6.2. Continuous Functions


Convergence occupies a central position among the properties of sequences. It is thus inevitable to study how functions deal with convergent sequences. We will distinguish those functions that are convergence-preserving, i.e. those that hand down convergence to the image sequences.

Definition:  Let aA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeacqGHckcZcqWIDesOaaa@3C05@ . A function  f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3B35@ is called continuous at a, if the following holds for every sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in A:

a n af( a n )f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaadggacaaMf8UaeyO0H4TaaGzbVlaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGHsgIRcaWGMbGaaiikaiaadggacaGGPaaaaa@492E@
[6.2.1]

Note how this definition elaborates the property 'convergence-preserving': It isn't just simply convergence that we claim for an image sequence (f( a n )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacaGGPaaaaa@3B15@ but convergence to the 'right' limit  f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaaaa@3893@ . From that we see that the value f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaaaa@3893@ is related in certain way to it's neighbouring values: No matter how we approach a on the x-axis, (i.e. whichever sequence a n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaadggaaaa@3A4B@ we choose), the image sequence on the y-axis will converge to  f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaaaa@3893@ .

Consider:

  • There are two ways to to show that a function  f  is discontinuous at a:

    • to find a sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in A converging to a such that (f( a n )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacaGGPaaaaa@3B15@ is divergent.

    • to find a sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in A converging to a such that (f( a n )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacaGGPaaaaa@3B15@ converges to a number different from  f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaaaa@3893@ .

  • The more handy notion of continuity

    limf( a n )=f(lim a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacMgacaGGTbGaaGPaVlaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGH9aqpcaWGMbGaaiikaiGacYgacaGGPbGaaiyBaiaaykW7caWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@47CB@ ,
    [6.2.2]

    reveals the following aspect: Continuous functions allow to swap the order of calculation of the limit and evaluating the function. This opens advanced techniques to calculate limits.

  • Every function  f is continuous at a if a is an isolated point of A. This is because any sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in A converging to a will turn out to be almost constant. Consequently this applies to the image sequence as well so that the convergence  f( a n )f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgkziUkaadAgacaGGOaGaamyyaiaacMcaaaa@3ED3@ is valid.
     

The first series of examples covers some common functions. All of them are continuous at every point of their domain. The first four examples are easy to prove using the limit theorems.

Example:  

  • Every constant function c is continuous at each a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@3943@

[6.2.3]

because:  a n ac( a n )=cc=c(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlis5caWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOKH4QaamyyaiaaywW7cqGHshI3caaMf8Uaam4yaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9iaadogacqGHsgIRcaWGJbGaeyypa0Jaam4yaiaacIcacaWGHbGaaiykaaaa@59AE@

  • Every linear function mX+b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaadIfacqGHRaWkcaWGIbaaaa@3901@ is continuous at each a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@3943@

[6.2.4]

because:  a n amX+b( a n )=m a n +bma+b=mX+b(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlis5caWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOKH4QaamyyaiaaywW7cqGHshI3caaMf8UaamyBaiaadIfacqGHRaWkcaWGIbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaamyBaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaWGIbGaeyOKH4QaamyBaiaadggacqGHRaWkcaWGIbGaeyypa0JaamyBaiaadIfacqGHRaWkcaWGIbGaaiikaiaadggacaGGPaaaaa@65A9@

  • Every power function X k ,k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaam4AaaaakiaacYcacaWGRbGaeyicI4SaeSyfHukaaa@3BFD@ , is continuous at each a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@3943@

[6.2.5]

because:  a n a X k ( a n )= a n k a k = X k (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFlis5caWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOKH4QaamyyaiaaywW7cqGHshI3caaMf8UaamiwamaaCaaaleqabaGaam4AaaaakiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9iaadggadaqhaaWcbaGaamOBaaqaaiaayIW7caWGRbaaaOGaeyOKH4QaamyyamaaCaaaleqabaGaam4Aaaaakiabg2da9iaadIfadaahaaWcbeqaaiaadUgaaaGccaGGOaGaamyyaiaacMcaaaa@60B4@

