7.10. Geometric Properties of Differentiable Functions


It is evident now from the previous chapter that the behaviour of a function  f is controlled by its own derivative  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ with the mean value theorem being the "controlling agent".

Now we are going to study two geometric behaviours in more detail, monotony and curvature. It will turn out that monotony is related to the first derivative and curvature to the second.

Definition:  A function  f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB5@ is called

  1. increasing (or monotonic increasing) on BA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgkOimlaadgeaaaa@3972@ , if the implication

    x<yf(x)f(y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgYda8iaadMhacaaMf8UaeyO0H4TaaGzbVlaadAgacaGGOaGaamiEaiaacMcacqGHKjYOcaWGMbGaaiikaiaadMhacaGGPaaaaa@4699@
    [7.10.1]
  2. decreasing (or monotonic decreasing) on BA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgkOimlaadgeaaaa@3972@ , if the implication

    x<yf(x)f(y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgYda8iaadMhacaaMf8UaeyO0H4TaaGzbVlaadAgacaGGOaGaamiEaiaacMcacqGHLjYScaWGMbGaaiikaiaadMhacaGGPaaaaa@46AA@
    [7.10.2]

holds for all x,yB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaamOqaaaa@3ADF@ .

f is called strictly increasing on B, if the conclusion in [7.10.1] could be tightened to  f(x)<f(y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgYda8iaadAgacaGGOaGaamyEaiaacMcaaaa@3D70@ . The property strictly decreasing is introduced appropriately.

Usually the term "on B" is only used if AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgcMi5kaadkeaaaa@393D@ .

Consider:

  • Obviously the constant functions are increasing and decreasing simultaneously. And they are the only ones of that kind, because: If  f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB5@ is monotone in both directions any two points x,yA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4Saamyqaaaa@3ADE@ will satisfy

    f(x)f(y)f(x)f(y)f(x)=f(y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgsMiJkaadAgacaGGOaGaamyEaiaacMcacaaMf8Uaey4jIKTaaGzbVlaadAgacaGGOaGaamiEaiaacMcacqGHLjYScaWGMbGaaiikaiaadMhacaGGPaGaaGzbVlabgkDiElaaywW7caWGMbGaaiikaiaadIhacaGGPaGaeyypa0JaamOzaiaacIcacaWG5bGaaiykaaaa@5836@ .

    Thus any two values of  f coincide. For a fixed aA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeaaaa@3919@ for instance we have:  f(x)=f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaamyyaiaacMcaaaa@3D5A@ for all xA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadgeaaaa@3930@ .

  • Occasionally it is an advantage to use a slightly modified version of the monotony condition. Note that

    • [7.10.1] is equivalent to:   yx>0f(y)f(x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaadIhacqGH+aGpcaaIWaGaaGzbVlabgkDiElaaywW7caWGMbGaaiikaiaadMhacaGGPaGaeyOeI0IaamOzaiaacIcacaWG4bGaaiykaiabgwMiZkaaicdaaaa@49FC@ [1]

    • [7.10.2] is equivalent to:   yx>0f(y)f(x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaadIhacqGH+aGpcaaIWaGaaGzbVlabgkDiElaaywW7caWGMbGaaiikaiaadMhacaGGPaGaeyOeI0IaamOzaiaacIcacaWG4bGaaiykaiabgsMiJkaaicdaaaa@49EB@ [2]


     

[1] and [2] however allow to restate the monotony condition in terms of difference quotient functions:

Proposition:  A function  f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB5@ is

  1. monotonic increasing on BA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgkOimlaadgeaaaa@3972@ , if and only if any two different points x,yB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaamOqaaaa@3ADF@ satisfy

    f(y)f(x) yx 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadMhacaGGPaGaeyOeI0IaamOzaiaacIcacaWG4bGaaiykaaqaaiaadMhacqGHsislcaWG4baaaiabgwMiZkaaicdaaaa@42D1@
    [7.10.3]
  2. monotonic deacreasing on BA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgkOimlaadgeaaaa@3972@ , if and only if any two different points x,yB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaamOqaaaa@3ADF@ satisfy

    f(y)f(x) yx 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadMhacaGGPaGaeyOeI0IaamOzaiaacIcacaWG4bGaaiykaaqaaiaadMhacqGHsislcaWG4baaaiabgsMiJkaaicdaaaa@42C0@
    [7.10.4]

Proof:  As both assertions are similar to prove, we only show the first one.

