9.9. Lineare Gleichungssysteme


In diesem Abschnitt untersuchen wir beliebige lineare Gleichungssysteme, also etwa Systeme von n Gleichungen mit m Unbekannten, die wir "klassisch" mit den Unbekannten x 1 ,, x m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGTbaabeaaaaa@3C74@ notieren:

a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqbaaaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaey4kaSIaeS47IWKaey4kaScabaGaamyyamaaBaaaleaacaaIXaGaamyBaaqabaGccaWG4bWaaSbaaSqaaiaad2gaaeqaaaGcbaGaeyypa0dabaGaamOyamaaBaaaleaacaaIXaaabeaaaOqaaiabl6Uinbqaaaqaaiabl6Uinbqaaaqaaiabl6UinbqaaiaadggadaWgaaWcbaGaamOBaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiabgUcaRiabl+UimjabgUcaRaqaaiaadggadaWgaaWcbaGaamOBaiaad2gaaeqaaOGaamiEamaaBaaaleaacaWGTbaabeaaaOqaaiabg2da9aqaaiaadkgadaWgaaWcbaGaamOBaaqabaaaaaaa@5C6C@

oder als eine (!) Vektorgleichung mit dem Unbekanntenvektor x:

( a 11 x 1 ++ a 1m x m a n1 x 1 ++ a nm x m )=( b 1 b n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaey4kaSIaeS47IWKaey4kaScabaGaamyyamaaBaaaleaacaaIXaGaamyBaaqabaGccaWG4bWaaSbaaSqaaiaad2gaaeqaaaGcbaGaeSO7I0eabaaabaGaeSO7I0eabaGaamyyamaaBaaaleaacaWGUbGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaey4kaSIaeS47IWKaey4kaScabaGaamyyamaaBaaaleaacaWGUbGaamyBaaqabaGccaWG4bWaaSbaaSqaaiaad2gaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabmqaaaqaaiaadkgadaWgaaWcbaGaaGymaaqabaaakeaacqWIUlstaeaacaWGIbWaaSbaaSqaaiaad6gaaeqaaaaaaOGaayjkaiaawMcaaaaa@5E89@  .

Durch die folgende Einführung eines Produkts zwischen zwei Vektoren lassen sich lineare Gleichungssysteme bequemer schreiben.
Definition: Für x,y m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@3CA7@ heißt die Zahl

xy= i=1 m x i y i = x 1 y 1 ++ x m y m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgwSixlaadMhacqGH9aqpdaaeWbqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccaWG5bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aOGaeyypa0JaamiEamaaBaaaleaacaaIXaaabeaakiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcaWG4bWaaSbaaSqaaiaad2gaaeqaaOGaamyEamaaBaaaleaacaWGTbaabeaaaaa@5159@

das Skalarprodukt von x und  y. Statt xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgwSixlaadMhaaaa@3A2E@ schreibt man üblicherweise auch xy.
 

Zunächst eröffnet das Skalarprodukt eine zweite Möglichkeit, einen Bildvektor ( a ij )x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhaaaa@3B68@ auszurechnen, und zwar über die Zeilenvektoren der Matrix ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ .
 
Bemerkung:  Ist ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ eine n × m - Matrix, so gilt für x m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHoaaCaaaleqabaGaamyBaaaaaaa@3AF9@ :

( a ij )x=( a 1 x a n x ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGH9aqpdaqadaqaauaabeqadeaaaeaacaWGHbWaaSbaaSqaaiaaigdacqGHIaYTaeqaaOGaeyyXICTaamiEaaqaaiabl6UinbqaaiaadggadaWgaaWcbaGaamOBaiabgkci3cqabaGccqGHflY1caWG4baaaaGaayjkaiaawMcaaaaa@4D72@ .

Beweis:

( a ij )x =    x 1 a 1 ++ x m a m =   ( x 1 a 11 ++ x m a 1m x 1 a n1 ++ x m a nm ) =   ( a 11 x 1 ++ a 1m x m a n1 x 1 ++ a nm x m ) =   ( a 1 x a n x ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhaaeaacqGH9aqpcaaMe8UaamiEamaaBaaaleaacaaIXaaabeaakiaadggadaWgaaWcbaGaeyOiGCRaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcaWG4bWaaSbaaSqaaiaad2gaaeqaaOGaamyyamaaBaaaleaacqGHIaYTcaWGTbaabeaaaOqaaaqaaiabg2da9iaaysW7daqadaqaauaabeqadmaaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqGHRaWkcqWIVlctcqGHRaWkaeaacaWG4bWaaSbaaSqaaiaad2gaaeqaaOGaamyyamaaBaaaleaacaaIXaGaamyBaaqabaaakeaacqWIUlstaeaaaeaacqWIUlstaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamyyamaaBaaaleaacaWGUbGaaGymaaqabaaakeaacqGHRaWkcqWIVlctcqGHRaWkaeaacaWG4bWaaSbaaSqaaiaad2gaaeqaaOGaamyyamaaBaaaleaacaWGUbGaamyBaaqabaaaaaGccaGLOaGaayzkaaaabaaabaGaeyypa0JaaGjbVpaabmaabaqbaeqabmWaaaqaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiabgUcaRiabl+UimjabgUcaRaqaaiaadggadaWgaaWcbaGaaGymaiaad2gaaeqaaOGaamiEamaaBaaaleaacaWGTbaabeaaaOqaaiabl6Uinbqaaaqaaiabl6UinbqaaiaadggadaWgaaWcbaGaamOBaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiabgUcaRiabl+UimjabgUcaRaqaaiaadggadaWgaaWcbaGaamOBaiaad2gaaeqaaOGaamiEamaaBaaaleaacaWGTbaabeaaaaaakiaawIcacaGLPaaaaeaaaeaacqGH9aqpcaaMe8+aaeWaaeaafaqabeWabaaabaGaamyyamaaBaaaleaacaaIXaGaeyOiGClabeaakiabgwSixlaadIhaaeaacqWIUlstaeaacaWGHbWaaSbaaSqaaiaad6gacqGHIaYTaeqaaOGaeyyXICTaamiEaaaaaiaawIcacaGLPaaaaaaaaa@A50D@

Nach diesen Vorbereitungen formulieren wir nun den Begriff lineares Gleichungssystem in Matrixschreibweise. Solche Systeme lassen sich dadurch bequem und elegant notieren.
 