  • The reciprocals 1 X k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamiwamaaCaaaleqabaGaam4Aaaaaaaaaaa@382E@ are continuous at each a 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHoaaCaaaleqabaGaeyiyIKRaaGimaaaaaaa@3BF1@

[6.2.6]

because:  0 a n a 1 X k ( a n )= 1 a n k 1 a k = 1 X k (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgcMi5kaadggadaWgaaWcbaGaamOBaaqabaGccqGHsgIRcaWGHbGaaGzbVlabgkDiElaaywW7daWcaaqaaiaaigdaaeaacaWGybWaaWbaaSqabeaacaWGRbaaaaaakiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaadggadaqhaaWcbaGaamOBaaqaaiaayIW7caWGRbaaaaaakiabgkziUoaalaaabaGaaGymaaqaaiaadggadaahaaWcbeqaaiaadUgaaaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamiwamaaCaaaleqabaGaam4AaaaaaaGccaGGOaGaamyyaiaacMcaaaa@59B7@

  • The root function X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGybaaleqaaaaa@3661@ is continuous at each a 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHoaaCaaaleqabaGaeyyzImRaaGimaaaaaaa@3BF0@ .

[6.2.7]

Let ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ be a sequence in 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacqGHLjYScaaIWaaaaaaa@3986@ such that a n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaadggaaaa@3A4B@ . We have to show: a n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaqabaGccqGHsgIRdaGcaaqaaiaadggaaSqabaaaaa@3A76@ . To that end we take an ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ and proceed separately according to the value of a:

  • a=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaaicdaaaa@380F@ :  For ε 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaWbaaSqabeaacaaIYaaaaaaa@37F9@ there is an n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaaaaa@3742@ such that a n =| a n 0|< ε 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabg2da9iaacYhacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaGimaiaacYhacqGH8aapcqaH1oqzdaahaaWcbeqaaiaaikdaaaaaaa@41C8@ for all n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@39FB@ . These n satisfy:
     
    | a n 0 |= a n < ε 2 =ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFamaakaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaeqaaOGaeyOeI0YaaOaaaeaacaaIWaaaleqaaOGaaiiFaiabg2da9maakaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaeqaaOGaeyipaWZaaOaaaeaacqaH1oqzdaahaaWcbeqaaiaaikdaaaaabeaakiabg2da9iabew7aLbaa@44D4@     
     
  • a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3811@ :  For ε a >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaOaaaeaacaWGHbaaleqaaOGaeyOpa4JaaGimaaaa@39DD@ there is an n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaaaaa@3742@ such that | a n a|<ε a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaiabgYda8iabew7aLnaakaaabaGaamyyaaWcbeaaaaa@3EF7@ for all n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@39FB@ . With these n we can estimate as follows:
     
    | a n a |= | a n a || a n + a | | a n + a | = | a n a| a n + a | a n a| a < ε a a =ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFamaakaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaeqaaOGaeyOeI0YaaOaaaeaacaWGHbaaleqaaOGaaiiFaiabg2da9maalaaabaGaaiiFamaakaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaeqaaOGaeyOeI0YaaOaaaeaacaWGHbaaleqaaOGaaiiFaiabgwSixlaacYhadaGcaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaabeaakiabgUcaRmaakaaabaGaamyyaaWcbeaakiaacYhaaeaacaGG8bWaaOaaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaqabaGccqGHRaWkdaGcaaqaaiaadggaaSqabaGccaGG8baaaiabg2da9maalaaabaGaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaaqaamaakaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaeqaaOGaey4kaSYaaOaaaeaacaWGHbaaleqaaaaakiabgsMiJoaalaaabaGaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaaqaamaakaaabaGaamyyaaWcbeaaaaGccqGH8aapdaWcaaqaaiabew7aLnaakaaabaGaamyyaaWcbeaaaOqaamaakaaabaGaamyyaaWcbeaaaaGccqGH9aqpcqaH1oqzaaa@6C43@     

As already mentioned briefly [6.2.2] enables us to cope with some more challenging sequences. Using the root function's continuity for example we easily see that