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ ":  Let  f be increasing. From [1] we see that for xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaadMhaaaa@39AB@ both differences, yx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaadIhaaaa@38D1@ and  f(y)f(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG5bGaaiykaiabgkHiTiaadAgacaGGOaGaamiEaiaacMcaaaa@3D59@ , have the same sign, so that the quotient f(y)f(x) yx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadMhacaGGPaGaeyOeI0IaamOzaiaacIcacaWG4bGaaiykaaqaaiaadMhacqGHsislcaWG4baaaaaa@4051@ is always positive.

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ ":  If now yx>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgkHiTiaadIhacqGH+aGpcaaIWaaaaa@3A93@ , then  f(y)f(x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG5bGaaiykaiabgkHiTiaadAgacaGGOaGaamiEaiaacMcacqGHLjYScaaIWaaaaa@3FD9@ because otherwise we would have f(y)f(x) yx <0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadMhacaGGPaGaeyOeI0IaamOzaiaacIcacaWG4bGaaiykaaqaaiaadMhacqGHsislcaWG4baaaiabgYda8iaaicdaaaa@420F@ in contrast to the premise.

For differentiable functions on intervals the above result will lead to the monotony test, a method to characterise the monotony of  f by its derivative behaviour. The monotony test puts the first derivative into a geometric perspective.

Proposition (monotony test):  Let  f be differentiable on an interval I, i.e.  f D 1 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaamysaiaacMcaaaa@3C3A@ . Then we have

  1. f is increasing on I f (x)0  for all  xI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7ceWGMbGbauaacaGGOaGaamiEaiaacMcacqGHLjYScaaIWaGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWG4bGaeyicI4Saamysaaaa@4C27@
[7.10.5]
  1. f is decreasing on I f (x)0  for all  xI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7ceWGMbGbauaacaGGOaGaamiEaiaacMcacqGHKjYOcaaIWaGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWG4bGaeyicI4Saamysaaaa@4C16@
[7.10.6]

Proof:  Again we only deal with 1.

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ ":  If  f is increasing we know from [7.10.3] that

m x (y)= f(y)f(x) yx 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBaaaleaacaWG4baabeaakiaacIcacaWG5bGaaiykaiabg2da9maalaaabaGaamOzaiaacIcacaWG5bGaaiykaiabgkHiTiaadAgacaGGOaGaamiEaiaacMcaaeaacaWG5bGaeyOeI0IaamiEaaaacqGHLjYScaaIWaaaaa@4853@   for all  yI\{x} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaadMeacaGGCbGaai4EaiaadIhacaGG9baaaa@3D16@ .

According to [6.9.4] we thus get  f (x)= lim yx m x (y)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadIhacaGGPaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadMhacqGHsgIRcaWG4baabeaakiaad2gadaWgaaWcbaGaamiEaaqabaGccaGGOaGaamyEaiaacMcacqGHLjYScaaIWaaaaa@4833@ .

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ ":  Now take x,yI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4Saamysaaaa@3AE6@ such that x<y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgYda8iaadMhaaaa@38E8@ . Due to the mean value theorem [7.9.5] there is an x ˜ ]x,y[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxaiaadIhacaGGSaGaamyEaiaacUfaaaa@3CE4@ satisfying

f(y)=f(x)+ (yx) >0 f ( x ˜ ) 0 f(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG5bGaaiykaiabg2da9iaadAgacaGGOaGaamiEaiaacMcacqGHRaWkdaagaaqaaiaacIcacaWG5bGaeyOeI0IaamiEaiaacMcaaSqaaiabg6da+iaaicdaaOGaayjo+dGaeyyXIC9aaGbaaeaaceWGMbGbauaacaGGOaGabmiEayaaiaGaaiykaaWcbaGaeyyzImRaaGimaaGccaGL44pacqGHLjYScaWGMbGaaiikaiaadIhacaGGPaaaaa@5584@ .

Consider:

Note that the direction " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ " provided the typical context for an application of the mean value theorem. Further, the details in the proof show that

  • the required derivative behaviour is actually only needed at interior points of I.

  • the direction " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ " is valid for strict monotony as well, i.e. we have:

    1. f (x)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadIhacaGGPaGaeyOpa4JaaGimaaaa@3AF8@ for all interior x of I MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7aaa@3B62@ f is strictly increasing on I.