Definition: Ist ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ eine n × m - Matrix und b n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgIGiolabl2riHoaaCaaaleqabaGaamOBaaaaaaa@3AE4@ , so nenen wir eine Gleichung der Form

( a ij )x=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGH9aqpcaWGIbaaaa@3D55@ (*)

ein lineares Gleichungssystem von n Gleichungen mit m Unbekannten (kurz: ein lineares n × m - System).

Wir nennen das System (*) homogen, falls b=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2da9iaaicdaaaa@3890@ , und inhomogen falls b0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgcMi5kaaicdaaaa@3951@ .

( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ ist die Koeffizientenmatrix von (*), b die rechte Seite von (*). Die Menge

L={x m |( a ij )x=b}={{x m | a i x= b i }|1in} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2da9iaacUhacaWG4bGaeyicI4SaeSyhHe6aaWbaaSqabeaacaWGTbaaaOGaaiiFamaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWG4bGaeyypa0JaamOyaiaac2hacqGH9aqpcqGHPiYXcaGG7bGaai4EaiaadIhacqGHiiIZcqWIDesOdaahaaWcbeqaaiaad2gaaaGccaGG8bGaamyyamaaBaaaleaacaWGPbGaeyOiGClabeaakiabgwSixlaadIhacqGH9aqpcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiyFaiaacYhacaaIXaGaeyizImQaamyAaiabgsMiJkaad6gacaGG9baaaa@64F1@

heißt Lösungsmenge von (*). Im homogenen Fall ist offensichtlich L=Ker( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2da9iaadUeacaWGLbGaamOCaiaaykW7daqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaaaaa@407E@ .

Die Lösungsmenge eines linaren Gleichungssystems ist interessant strukturiert:
 
Bemerkung:  ( a i j ) x = b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGH9aqpcaWGIbaaaa@3D55@ sei ein lineares Gleichungssystem mit nicht leerer Lösungsmenge L. Dann gilt für jedes aL MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadYeaaaa@3924@ :

L=a+Ker( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2da9iaadggacqGHRaWkcaWGlbGaamyzaiaadkhacaaMc8+aaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@4246@

Nicht leere Lösungsmengen sind also immer affine Unterräume.

Beweis:

Sei aL MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadYeaaaa@3924@ , also ( a ij )a=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadggacqGH9aqpcaWGIbaaaa@3D3E@ . Dann ist:

xL ( a ij )x=b ( a ij )x( a ij )a=0 ( a ij )(xa)=0 xaKer( a ij ) xa+Ker( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaamiEaiabgIGiolaadYeaaeaacaaMf8Uaeyi1HSTaaGzbVpaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWG4bGaeyypa0JaamOyaaqaaaqaaiaaywW7cqGHuhY2caaMf8+aaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGHsisldaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamyyaiabg2da9iaaicdaaeaaaeaacaaMf8Uaeyi1HSTaaGzbVpaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaGaeyypa0JaaGimaaqaaaqaaiaaywW7cqGHuhY2caaMf8UaamiEaiabgkHiTiaadggacqGHiiIZcaWGlbGaamyzaiaadkhacaaMc8+aaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaqaaaqaaiaaywW7cqGHuhY2caaMf8UaamiEaiabgIGiolaadggacqGHRaWkcaWGlbGaamyzaiaadkhacaaMc8+aaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaaaaa@8E2F@

Wir notieren zunächst zwei einfache Beispiele, in denen "nur" die Nullmatrix und die Einheitsmatrix des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ als Koeffizientenmatrix auftreten. Dennoch enthalten beide Beispiele bereits grundlegende Züge für das Lösen allgemeiner Ssyteme. Gleichzeitig realisieren sie alle drei vorkommenden  Lösungsmöglichkeiten:

- keine Lösung
- genau eine Lösung, d.h. dimL=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacMgacaGGTbGaamitaiabg2da9iaaicdaaaa@3B42@
- unendlich viele Lösungen, d.h. dimL>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacMgacaGGTbGaamitaiabg6da+iaaicdaaaa@3B44@

 
Beispiel:
  • ( 0 )x=bx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaamiEaiabg2da9iaadkgacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGHiiIZcqGHfiIXaaa@4488@ , falls b0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgcMi5kaaicdaaaa@3951@ .
    ( 0 )x=0x n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaamiEaiabg2da9iaaicdacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGHiiIZcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@4572@ .
  • ( δ ij )x=bx=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamiEaiabg2da9iaadkgacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpcaWGIbaaaa@4676@ .

Das erste Beispiel gibt einen Hinweis auf die mögliche Lösbarkeit eines Gleichungssystems:
 
Bemerkung: Ist ( a i j ) x = b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGH9aqpcaWGIbaaaa@3D55@ ein lineares Gleichungssystem, so gilt:
  • Tritt in der Koeffizientenmatrix ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ eine Nullzeile auf, die in der rechten Seite b nicht durch 0 bedient wird, ist die Lösungsmenge leer: L= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2da9iabgwGigdaa@3939@ .