  • 4 n 3 +3n 9 n 3 2 4 9 = 2 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaadaWcaaqaaiaaisdacaWGUbWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiaad6gaaeaacaaI5aGaamOBamaaCaaaleqabaGaaG4maaaakiabgkHiTiaaikdaaaaaleqaaOGaeyOKH46aaOaaaeaadaWcaaqaaiaaisdaaeaacaaI5aaaaaWcbeaakiabg2da9maalaaabaGaaGOmaaqaaiaaiodaaaaaaa@455A@
     
  • 3+ n1 n+1 3+ 1 =2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaIZaGaey4kaSYaaOaaaeaadaWcaaqaaiaad6gacqGHsislcaaIXaaabaGaamOBaiabgUcaRiaaigdaaaaaleqaaaqabaGccqGHsgIRdaGcaaqaaiaaiodacqGHRaWkdaGcaaqaaiaaigdaaSqabaaabeaakiabg2da9iaaikdaaaa@42B6@

  •  

Being closely connected with the limit concept continuity ata distinguishes such functions that have certain properties in the vicinity of a. Continuity is thus a local property!

We will show aspects of this property in detail within the next two propositions. At first we prove that cutting down the domain will not effect the continuity at a.

Proposition:  For any function  f:B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGcbGaeyOKH4QaeSyhHekaaa@3B36@ and arbitrary aAB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeacqGHckcZcaWGcbaaaa@3B5C@ we have

f  is continuous at a f|A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caWGMbGaaiiFaiaadgeaaaa@3D93@   is continuous at a
[6.2.8]

In general the reverse is false: According to example [6.2.13] the Heaviside step function H

 i

H(x)={ 1, if  x0 0, if  x<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaaigdacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadIhacqGHLjYScaaIWaaabaGaaGimaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabgYda8iaaicdaaaaacaGL7baaaaa@4C27@
is discontinuous at 0, althought it's restriction H| 0 =1| 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaacYhacqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaGccqGH9aqpcaaIXaGaaiiFaiabl2riHoaaCaaaleqabaGaeyyzImRaaGimaaaaaaa@423B@ is continuous at this point.

Proof:  As AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgkOimlaadkeaaaa@38F2@ we find that every sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in A converging to a is also a sequence in B with limit a. From that we see:
 

f|A( a n )=f( a n )f(a)=f|A(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYhacaWGbbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaamOzaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgkziUkaadAgacaGGOaGaamyyaiaacMcacqGH9aqpcaWGMbGaaiiFaiaadgeacaGGOaGaamyyaiaacMcaaaa@4BE8@

In a second example we prove that the continuity behaviour of two functions is identical as soon as they coincide in a neighbourhood of a. To state this precisely we introduce the following notions.

For any a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@3943@ and ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ the set

A a,ε A]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaGccqGH9aqpcaWGbbGaeyykICSaaiyxaiaadggacqGHsislcqaH1oqzcaGGSaGaamyyaiabgUcaRiabew7aLjaacUfaaaa@4665@
[6.2.9]

is called a relative ε-neighbourhood of a.

Two functions  f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3B35@ and g:B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGcbGaeyOKH4QaeSyhHekaaa@3B37@ are said to coincide locally at a if there is an ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ such that A a,ε = B a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaGccqGH9aqpcaWGcbWaaSbaaSqaaiaadggacaGGSaGaeqyTdugabeaaaaa@3ED8@ and

f(x)=g(x)  for all  x A a,ε = B a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOaGaamiEaiaacMcacqGH9aqpcaWGNbGaaiikaiaadIhacaGGPaGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWG4bGaeyicI4SaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaGccqGH9aqpcaWGcbWaaSbaaSqaaiaadggacaGGSaGaeqyTdugabeaaaaa@5013@
[6.2.10]

 

Proposition:  If  f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3B35@ and g:B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGcbGaeyOKH4QaeSyhHekaaa@3B37@ coincide locally at aAB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeacqGHPiYXcaWGcbaaaa@3AFE@ we have

f  is continuous at a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaywW7cqGHuhY2caaMf8oaaa@3A68@ g  is continuous at a
[6.2.11]