    2. f (x)<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadIhacaGGPaGaeyipaWJaaGimaaaa@3AF4@ for all interior x of I MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7aaa@3B62@ f is strictly decreasing on I.

    We cannot prove the complete equivalence however as is documented by the strictly increasing function X 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaG4maaaaaaa@37B0@ ( X 3 ) (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaiodaaaGcceGGPaGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcaaIWaaaaa@3CF2@ .


     

The monotony now widens the options to confirm a local extreme point and this will result in a further sufficient criterion (cf. the necessary criterion [7.9.2] and the sufficient criterion [7.9.17] for C n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@396E@ -functions). As a start we observe that a transition point between two different monotony domains has to be an extreme point.

Proposition:   f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB5@ has a local extremum at aA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeaaaa@3919@ if there is an ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ such that  f has a different monotony behaviour on the relative semi-neighbourhoods

A]aε,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgMIihlaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacaGGDbaaaa@3F1F@  and  A[a,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgMIihlaacUfacaWGHbGaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@3F10@ .
[7.10.7]

The reverse does not hold.

Proof:  We assume  f is increasing on A]aε,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgMIihlaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacaGGDbaaaa@3F1F@ and decreasing on A[a,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgMIihlaacUfacaWGHbGaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@3F10@ . That means for all x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiodaa@386A@ A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3A1B@

 i

A a,ε =A]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaGccqGH9aqpcaWGbbGaeyykICSaaiyxaiaadggacqGHsislcqaH1oqzcaGGSaGaamyyaiabgUcaRiabew7aLjaacUfaaaa@46E5@

:

f(x)f(a),  if  xa f(a)f(x),  if  xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadAgacaGGOaGaamiEaiaacMcacqGHKjYOcaWGMbGaaiikaiaadggacaGGPaGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadIhacqGHKjYOcaWGHbaabaGaamOzaiaacIcacaWGHbGaaiykaiabgwMiZkaadAgacaGGOaGaamiEaiaacMcacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabgwMiZkaadggaaaaaaa@596D@

which actually says that  f has a local maximum at a.

A counter example will prove that the reverse is false. The indicator function χ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaSbaaSqaaiablQriKcqabaaaaa@393C@

 i

χ (x)={ 1, if x 0, if x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaSbaaSqaaiablQriKcqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaGabaqaauaabaqaceaaaeaacaaIXaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyicI4SaeSOgHqkabaGaaGimaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabgMGiplablQriKcaaaiaawUhaaaaa@5063@
has a global minimum at 0, but fails to be monotone on any interval.

A new sufficient criterion ("  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ changes the sign at its zero a") for differentiable functions on intervals is now available.

Proposition:  A function  f D 1 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaamysaiaacMcaaaa@3C3A@ has a local extremum at aI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadMeaaaa@3921@ if there is an ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ such that  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ has a different sign on the semi-neighbourhoods

I]aε,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabgMIihlaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacaGGDbaaaa@3F27@   and   I[a,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabgMIihlaacUfacaWGHbGaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@3F18@
[7.10.8]

The reverse is not true.

Proof:  If the sign of  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ differs on the intervals I]aε,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabgMIihlaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacaGGDbaaaa@3F27@ and I[a,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabgMIihlaacUfacaWGHbGaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@3F18@ , let's say  f (x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadIhacaGGPaGaeyyzImRaaGimaaaa@3BB6@ for all xI]aε,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeacqGHPiYXcaGGDbGaamyyaiabgkHiTiabew7aLjaacYcacaWGHbGaaiyxaaaa@41A8@ and  f (x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadIhacaGGPaGaeyizImQaaGimaaaa@3BA5@ for all xI]a,a+ε] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeacqGHPiYXcaGGDbGaamyyaiaacYcacaWGHbGaey4kaSIaeqyTduMaaiyxaaaa@419D@ f has a different monotony behaviour on these intervals according to [7.10.5./6.]. Due to [7.10.7]  f thus has a local extremum at a.