  • Steht jeder Nullzeile von ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ eine Null in b gegenüber, so tragen diese Zeilen nicht zur Lösung bei und können vollständig weggelassen werden.

Beweis:

Sei etwa a k =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGRbGaeyOiGClabeaakiabg2da9iaaicdaaaa@3B3A@ .
Ist nun b k 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaaleaacaWGRbaabeaakiabgcMi5kaaicdaaaa@3A77@ , so hat ( a i j ) x = b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGH9aqpcaWGIbaaaa@3D55@ zur Folge: 0= a k x= b k 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iaadggadaWgaaWcbaGaam4Aaiabgkci3cqabaGccqGHflY1caWG4bGaeyypa0JaamOyamaaBaaaleaacaWGRbaabeaakiabgcMi5kaaicdaaaa@4415@ - Widerspruch.
Ist dagegen b k =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaaleaacaWGRbaabeaakiabg2da9iaaicdaaaa@39B6@ , so ist a k x= b k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGRbGaeyOiGClabeaakiabgwSixlaadIhacqGH9aqpcaWGIbWaaSbaaSqaaiaadUgaaeqaaaaa@3FCA@ für alle x wahr, d.h. also:

L={{x m | a i x= b i }|1in}={{x m | a i x= b i }|1in,   ik} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2da9iabgMIihlaacUhacaGG7bGaamiEaiabgIGiolabl2riHoaaCaaaleqabaGaamyBaaaakiaacYhacaWGHbWaaSbaaSqaaiaadMgacqGHIaYTaeqaaOGaeyyXICTaamiEaiabg2da9iaadkgadaWgaaWcbaGaamyAaaqabaGccaGG9bGaaiiFaiaaigdacqGHKjYOcaWGPbGaeyizImQaamOBaiaac2hacqGH9aqpcqGHPiYXcaGG7bGaai4EaiaadIhacqGHiiIZcqWIDesOdaahaaWcbeqaaiaad2gaaaGccaGG8bGaamyyamaaBaaaleaacaWGPbGaeyOiGClabeaakiabgwSixlaadIhacqGH9aqpcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiyFaiaacYhacaaIXaGaeyizImQaamyAaiabgsMiJkaad6gacaGGSaGaaGjbVlaadMgacqGHGjsUcaWGRbGaaiyFaaaa@77F2@ .
 

 
Beispiel:  
  1. ( 3 1 2 0 0 0 2 0 4 )x=( 3 3 2 )x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaG4maaqaaiaaigdaaeaacaaIYaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOmaaqaaiaaicdaaeaacaaI0aaaaaGaayjkaiaawMcaaiaadIhacqGH9aqpdaqadaqaauaabeqadeaaaeaacaaIZaaabaGaaG4maaqaaiaaikdaaaaacaGLOaGaayzkaaGaaGzbVlabgsDiBlaaywW7caWG4bGaeyicI4SaeyybIymaaa@4D62@
     
  2. ( 0 0 1 0 0 1 )x=( 0 2 7 )( 1 0 0 1 )x=( 2 7 )x=( 2 7 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWacaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaadIhacqGH9aqpdaqadaqaauaabeqadeaaaeaacaaIWaaabaGaaGOmaaqaaiaaiEdaaaaacaGLOaGaayzkaaGaaGzbVlabgsDiBlaaywW7daqadaqaauaabeqaciaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaadIhacqGH9aqpdaqadaqaauaabeqaceaaaeaacaaIYaaabaGaaG4naaaaaiaawIcacaGLPaaacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpdaqadaqaauaabeqaceaaaeaacaaIYaaabaGaaG4naaaaaiaawIcacaGLPaaaaaa@5B54@ .

Es reicht also, im Folgenden nur nullzeilenfreie Systeme zu betrachten! Als nächstes verallgemeinern wir die Äquivalenz ( δ ij )x=bx=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamiEaiabg2da9iaadkgacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpcaWGIbaaaa@4676@ , um auch nicht quadratische Systeme behandeln zu können.
 
Bemerkung und Bezeichnung: Ein lineares n × m - System der Form

( ( ) ( δ ij ) )x=b( ( ) 1 0 0 1 )x=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeqacaacbaWaaeWaaeaacqGHxiIkaiaawIcacaGLPaaaaeaadaqadaqaaiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaGaamiEaiabg2da9iaadkgacaaMf8Uaeyi1HSTaaGzbVpaabmaabaqbaeqabeGaaGqaamaabmaabaGaey4fIOcacaGLOaGaayzkaaaabaqbaeqabmWaaaqaaiaaigdaaeaacqWIVlctaeaacaaIWaaabaGaeSO7I0eabaGaeSy8I8eabaGaeSO7I0eabaGaaGimaaqaaiabl+UimbqaaiaaigdaaaaaaaGaayjkaiaawMcaaiaadIhacqGH9aqpcaWGIbaaaa@5B4E@

nennen wir maximal diagonalisiert.

Das Lösungsverhalten eines solchen Gleichungssystems ist direkt ablesbar:

  • Ist m=n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2da9iaad6gaaaa@38D4@ , so gibt es keine (*)-Spalten, und die Koeffizientenmatrix ist die Einheitsmatrix. Die rechte Seite b ist also einzige Lösung:

    L={b}=b+{0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2da9iaacUhacaWGIbGaaiyFaiabg2da9iaadkgacqGHRaWkcaGG7bGaaGimaiaac2haaaa@4030@ .