Proof:  We only show " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkDiEdaa@374D@ " as we get the other direction simply by interchanging  f and g. Now if ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ is an arbitrary sequence in B converging to a we find a suitable n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaaWcbaGaaGimaaqabaaaaa@36C9@ so that all sequence members are to be found in B a,ε = A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaWgaaWcbaGaamyyaiaacYcacqaH1oqzaeqaaOGaeyypa0JaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3E5F@ . Taking n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGHLjYScaWGUbWaaSbaaSqaaiaaicdaaeqaaaaa@3982@ we thus conclude:
 

g( a n )=f( a n )f(a)=g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGH9aqpcaWGMbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyOKH4QaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaadEgacaGGOaGaamyyaiaacMcaaaa@47E5@

Consider:

  • Obviously the functions  f and  f| A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYhacaWGbbWaaSbaaSqaaiaadggacaGGSaGaeqyTdugabeaaaaa@3B83@ coincide locally at a for each ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ . Thus we get the following equivalence as a special case of [6.2.11]:

    f  is continuous at a f| A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caWGMbGaaiiFaiaadgeadaWgaaWcbaGaamyyaiaacYcacqaH1oqzaeqaaaaa@40FB@   is continuous at a for one ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@
     

Piecewise defined functions often benefit from [6.2.11]. As an example we take the absolute value function and the Heaviside step function:

Example:  

  • The absolute value function |X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacaWGybGaaiiFaaaa@37CD@ is continuous at each a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHiiIZcqWIDesOaaa@38CA@ because:

[6.2.12]

At a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH+aGpcaaIWaaaaa@3798@   |X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacaWGybGaaiiFaaaa@37CD@ locally coincides with the linear function X and thus is continuous at a.

At a<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH8aapcaaIWaaaaa@3794@   |X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacaWGybGaaiiFaaaa@37CD@ locally coincides with the linear function X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadIfaaaa@36BA@ and thus is continuous at a.

The case a=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9aqpcaaIWaaaaa@3796@ cannot be solved by the 'locally coincide' trick. But we will succeed with a result on zero sequences

 i

a n 0| a n |0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaaicdacaaMf8UaeyO0H4TaaGzbVlaacYhacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiiFaiabgkziUkaaicdaaaa@46CE@

( [5.5.6] ) instead: 

a n 0|X|( a n )=| a n |0=|X|(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsgIRcaaIWaGaaGzbVlabgkDiElaaywW7caGG8bGaamiwaiaacYhacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGH9aqpcaGG8bGaamyyamaaBaaaleaacaWGUbaabeaakiaacYhacqGHsgIRcaaIWaGaeyypa0JaaiiFaiaadIfacaGG8bGaaiikaiaadggacaGGPaaaaa@5342@

  • The Heaviside step function H

     i

    H(x)={ 1, if  x0 0, if  x<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaaigdacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadIhacqGHLjYScaaIWaaabaGaaGimaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabgYda8iaaicdaaaaacaGL7baaaaa@4C27@
    is continuous at each a 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHiiIZcqWIDesOdaahaaWcbeqaaiabgcMi5kaaicdaaaaaaa@3B78@ because:

[6.2.13]

At a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH+aGpcaaIWaaaaa@3798@ H locally coincides with the constant function 1. Therefor H is continuous at a.

At a<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH8aapcaaIWaaaaa@3794@ H locally coincides with the constant function 0 and thus is continuous at a.

An example

 i

(1) n n 0, but (H( (1) n n )) is divergent MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaad6gaaaaakeaacaWGUbaaaiabgkziUkaaicdacaqGIbGaaeyDaiaabshacaGGOaGaamisaiaacIcadaWcaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaaaaaOqaaiaad6gaaaGaaiykaiaacMcacaqGPbGaae4CaiaabccacaqGKbGaaeyAaiaabAhacaqGLbGaaeOCaiaabEgacaqGLbGaaeOBaiaabshaaaa@5427@

in [6.1] shows that H is discontinuous at 0.

So far we only know functions that are continuous everywhere or everywhere except for one point. The next example will present functions that are continuous nowhere or continuous at only one point. The second example thereby again shows the local character of continuity: The continuity at a will not necessarily be passed on to neighbouring points.

