaiykaiabgUcaRiaacIcacqaHYoGycaWGHbGaey4kaSIaam4vaiaacMcaaeaacqGH9aqpaeaacqaHXoqycaGGOaGaamyyaiabgUcaRiaadEfacaGGPaGaey4kaSIaeqOSdiMaaiikaiaadggacqGHRaWkcaWGxbGaaiykaaaaaaa@6CED@
     
  8. α((a+W)+(b+W)) = α((a+b)+W) = α(a+b)+W = (αa+αb)+W = (αa+W)+(αb+W) = α(a+W)+α(b+W). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaaaabaaabaGaeqySdeMaaiikaiaacIcacaWGHbGaey4kaSIaam4vaiaacMcacqGHRaWkcaGGOaGaamOyaiabgUcaRiaadEfacaGGPaGaaiykaaqaaiabg2da9aqaaiabeg7aHjaacIcacaGGOaGaamyyaiabgUcaRiaadkgacaGGPaGaey4kaSIaam4vaiaacMcaaeaacqGH9aqpaeaacqaHXoqycaGGOaGaamyyaiabgUcaRiaadkgacaGGPaGaey4kaSIaam4vaaqaaiabg2da9aqaaiaacIcacqaHXoqycaWGHbGaey4kaSIaeqySdeMaamOyaiaacMcacqGHRaWkcaWGxbaabaGaeyypa0dabaGaaiikaiabeg7aHjaadggacqGHRaWkcaWGxbGaaiykaiabgUcaRiaacIcacqaHXoqycaWGIbGaey4kaSIaam4vaiaacMcaaeaacqGH9aqpaeaacqaHXoqycaGGOaGaamyyaiabgUcaRiaadEfacaGGPaGaey4kaSIaeqySdeMaaiikaiaadkgacqGHRaWkcaWGxbGaaiykaaaaaaa@7854@

Das folgende allgemeine Beispiel beschreibt die Rolle des kleinsten, bzw. des größten Untervektorraums bei der Quotientenbildung.
 
Beispiel:  V sei ein beliebiger Vektorraum; dann gilt:
  1. V / {0} ={a+{0}|aV}={{a}|aV} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaGGVaWaaSbaaWqaaiaacUhacaaIWaGaaiyFaaqabaaaleqaaOGaeyypa0Jaai4EaiaadggacqGHRaWkcaGG7bGaaGimaiaac2hacaGG8bGaamyyaiabgIGiolaadAfacaGG9bGaeyypa0Jaai4EaiaacUhacaWGHbGaaiyFaiaacYhacaWGHbGaeyicI4SaamOvaiaac2haaaa@509D@ ist also die Menge der Punkte in V.
  2. V / V ={a+V|aV}={V}={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaGGVaWaaSbaaWqaaiaadAfaaeqaaaWcbeaakiabg2da9iaacUhacaWGHbGaey4kaSIaamOvaiaacYhacaWGHbGaeyicI4SaamOvaiaac2hacqGH9aqpcaGG7bGaamOvaiaac2hacqGH9aqpcaGG7bGaaGimaiaac2haaaa@4A4F@ . V / V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaGGVaWaaSbaaWqaaiaadAfaaeqaaaWcbeaaaaa@38B6@ ist stets der Nullraum.

Es gibt natürlich auch "richtige" Beispiele:
 
Beispiel:
  • 3 / < e 3 > ={a+< e 3 >|a 3 }={( a 1 a 2 0 )+< e 3 >|a 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaleaacaGGVaWaaSbaaWqaaiabgYda8iaadwgadaWgaaqaaiaaiodaaeqaaiabg6da+aqabaaaleqaneaacqWIDesOdaahaaGdbeqaaiaaiodaaaaaaOGaeyypa0Jaai4EaiaadggacqGHRaWkcqGH8aapcaWGLbWaaSbaaSqaaiaaiodaaeqaaOGaeyOpa4JaaiiFaiaadggacqGHiiIZcqWIDesOdaahaaWcbeqaaiaaiodaaaGccaGG9bGaeyypa0Jaai4EamaabmaabaqbaeqabmqaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapcaWGLbWaaSbaaSqaaiaaiodaaeqaaOGaeyOpa4JaaiiFaiaadggacqGHiiIZcqWIDesOdaahaaWcbeqaaiaaikdaaaGccaGG9baaaa@5F79@

  •  
  • 2 / < X 2 > ={p+< X 2 >|p 2 }={q+< X 2 >|q 1 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqaleaacaGGVaWaaSbaaWqaaiabgYda8iaadIfadaahaaqabeaacaaIYaaaaiabg6da+aqabaaaleqaneaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=LriqnaaCaaaoeqabaGaaGOmaaaaaaGccqGH9aqpcaGG7bGaamiCaiabgUcaRiabgYda8iaadIfadaahaaWcbeqaaiaaikdaaaGccqGH+aGpcaGG8bGaamiCaiabgIGiolab=LriqnaaCaaaleqabaGaaGOmaaaakiaac2hacqGH9aqpcaGG7bGaamyCaiabgUcaRiabgYda8iaadIfadaahaaWcbeqaaiaaikdaaaGccqGH+aGpcaGG8bGaamyCaiabgIGiolab=LriqnaaCaaaleqabaGaaGymaaaakiaac2haaaa@62F2@

 


 9.6
9.8.