  • Ist m>n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg6da+iaad6gaaaa@38D6@ , etwa m=n+k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2da9iaad6gacqGHRaWkcaWGRbaaaa@3AA6@ , so treten k (*)-Spalten auf, etwa w 1 ,, w k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacqGHIaYTcaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacqGHIaYTcaWGRbaabeaaaaa@3F7A@ . Das System besitzt dann unendliche viele Lösungen. Die Lösungsmenge ist der k-dimensionale affine Unterraum

    L=( 0 b )+<( e 1 w 1 ),,( e k w k )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2da9maabmaabaqbaeqabiqaaaqaaiaaicdaaeaacaWGIbaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabiqaaaqaaiaadwgadaWgaaWcbaGaaGymaaqabaaakeaacqGHsislcaWG3bWaaSbaaSqaaiabgkci3kaaigdaaeqaaaaaaOGaayjkaiaawMcaaiaacYcacqWIMaYscaGGSaWaaeWaaeaafaqabeGabaaabaGaamyzamaaBaaaleaacaWGRbaabeaaaOqaaiabgkHiTiaadEhadaWgaaWcbaGaeyOiGCRaam4AaaqabaaaaaGccaGLOaGaayzkaaGaeyOpa4daaa@5071@ .

    e 1 ,, e k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyzamaaBaaaleaacaWGRbaabeaaaaa@3C4C@ ist dabei die Standardbasis und 0 der Nullvektor des k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGRbaaaaaa@3876@ .

    Beweis:

    ( ( ) ( δ ij ) )x=b    ( w 11 w 1k 1 0 w n1 w nk 0 1 )x=b     w 11 x 1 ++ w 1k x k +    x k+1 = b 1 w n1 x 1 ++ w nk x k +    x k+n = b n     x 1 ,, x k    beliebig x k+1 = b 1 w 11 x 1 w 1k x k x k+n = b n w n1 x 1 w nk x k    x=( x 1 x k b 1 w 11 x 1 w 1k x k b n w n1 x 1 w nk x k )   , x 1 ,, x k    beliebig       x=( 0 0 b 1 b n )+ x 1 ( 1 0 w 11 w n1 )++ x k ( 1 0 w 1k w nk )    x( 0 b )+<( e 1 w 1 ),,( e k w k )>. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaaaabaWaaeWaaeaafaqabeqacaaabaWaaeWaaeaacqGHxiIkaiaawIcacaGLPaaaaeaadaqadaqaaiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaGaamiEaiabg2da9iaadkgaaeaacaaMe8Uaeyi1HSTaaGzbVpaabmaabaqbaeqabmGbaaaabaGaam4DamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqWIVlctaeaacaWG3bWaaSbaaSqaaiaaigdacaWGRbaabeaaaOqaaiaaigdaaeaacqWIVlctaeaacaaIWaaabaGaeSO7I0eabaaabaGaeSO7I0eabaGaeSO7I0eabaGaeSy8I8eabaGaeSO7I0eabaGaam4DamaaBaaaleaacaWGUbGaaGymaaqabaaakeaacqWIVlctaeaacaWG3bWaaSbaaSqaaiaad6gacaWGRbaabeaaaOqaaiaaicdaaeaacqWIVlctaeaacaaIXaaaaaGaayjkaiaawMcaaiaadIhacqGH9aqpcaWGIbaabaaabaGaaGjbVlabgsDiBlaaywW7faqabeWafaaaaeaacaWG3bWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacqGHRaWkcqWIVlctcqGHRaWkaeaacaWG3bWaaSbaaSqaaiaaigdacaWGRbaabeaakiaadIhadaWgaaWcbaGaam4AaaqabaaakeaacqGHRaWkcaaMe8UaamiEamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccqGH9aqpaeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeSO7I0eabaaabaGaeSO7I0eabaaabaGaeSO7I0eabaGaam4DamaaBaaaleaacaWGUbGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaey4kaSIaeS47IWKaey4kaScabaGaam4DamaaBaaaleaacaWGUbGaam4AaaqabaGccaWG4bWaaSbaaSqaaiaadUgaaeqaaaGcbaGaey4kaSIaaGjbVlaadIhadaWgaaWcbaGaam4AaiabgUcaRiaad6gaaeqaaOGaeyypa0dabaGaamOyamaaBaaaleaacaWGUbaabeaaaaaakeaaaeaacaaMe8Uaeyi1HSTaaGzbVxaabaqaceaaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaGjbVlaabkgacaqGLbGaaeiBaiaabMgacaqGLbGaaeOyaiaabMgacaqGNbaabaqbaeqabmWaaaqaaiaadIhadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaaGcbaGaeyypa0dabaGaamOyamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadEhadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiabl+UimjabgkHiTiaadEhadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGRbaabeaaaOqaaiabl6Uinbqaaaqaaiabl6UinbqaaiaadIhadaWgaaWcbaGaam4AaiabgUcaRiaad6gaaeqaaaGcbaGaeyypa0dabaGaamOyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadEhadaWgaaWcbaGaamOBaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiabl+UimjabgkHiTiaadEhadaWgaaWcbaGaamOBaiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGRbaabeaaaaaaaaGcbaaabaGaaGjbVlabgsDiBlaaywW7caWG4bGaeyypa0ZaaeWaaeaafaqabeGbbaaaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeSO7I0eabaGaamiEamaaBaaaleaacaWGRbaabeaaaOqaaiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcqWIVlctcqGHsislcaWG3bWaaSbaaSqaaiaaigdacaWGRbaabeaakiaadIhadaWgaaWcbaGaam4AaaqabaaakeaacqWIUlstaeaacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGUbGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeS47IWKaeyOeI0Iaam4DamaaBaaaleaacaWGUbGaam4AaaqabaGccaWG4bWaaSbaaSqaaiaadUgaaeqaaaaaaOGaayjkaiaawMcaaiaaysW7caGGSaGaaGzbVlaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadIhadaWgaaWcbaGaam4AaaqabaGccaaMe8UaaeOyaiaabwgacaqGSbGaaeyAaiaabwgacaqGIbGaaeyAaiaabEgacaaMe8oabaaabaGaaGjbVlabgsDiBlaaywW7caWG4bGaeyypa0ZaaeWaaeaafaqabeGbbaaaaeaacaaIWaaabaGaeSO7I0eabaGaaGimaaqaaiaadkgadaWgaaWcbaGaaGymaaqabaaakeaacqWIUlstaeaacaWGIbWaaSbaaSqaaiaad6gaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaGcdaqadaqaauaabeqageaaaaqaaiaaigdaaeaacqWIUlstaeaacaaIWaaabaGaeyOeI0Iaam4DamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqWIUlstaeaacqGHsislcaWG3bWaaSbaaSqaaiaad6gacaaIXaaabeaaaaaakiaawIcacaGLPaaacqGHRaWkcqWIVlctcqGHRaWkcaWG4bWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaafaqabeGbbaaaaeaacaaIXaaabaGaeSO7I0eabaGaaGimaaqaaiabgkHiTiaadEhadaWgaaWcbaGaaGymaiaadUgaaeqaaaGcbaGaeSO7I0eabaGaeyOeI0Iaam4DamaaBaaaleaacaWGUbGaam4AaaqabaaaaaGccaGLOaGaayzkaaaabaaabaGaaGjbVlabgsDiBlaaywW7caWG4bGaeyicI48aaeWaaeaafaqabeGabaaabaGaaGimaaqaaiaadkgaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWZaaeWaaeaafaqabeGabaaabaGaamyzamaaBaaaleaacaaIXaaabeaaaOqaaiabgkHiTiaadEhadaWgaaWcbaGaeyOiGCRaaGymaaqabaaaaaGccaGLOaGaayzkaaGaaiilaiablAciljaacYcadaqadaqaauaabeqaceaaaeaacaWGLbWaaSbaaSqaaiaadUgaaeqaaaGcbaGaeyOeI0Iaam4DamaaBaaaleaacqGHIaYTcaWGRbaabeaaaaaakiaawIcacaGLPaaacqGH+aGpcaqGUaaaaaaa@889F@