Example:  

  • The indicator function χ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaSbaaSqaaiablQriKcqabaaaaa@393C@

     i

    χ (x)={ 1, if x 0, if x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaSbaaSqaaiablQriKcqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaGabaqaauaabaqaceaaaeaacaaIXaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyicI4SaeSOgHqkabaGaaGimaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabgMGiplablQriKcaaaiaawUhaaaaa@5063@
    is nowhere continuous:

[6.2.14]

If a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHiiIZcqWIAecPaaa@38CA@ take a sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in \ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl2riHkaacYfacqWIAecPcqGHckcZcqWIDesOaaa@3C1C@ converging to a. Then:

χ ( a n )=001= χ (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaBaaaleaacqWIAecPaeqaaOGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaaGimaiabgkziUkaaicdacqGHGjsUcaaIXaGaeyypa0Jaeq4Xdm2aaSbaaSqaaiablQriKcqabaGccaGGOaGaamyyaiaacMcaaaa@4940@

If a\ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHiiIZcqWIDesOcaGGCbGaeSOgHqkaaa@3B1A@ take a sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiablQriKkabgkOimlabl2riHcaa@39CC@ converging to a. This time we have:

χ ( a n )=110= χ (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaBaaaleaacqWIAecPaeqaaOGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaaGymaiabgkziUkaaigdacqGHGjsUcaaIWaGaeyypa0Jaeq4Xdm2aaSbaaSqaaiablQriKcqabaGccaGGOaGaamyyaiaacMcaaaa@4941@

  • The function X χ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHflY1cqaHhpWydaWgaaWcbaGaeSOgHqkabeaaaaa@3B6A@ is continuous at 0 and discontinuous at each a0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHGjsUcaaIWaaaaa@3857@ :

[6.2.15]

  • To show the continuity at 0 we take an arbitrary sequence a n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaaicdaaaa@3A1F@ . As χ ( a n ){0,1} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaSbaaSqaaiablQriKcqabaGccaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGHiiIZcaGG7bGaaGimaiaacYcacaaIXaGaaiyFaaaa@41D7@ the sequence (X χ ( a n ))=( a n )( χ ( a n )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfacqGHflY1cqaHhpWydaWgaaWcbaGaeSOgHqkabeaakiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiaacMcacqGH9aqpcaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGHflY1caGGOaGaeq4Xdm2aaSbaaSqaaiablQriKcqabaGccaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacaGGPaaaaa@4F84@ can be factorized into a zero sequence times a bounded sequence, and thus converges to 0=X χ (0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iaadIfacqGHflY1cqaHhpWydaWgaaWcbaGaeSOgHqkabeaakiaacIcacaaIWaGaaiykaaaa@3FC0@ .
     
  • Now consider a0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaicdaaaa@38D0@ and assume that X χ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0Firpepi0de9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHflY1cqaHhpWydaWgaaWcbaGaeSOgHqkabeaaaaa@3B6A@ is continuous at a. Then the implication

    a n a a n χ ( a n )a χ (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaadggacaaMf8UaeyO0H4TaaGzbVlaadggadaWgaaWcbaGaamOBaaqabaGccqGHflY1cqaHhpWydaWgaaWcbaGaeSOgHqkabeaakiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgkziUkaadggacqGHflY1cqaHhpWydaWgaaWcbaGaeSOgHqkabeaakiaacIcacaWGHbGaaiykaaaa@559B@

    is always true. Due to the fourth limit theorem we then have (without restriction we may assume a n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgcMi5kaaicdaaaa@39F9@ ):

    χ ( a n )= a n χ ( a n ) a n a χ (a) a = χ (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaSbaaSqaaiablQriKcqabaGccaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGH9aqpdaWcaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHflY1cqaHhpWydaWgaaWcbaGaeSOgHqkabeaakiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaaaOGaeyOKH46aaSaaaeaacaWGHbGaeyyXICTaeq4Xdm2aaSbaaSqaaiablQriKcqabaGccaGGOaGaamyyaiaacMcaaeaacaWGHbaaaiabg2da9iabeE8aJnaaBaaaleaacqWIAecPaeqaaOGaaiikaiaadggacaGGPaaaaa@5CC2@ .

    Thus we have proved χ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaSbaaSqaaiablQriKcqabaaaaa@38BC@ to be continuous at a.   Contradiction!