The function  f: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C5F@ defined by

f(x){ 0,  if  x=0 (xsin x 1 ) 2 ,  if  x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaaicdacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabg2da9iaaicdaaeaacaGGOaGaamiEaiabgwSixlGacohacaGGPbGaaiOBaiaaykW7caWG4bWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyiyIKRaaGimaaaaaiaawUhaaaaa@5B03@

shows that the reverse of [7.10.8] does not hold:  f is differentiable with

f (x)={ lim y0 (ysin y 1 ) 2 y = lim y0 y sin 2 y 1 =0,  if  x=0  (note:   sin 2   is bounded!) 2(xsin x 1 )(sin x 1 x 1 cos x 1 )=2x sin 2 x 1 2sin x 1 cos x 1 ,  if  x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadIhacaGGPaGaeyypa0ZaaiqaaeaafaqaaeGabaaabaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadMhacqGHsgIRcaaIWaaabeaakmaalaaabaGaaiikaiaadMhacqGHflY1ciGGZbGaaiyAaiaac6gacaaMc8UaamyEamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacMcadaahaaWcbeqaaiaaikdaaaaakeaacaWG5baaaiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWG5bGaeyOKH4QaaGimaaqabaGccaaMc8UaamyEaiabgwSixlGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaaykW7caWG5bWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaaGimaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyypa0JaaGimaiaabIcacaqGIbGaaeyzaiaabggacaqGJbGaaeiAaiaabshacaqGLbGaaeOoaiaabccaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaqGPbGaae4CaiaabshacaqGGaGaaeOyaiaabwgacaqGZbGaae4yaiaabIgacaqGYbGaaei5aiaab6gacaqGRbGaaeiDaiaabgcacaqGPaaabaGaaGOmaiaacIcacaWG4bGaeyyXICTaci4CaiaacMgacaGGUbGaaGPaVlaadIhadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaGaaiikaiGacohacaGGPbGaaiOBaiaaykW7caWG4bWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgwSixlGacogacaGGVbGaai4CaiaaykW7caWG4bWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiykaiabg2da9iaaikdacaWG4bGaeyyXICTaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaaGPaVlaadIhadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHsislcaaIYaGaeyyXICTaci4CaiaacMgacaGGUbGaaGPaVlaadIhadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHflY1ciGGJbGaai4BaiaacohacaaMc8UaamiEamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyiyIKRaaGimaaaaaiaawUhaaaaa@D7DB@

and has a global minimum at 0. But  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ changes the sign arbitrary often in each semi-neighbourhood of 0. We show this exemplarily for a semi-neighbourhood to the right. To that end we calculate for an arbitrary n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ the values  f ( (nπ+ π 4 ) 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaacIcacaWGUbGaeqiWdaNaey4kaSYaaSaaaeaacqaHapaCaeaacaaI0aaaaiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaaaaa@418E@ and  f ( (nπ+3 π 4 ) 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaacIcacaWGUbGaeqiWdaNaey4kaSIaaG4mamaalaaabaGaeqiWdahabaGaaGinaaaacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiykaaaa@424B@ using the addition theorems for sin and cos [4.3.*]. With