Der L zugrundeliegende Unterraum ist darüber hinaus der Kern der Koeffizientenmatrix.
 

 
Beispiel:
  • ( 3 4 1 0 2 0 0 1 )x=( 5 2 )x( 0 0 5 2 )+<( 1 0 3 2 ),( 0 1 4 0 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGaeaaaaeaacaaIZaaabaGaaGinaaqaaiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGOmaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacaWG4bGaeyypa0ZaaeWaaeaafaqabeGabaaabaGaaGynaaqaaiaaikdaaaaacaGLOaGaayzkaaGaaGzbVlabgsDiBlaaywW7caWG4bGaeyicI48aaeWaaeaafaqabeabbaaaaeaacaaIWaaabaGaaGimaaqaaiaaiwdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabqqaaaaabaGaaGymaaqaaiaaicdaaeaacqGHsislcaaIZaaabaGaaGOmaaaaaiaawIcacaGLPaaacaGGSaWaaeWaaeaafaqabeabbaaaaeaacaaIWaaabaGaaGymaaqaaiabgkHiTiaaisdaaeaacaaIWaaaaaGaayjkaiaawMcaaiabg6da+aaa@5E6D@ .

Ziel ist es nun, ein beliebiges lineares Gleichungssystem durch "geeignete Manipulationen" in ein maximal diagonalisiertes System umzuschreiben, ohne dabei die Lösungsmenge zu verändern. Wie gerade beschrieben, läßt sich die Lösungsmenge dann direkt ablesen. Dieses Verfahren zur Lösung linearer Gleichungssysteme heißt Gauß-Algorithmus.
 


Der Abschnitt über affine Unterräume endete mit der Aussage, dass der Schnitt zweier affiner Unterräume - sofern nicht leer - wieder ein affiner Unterraum ist. Mit den nun zur Verfügung stehenden Methoden können wir für affine Unterräume des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ einen solchen Schnitt auch effektiv auszurechnen!

Zur Vorbereitung dient eine einfache, auch für beliebige Vektorräume gültige Aussage:
 
Bemerkung:  Sind M=a+W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcaWGxbaaaa@3A65@ und N=b+U MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2da9iaadkgacqGHRaWkcaWGvbaaaa@3A65@ zwei affine Unterräume, so ist

 

MN={xM|xbU} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgMIihlaad6eacqGH9aqpcaGG7bGaamiEaiabgIGiolaad2eacaGG8bGaamiEaiabgkHiTiaadkgacqGHiiIZcaWGvbGaaiyFaaaa@45B4@ .

D.h. für xM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaad2eaaaa@393C@ gilt:  xMNxbU MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaad2eacqGHPiYXcaWGobGaaGzbVlabgsDiBlaaywW7caWG4bGaeyOeI0IaamOyaiabgIGiolaadwfaaaa@4654@ .

Der Beweis ergibt sich direkt aus der Äquivalenz  xNxbU MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaad6eacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGHsislcaWGIbGaeyicI4Saamyvaaaa@43E4@ .
 