Many functions from our examples are continuous at more than one point, often even at each point of their domain. This observation motivates the introduction of a broader concept of continuity.

Definition:   Let AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgkOimlaadkeacqGHckcZcqWIDesOaaa@3C5E@ . A function  f:B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGcbGaeyOKH4QaeSyhHekaaa@3B36@   is called continuous on A, if  f is continuous at each aA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeaaaa@3899@ . We omit the extension 'on A' if A=B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iaadkeaaaa@37FC@ , i.e. if  f is continuous at every point of it's domain. The set of all functions being continuous on A is denoted by the symbol

C 0 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaWGbbGaaiykaaaa@3941@
[6.2.16]

We restate our examples using the new notation:

  • c C 0 (),mX+b C 0 (), X k C 0 (), 1 X k C 0 ( 0 ), X C 0 ( 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaeSyhHeQaaiykaiaacYcacaaMf8UaamyBaiaadIfacqGHRaWkcaWGIbGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacqWIDesOcaGGPaGaaiilaiaaywW7caWGybWaaWbaaSqabeaacaWGRbaaaOGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacqWIDesOcaGGPaGaaiilaiaaywW7daWcaaqaaiaaigdaaeaacaWGybWaaWbaaSqabeaacaWGRbaaaaaakiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaeSyhHe6aaWbaaSqabeaacqGHGjsUcaaIWaaaaOGaaiykaiaacYcacaaMf8+aaOaaaeaacaWGybaaleqaaOGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaGccaGGPaaaaa@6C43@
     
  • |X| C 0 (),H C 0 ( 0 ),H C 0 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfacaGG8bGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacqWIDesOcaGGPaGaaiilaiaaywW7caWGibGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacqWIDesOdaahaaWcbeqaaiabgcMi5kaaicdaaaGccaGGPaGaaiilaiaaywW7caWGibGaeyycI8Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacqWIDesOcaGGPaaaaa@5328@
     
  • χ C 0 (),X χ C 0 ({0}) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaSbaaSqaaiablQriKcqabaGccqGHiiIZcaWGdbWaaWbaaSqabeaacaaIWaaaaOGaaiikaiabgwGiglaacMcacaGGSaGaaGzbVlaadIfacqGHflY1cqaHhpWydaWgaaWcbaGaeSOgHqkabeaakiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaai4EaiaaicdacaGG9bGaaiykaaaa@4EE7@

  •  

The next part will reveal important algebraic properties of  C 0 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaWGbbGaaiykaaaa@3941@ . In this context we will also examine how continuity responds to basic arithmetics. We expect good results as this strategy has been very successful with convergence.

The remainder of this section is addressed to prove the continuity of the analytical functions. From this and [5.12.4] the continuity of the polynomials and their quotients, of sin, cos, tan, cot and exp is guaranteed.

p C 0 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3C64@ p q C 0 ({x|q(x)0}) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGWbaabaGaamyCaaaacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIWaaaaOGaaiikaiaacUhacaWG4bGaeyicI4SaeSyhHeQaaiiFaiaadghacaGGOaGaamiEaiaacMcacqGHGjsUcaaIWaGaaiyFaiaacMcaaaa@48B8@

sin,cos,exp C 0 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiilaiaaykW7ciGGJbGaai4BaiaacohacaGGSaGaaGPaVlGacwgacaGG4bGaaiiCaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaeSyhHeQaaiykaaaa@486B@

tan C 0 ({x|cosx0}) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacggacaGGUbGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaGG7bGaamiEaiabgIGiolabl2riHkaacYhaciGGJbGaai4BaiaacohacaWG4bGaeyiyIKRaaGimaiaac2hacaGGPaaaaa@4A12@ cot C 0 ({x|sinx0}) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGG0bGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaGG7bGaamiEaiabgIGiolabl2riHkaacYhaciGGZbGaaiyAaiaac6gacaWG4bGaeyiyIKRaaGimaiaac2hacaGGPaaaaa@4A1A@

[6.2.17]

 