Wir betrachten nun affine Unterräume des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ :   M=a+< w 1 ,, w m > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaadggacqGHRaWkcqGH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaad2gaaeqaaOGaeyOpa4daaa@4228@ und N=b+< v 1 ,, v k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2da9iaadkgacqGHRaWkcqGH8aapcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4daaa@4226@ .
Für xM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaad2eaaaa@393C@ , etwa x= α 1 w 1 ++ α m w m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadEhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIVlctcqGHRaWkcqaHXoqydaWgaaWcbaGaamyBaaqabaGccaWG3bWaaSbaaSqaaiaad2gaaeqaaaaa@44FC@ , führt nun die Äquivalenz 

xb< v 1 ,, v k > xbIm( v 1 ,, v k ) es gibt ein   y,   so dass   xb=( v 1 v k )y ( v 1 v k )y=xb   ist lösbar MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaaabaGaamiEaiabgkHiTiaadkgacqGHiiIZcqGH8aapcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4dabaGaeyi1HSTaaGzbVdqaaiaadIhacqGHsislcaWGIbGaeyicI4Saciysaiaac2gacaaMc8UaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaam4AaaqabaGccaGGPaaabaGaeyi1HSTaaGzbVdqaaiaabwgacaqGZbGaaeiiaiaabEgacaqGPbGaaeOyaiaabshacaqGGaGaaeyzaiaabMgacaqGUbGaaGjbVlaadMhacaGGSaGaaGjbVlaabohacaqGVbGaaeiiaiaabsgacaqGHbGaae4CaiaabohacaaMe8UaamiEaiabgkHiTiaadkgacqGH9aqpcaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiablAciljaadAhadaWgaaWcbaGaam4AaaqabaGccaGGPaGaamyEaaqaaiabgsDiBlaaywW7aeaacaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiablAciljaadAhadaWgaaWcbaGaam4AaaqabaGccaGGPaGaamyEaiabg2da9iaadIhacqGHsislcaWGIbGaaGjbVlaabMgacaqGZbGaaeiDaiaabccacaqGSbGaaeO9aiaabohacaqGIbGaaeyyaiaabkhaaaaaaa@9645@

die Suche nach den Schnittelementen direkt zurück auf das Lösbarkeitsproblem einer aus den Daten von M und N gewonnen linearen Gleichung. Ihr Lösungsverhalten kann man mit Hilfe des Gauß-Algorithmus bestimmen.

Darüber hinaus liefert im Lösbarkeitsfall die Gleichung ( v 1 v k )y=xb MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccqWIMaYscaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaadMhacqGH9aqpcaWG4bGaeyOeI0IaamOyaaaa@4146@ für jeden Lösungsvektor  y  eine Darstellung von  x  als Element von N:
 

x=b+( v 1 v k )y=b+ y 1 v 1 ++ y k v k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadkgacqGHRaWkcaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiablAciljaadAhadaWgaaWcbaGaam4AaaqabaGccaGGPaGaamyEaiabg2da9iaadkgacqGHRaWkcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiabl+UimjabgUcaRiaadMhadaWgaaWcbaGaam4AaaqabaGccaWG2bWaaSbaaSqaaiaadUgaaeqaaaaa@4FD2@ .

Wir üben dieses Verfahren an einigen Beispielen:

Beispiel:
  1. Für g=( 2 0 4 )+<( 2 1 3 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaikdaaeaacaaIWaaabaGaeyOeI0IaaGinaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacqGHsislcaaIYaaabaGaaGymaaqaaiaaiodaaaaacaGLOaGaayzkaaGaeyOpa4daaa@443B@ und E=( 2 1 3 )+<( 2 1 1 ),( 3 0 1 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9maabmaabaqbaeqabmqaaaqaaiaaikdaaeaacaaIXaaabaGaaG4maaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabmqaaaqaaiaaiodaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacqGH+aGpaaa@46B7@ gilt: gE={( 2 2 2 )} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgMIihlaadweacqGH9aqpcaGG7bWaaeWaaeaafaqabeWabaaabaGaeyOeI0IaaGOmaaqaaiaaikdaaeaacaaIYaaaaaGaayjkaiaawMcaaiaac2haaaa@40FC@ ,
    denn: ist x=( 2 0 4 )+α( 2 1 3 )g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaikdaaeaacaaIWaaabaGaeyOeI0IaaGinaaaaaiaawIcacaGLPaaacqGHRaWkcqaHXoqydaqadaqaauaabeqadeaaaeaacqGHsislcaaIYaaabaGaaGymaaqaaiaaiodaaaaacaGLOaGaayzkaaGaeyicI4Saam4zaaaa@464F@ , so erhält man mit Hilfe des Gauß-Algorithmus:
     
    xgE    ( 2 3 1 0 1 1 )y=x( 2 1 3 ) ist lösbar ( 2 3 1 0 1 1 )y=( 2α 1+α 7+3α ) ist lösbar ( 0 0 1 0 0 1 )y=( 2010α 1+α 6+2α ) ist lösbar 2010α=0 α=2 x=( 2 0 4 )+2( 2 1 3 )=( 2 2 2 ) . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyWaaaaabaGaamiEaiabgIGiolaadEgacqGHPiYXcaWGfbGaaGjbVdqaaiabgsDiBlaaywW7daqadaqaauaabeqadiaaaeaacaaIYaaabaGaaG4maaqaaiaaigdaaeaacaaIWaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaamyEaiabg2da9iaadIhacqGHsisldaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGymaaqaaiaaiodaaaaacaGLOaGaayzkaaaabaGaaeyAaiaabohacaqG0bGaaeiiaiaabYgacaqG2dGaae4CaiaabkgacaqGHbGaaeOCaaqaaaqaaiabgsDiBlaaywW7daqadaqaauaabeqadiaaaeaacaaIYaaabaGaaG4maaqaaiaaigdaaeaacaaIWaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaamyEaiabg2da9maabmaabaqbaeqabmqaaaqaaiabgkHiTiaaikdacqaHXoqyaeaacqGHsislcaaIXaGaey4kaSIaeqySdegabaGaeyOeI0IaaG4naiabgUcaRiaaiodacqaHXoqyaaaacaGLOaGaayzkaaaabaGaaeyAaiaabohacaqG0bGaaeiiaiaabYgacaqG2dGaae4CaiaabkgacaqGHbGaaeOCaaqaaaqaaiabgsDiBlaaywW7daqadaqaauaabeqadiaaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaGaamyEaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaikdacaaIWaGaeyOeI0IaaGymaiaaicdacqaHXoqyaeaacqGHsislcaaIXaGaey4kaSIaeqySdegabaGaeyOeI0IaaGOnaiabgUcaRiaaikdacqaHXoqyaaaacaGLOaGaayzkaaaabaGaaeyAaiaabohacaqG0bGaaeiiaiaabYgacaqG2dGaae4CaiaabkgacaqGHbGaaeOCaaqaaaqaaiabgsDiBlaaywW7caaIYaGaaGimaiabgkHiTiaaigdacaaIWaGaeqySdeMaeyypa0JaaGimaaqaaaqaaaqaaiabgsDiBlaaywW7cqaHXoqycqGH9aqpcaaIYaaabaaabaaabaGaeyi1HSTaaGzbVlaadIhacqGH9aqpdaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGimaaqaaiabgkHiTiaaisdaaaaacaGLOaGaayzkaaGaey4kaSIaaGOmamaabmaabaqbaeqabmqaaaqaaiabgkHiTiaaikdaaeaacaaIXaaabaGaaG4maaaaaiaawIcacaGLPaaacqGH9aqpdaqadaqaauaabeqadeaaaeaacqGHsislcaaIYaaabaGaaGOmaaqaaiaaikdaaaaacaGLOaGaayzkaaGaaeOlaaqaaaaaaaa@CB9F@

     

  2. Für g=( 3 1 )+<( 4 2 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9maabmaabaqbaeqabiqaaaqaaiaaiodaaeaacaaIXaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabiqaaaqaaiabgkHiTiaaisdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabg6da+aaa@41D4@ und h=( 2 3 )+<( 2 1 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabg2da9maabmaabaqbaeqabiqaaaqaaiaaikdaaeaacaaIZaaaaaGaayjkaiaawMcaaiabgUcaRiabgYda8maabmaabaqbaeqabiqaaaqaaiaaikdaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaiabg6da+aaa@41D3@ gilt: gh= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgMIihlaadIgacqGH9aqpcqGHfiIXaaa@3BDF@ ,
    denn mit x=( 3 1 )+α( 4 2 )g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9maabmaabaqbaeqabiqaaaqaaiaaiodaaeaacaaIXaaaaaGaayjkaiaawMcaaiabgUcaRiabeg7aHnaabmaabaqbaeqabiqaaaqaaiabgkHiTiaaisdaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgIGiolaadEgaaaa@43E8@ hat man:
     
    xgh    ( 2 1 )y=x( 2 3 ) ist lösbar ( 2 1 )y=( 14α 2+2α ) ist lösbar ( 0 1 )y=( 3 22α ) ist lösbar 0=3 x. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuWaaaaabaGaamiEaiabgIGiolaadEgacqGHPiYXcaWGObGaaGjbVdqaaiabgsDiBlaaywW7daqadaqaauaabeqaceaaaeaacaaIYaaabaGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaacaWG5bGaeyypa0JaamiEaiabgkHiTmaabmaabaqbaeqabiqaaaqaaiaaikdaaeaacaaIZaaaaaGaayjkaiaawMcaaaqaaiaabMgacaqGZbGaaeiDaiaabccacaqGSbGaaeO9aiaabohacaqGIbGaaeyyaiaabkhaaeaaaeaacqGHuhY2caaMf8+aaeWaaeaafaqabeGabaaabaGaaGOmaaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaamyEaiabg2da9maabmaabaqbaeqabiqaaaqaaiaaigdacqGHsislcaaI0aGaeqySdegabaGaeyOeI0IaaGOmaiabgUcaRiaaikdacqaHXoqyaaaacaGLOaGaayzkaaaabaGaaeyAaiaabohacaqG0bGaaeiiaiaabYgacaqG2dGaae4CaiaabkgacaqGHbGaaeOCaaqaaaqaaiabgsDiBlaaywW7daqadaqaauaabeqaceaaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacaWG5bGaeyypa0ZaaeWaaeaafaqabeGabaaabaGaeyOeI0IaaG4maaqaaiaaikdacqGHsislcaaIYaGaeqySdegaaaGaayjkaiaawMcaaaqaaiaabMgacaqGZbGaaeiDaiaabccacaqGSbGaaeO9aiaabohacaqGIbGaaeyyaiaabkhaaeaaaeaacqGHuhY2caaMf8UaaGimaiabg2da9iabgkHiTiaaiodaaeaaaeaaaeaacqGHuhY2caaMf8UaamiEaiabgIGiolabgwGiglaab6caaeaaaaaaaa@9DC4@

     