Proposition:  The limit function of a convergent power series ( i=0 n a i (Xa) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaacIcacaWGybGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaaaaa@43D2@ is continuous at every point b of it's domain of convergence:

i=0 a i (Xa) i C 0 (]ar,a+r[) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIfacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaGGDbGaamyyaiabgkHiTiaadkhacaGGSaGaamyyaiabgUcaRiaadkhacaGGBbGaaiykaaaa@4F86@
[6.2.18]

Proof:  Let b]ar,a+r[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgIGiolaac2facaWGHbGaeyOeI0IaamOCaiaacYcacaWGHbGaey4kaSIaamOCaiaacUfaaaa@3FCD@ be arbitrary. The rearrangement theorem [5.11.20] provides a convergent power series ( i=0 n b i (Xb) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaacIcacaWGybGaeyOeI0IaamOyaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaaaaa@43D4@ such that

i=0 b i (xb) i = i=0 a i (xa) i    for all x satisfying  |xb|<sr|ba| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhacqGHsislcaWGIbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeyypa0ZaaabCaeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWG4bGaaeyBaiaabMgacaqG0bGaaiiFaiaadIhacqGHsislcaWGIbGaaiiFaiabgYda8iaadohacqGH9aqpcaWGYbGaeyOeI0IaaiiFaiaadkgacqGHsislcaWGHbGaaiiFaaaa@6BB8@

The limit functions thus coincide locally at b. So it is sufficient (cf. [6.2.11]) to prove the continuity of ( i=0 b i (Xb) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaacIcacaWGybGaeyOeI0IaamOyaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiaacMcaaaa@4452@ in b. To that end we take an arbitrary convergence ]bs,b+s[ x n b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaadkgacqGHsislcaWGZbGaaiilaiaadkgacqGHRaWkcaWGZbGaai4wamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae83cIuUaamiEamaaBaaaleaacaWGUbaabeaakiabgkziUkaadkgaaaa@4D9A@ and have to show:

i=0 b i ( x n b) i i=0 b i (bb) i = b 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGIbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeyOKH46aaabCaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadkgacqGHsislcaWGIbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeyypa0JaamOyamaaBaaaleaacaaIWaaabeaaaaa@569C@ [1]

At first we get a number t>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg6da+iaaicdaaaa@3824@ such that | x n b|t<s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGIbGaaiiFaiabgsMiJkaadshacqGH8aapcaWGZbaaaa@400D@ for all n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A68@ . According to [5.11.10] the series ( i=0 n b i t i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadshadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaaaaa@40C3@ is absolutely convergent. Consequently the same is true for ( i=1 n b i t i1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadshadaahaaWcbeqaaiaadMgacqGHsislcaaIXaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaaiykaaaa@426C@ so that we can estimate as follows:

0| i=0 b i ( x n b) i b 0 |=|( x n b) i=1 b i ( x n b) i1 || x n b| i=1 | b i | t i1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaacYhadaaeWbqaaiaadkgadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamiEamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadkgacaGGPaWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGHsislcaWGIbWaaSbaaSqaaiaaicdaaeqaaOGaaiiFaiabg2da9iaacYhacaGGOaGaamiEamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadkgacaGGPaWaaabCaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGIbGaaiykamaaCaaaleqabaGaamyAaiabgkHiTiaaigdaaaaabaGaamyAaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakiaacYhacqGHKjYOcaGG8bGaamiEamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadkgacaGG8bWaaabCaeaacaGG8bGaamOyamaaBaaaleaacaWGPbaabeaakiaacYhacaWG0bWaaWbaaSqabeaacaWGPbGaeyOeI0IaaGymaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aaaa@7A1D@

As x n b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGUbaabeaakiabgkziUkaadkgaaaa@3A63@ the right hand side converges to 0. This ensures i=0 b i ( x n b) i b 0 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGIbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeyOeI0IaamOyamaaBaaaleaacaaIWaaabeaakiabgkziUkaaicdaaaa@49AD@ and thus [1] is valid.

By definition an analytical function coincides locally at every point of it's domain with the limit function of a convergent power series. So we know:

Proposition:  Every analytical function is continuous, i.e.:

C (A) C 0 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaey4fIOcaaOGaaiikaiaadgeacaGGPaGaeyOGIWSaam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaWGbbGaaiykaaaa@3F4A@
[6.2.19]

6.1. 6.3.