  3. Für E=( 3 2 3 )+<( 2 1 3 ),( 1 1 0 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9maabmaabaqbaeqabmqaaaqaaiaaiodaaeaacaaIYaaabaGaaG4maaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGymaaqaaiaaiodaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIXaaabaGaaGimaaaaaiaawIcacaGLPaaacqGH+aGpaaa@46B9@ und F=( 1 1 1 )+<( 3 1 3 ),( 2 0 1 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabg2da9maabmaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqadeaaaeaacaaIZaaabaGaaGymaaqaaiaaiodaaaaacaGLOaGaayzkaaGaaiilamaabmaabaqbaeqabmqaaaqaaiaaikdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacqGH+aGpaaa@46B7@ gilt: EF=( 5 3 6 )+<( 9 5 12 )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabgMIihlaadAeacqGH9aqpdaqadaqaauaabeqadeaaaeaacaaI1aaabaGaaG4maaqaaiaaiAdaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWZaaeWaaeaafaqabeWabaaabaGaaGyoaaqaaiaaiwdaaeaacaaIXaGaaGOmaaaaaiaawIcacaGLPaaacqGH+aGpaaa@4575@ ,
    denn der Gauß-Algorithmus liefert für x=( 3 2 3 )+α( 2 1 3 )+β( 1 1 0 )E MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaiodaaeaacaaIYaaabaGaaG4maaaaaiaawIcacaGLPaaacqGHRaWkcqaHXoqydaqadaqaauaabeqadeaaaeaacaaIYaaabaGaaGymaaqaaiaaiodaaaaacaGLOaGaayzkaaGaey4kaSIaeqOSdi2aaeWaaeaafaqabeWabaaabaGaaGymaaqaaiaaigdaaeaacaaIWaaaaaGaayjkaiaawMcaaiabgIGiolaadweaaaa@4AA0@ :

     

    xEF    ( 3 2 1 0 3 1 )y=x( 1 1 1 ) ist lösbar ( 3 2 1 0 3 1 )y=( 2+2α+β 1+α+β 2+3α ) ist lösbar ( 0 0 1 0 0 1 )y=( 1α+4β 1+α+β 13α ) ist lösbar 1α+4β=0α=1+4β x=( 3 2 3 )+(1+4β)( 2 1 3 )+β( 1 1 0 ) x=( 5 3 6 )+β( 9 5 12 ) . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyWaaaaabaGaamiEaiabgIGiolaadweacqGHPiYXcaWGgbGaaGjbVdqaaiabgsDiBlaaywW7daqadaqaauaabeqadiaaaeaacaaIZaaabaGaaGOmaaqaaiaaigdaaeaacaaIWaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaGaamyEaiabg2da9iaadIhacqGHsisldaqadaqaauaabeqadeaaaeaacaaIXaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaaabaGaaeyAaiaabohacaqG0bGaaeiiaiaabYgacaqG2dGaae4CaiaabkgacaqGHbGaaeOCaaqaaaqaaiabgsDiBlaaywW7daqadaqaauaabeqadiaaaeaacaaIZaaabaGaaGOmaaqaaiaaigdaaeaacaaIWaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaGaamyEaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaikdacqGHRaWkcaaIYaGaeqySdeMaey4kaSIaeqOSdigabaGaaGymaiabgUcaRiabeg7aHjabgUcaRiabek7aIbqaaiaaikdacqGHRaWkcaaIZaGaeqySdegaaaGaayjkaiaawMcaaaqaaiaabMgacaqGZbGaaeiDaiaabccacaqGSbGaaeO9aiaabohacaqGIbGaaeyyaiaabkhaaeaaaeaacqGHuhY2caaMf8+aaeWaaeaafaqabeWacaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaadMhacqGH9aqpdaqadaqaauaabeqadeaaaeaacaaIXaGaeyOeI0IaeqySdeMaey4kaSIaaGinaiabek7aIbqaaiaaigdacqGHRaWkcqaHXoqycqGHRaWkcqaHYoGyaeaacqGHsislcaaIXaGaeyOeI0IaaG4maiabeg7aHbaaaiaawIcacaGLPaaaaeaacaqGPbGaae4CaiaabshacaqGGaGaaeiBaiaabApacaqGZbGaaeOyaiaabggacaqGYbaabaaabaGaeyi1HSTaaGzbVlaaigdacqGHsislcqaHXoqycqGHRaWkcaaI0aGaeqOSdiMaeyypa0JaaGimaiaaywW7cqGHuhY2caaMf8UaeqySdeMaeyypa0JaaGymaiabgUcaRiaaisdacqaHYoGyaeaaaeaaaeaacqGHuhY2caaMf8UaamiEaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaiodaaeaacaaIYaaabaGaaG4maaaaaiaawIcacaGLPaaacqGHRaWkcaGGOaGaaGymaiabgUcaRiaaisdacqaHYoGycaGGPaWaaeWaaeaafaqabeWabaaabaGaaGOmaaqaaiaaigdaaeaacaaIZaaaaaGaayjkaiaawMcaaiabgUcaRiabek7aInaabmaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIXaaabaGaaGimaaaaaiaawIcacaGLPaaaaeaaaeaaaeaacqGHuhY2caaMf8UaamiEaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaiwdaaeaacaaIZaaabaGaaGOnaaaaaiaawIcacaGLPaaacqGHRaWkcqaHYoGydaqadaqaauaabeqadeaaaeaacaaI5aaabaGaaGynaaqaaiaaigdacaaIYaaaaaGaayjkaiaawMcaaiaab6caaeaaaaaaaa@EC06@

 


 9.8
9.10.