sin(nπ+ π 4 )= sin(nπ) =0 cos π 4 +cos(nπ) sin π 4 = 2 2 =cos(nπ) 1 2 2 cos(nπ+ π 4 )=cos(nπ) cos π 4 = 2 2 sin(nπ) =0 sin π 4 =cos(nπ) 1 2 2 sin(nπ+3 π 4 )= sin(nπ) =0 cos3 π 4 +cos(nπ) sin3 π 4 = 2 2 =cos(nπ) 1 2 2 cos(nπ+3 π 4 )=cos(nπ) cos3 π 4 = 2 2 sin(nπ) =0 sin3 π 4 =cos(nπ) 1 2 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqqaaaaabaGaci4CaiaacMgacaGGUbGaaiikaiaad6gacqaHapaCcqGHRaWkdaWcaaqaaiabec8aWbqaaiaaisdaaaGaaiykaiabg2da9maayaaabaGaci4CaiaacMgacaGGUbGaaiikaiaad6gacqaHapaCcaGGPaaaleaacqGH9aqpcaaIWaaakiaawIJ=aiabgwSixlGacogacaGGVbGaai4CamaalaaabaGaeqiWdahabaGaaGinaaaacqGHRaWkciGGJbGaai4BaiaacohacaGGOaGaamOBaiabec8aWjaacMcacqGHflY1daagaaqaaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdahabaGaaGinaaaaaSqaaiabg2da9maaliaabaWaaOaaaeaacaaIYaaameqaaaWcbaGaaGOmaaaaaOGaayjo+dGaeyypa0Jaci4yaiaac+gacaGGZbGaaiikaiaad6gacqaHapaCcaGGPaGaeyyXIC9aaSaaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaaiaaikdaaSqabaaakeaaciGGJbGaai4BaiaacohacaGGOaGaamOBaiabec8aWjabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbGaaiikaiaad6gacqaHapaCcaGGPaGaeyyXIC9aaGbaaeaaciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWbqaaiaaisdaaaaaleaacqGH9aqpdaWccaqaamaakaaabaGaaGOmaaadbeaaaSqaaiaaikdaaaaakiaawIJ=aiabgkHiTmaayaaabaGaci4CaiaacMgacaGGUbGaaiikaiaad6gacqaHapaCcaGGPaaaleaacqGH9aqpcaaIWaaakiaawIJ=aiabgwSixlGacohacaGGPbGaaiOBamaalaaabaGaeqiWdahabaGaaGinaaaacqGH9aqpciGGJbGaai4BaiaacohacaGGOaGaamOBaiabec8aWjaacMcacqGHflY1daWcaaqaaiaaigdaaeaacaaIYaaaamaakaaabaGaaGOmaaWcbeaaaOqaaiGacohacaGGPbGaaiOBaiaacIcacaWGUbGaeqiWdaNaey4kaSIaaG4mamaalaaabaGaeqiWdahabaGaaGinaaaacaGGPaGaeyypa0ZaaGbaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaamOBaiabec8aWjaacMcaaSqaaiabg2da9iaaicdaaOGaayjo+dGaeyyXICTaci4yaiaac+gacaGGZbGaaG4mamaalaaabaGaeqiWdahabaGaaGinaaaacqGHRaWkciGGJbGaai4BaiaacohacaGGOaGaamOBaiabec8aWjaacMcacqGHflY1daagaaqaaiGacohacaGGPbGaaiOBaiaaiodadaWcaaqaaiabec8aWbqaaiaaisdaaaaaleaacqGH9aqpdaWccaqaamaakaaabaGaaGOmaaadbeaaaSqaaiaaikdaaaaakiaawIJ=aiabg2da9iGacogacaGGVbGaai4CaiaacIcacaWGUbGaeqiWdaNaaiykaiabgwSixpaalaaabaGaaGymaaqaaiaaikdaaaWaaOaaaeaacaaIYaaaleqaaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaad6gacqaHapaCcqGHRaWkcaaIZaWaaSaaaeaacqaHapaCaeaacaaI0aaaaiaacMcacqGH9aqpciGGJbGaai4BaiaacohacaGGOaGaamOBaiabec8aWjaacMcacqGHflY1daagaaqaaiGacogacaGGVbGaai4CaiaaiodadaWcaaqaaiabec8aWbqaaiaaisdaaaaaleaacqGH9aqpcqGHsisldaWccaqaamaakaaabaGaaGOmaaadbeaaaSqaaiaaikdaaaaakiaawIJ=aiabgkHiTmaayaaabaGaci4CaiaacMgacaGGUbGaaiikaiaad6gacqaHapaCcaGGPaaaleaacqGH9aqpcaaIWaaakiaawIJ=aiabgwSixlGacohacaGGPbGaaiOBaiaaiodadaWcaaqaaiabec8aWbqaaiaaisdaaaGaeyypa0JaeyOeI0Iaci4yaiaac+gacaGGZbGaaiikaiaad6gacqaHapaCcaGGPaGaeyyXIC9aaSaaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaaiaaikdaaSqabaaaaaaa@358F@

and  (cos(nπ) 1 2 2 ) 2 = 1 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiGacogacaGGVbGaai4CaiaacIcacaWGUbGaeqiWdaNaaiykaiabgwSixpaalaaabaGaaGymaaqaaiaaikdaaaWaaOaaaeaacaaIYaaaleqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaaaaa@4650@ we now calculate

f ( (nπ+ π 4 ) 1 )=2 (nπ+ π 4 ) 1 1 2 2 1 2 = (nπ+ π 4 ) 1 1<0 f ( (nπ+3 π 4 ) 1 )=2 (nπ+3 π 4 ) 1 1 2 +2 1 2 = (nπ+ π 4 ) 1 +1>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiqadAgagaqbaiaacIcacaGGOaGaamOBaiabec8aWjabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiykaiabg2da9iaaikdacaGGOaGaamOBaiabec8aWjabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyyXIC9aaSaaaeaacaaIXaaabaGaaGOmaaaacqGHsislcaaIYaGaeyyXIC9aaSaaaeaacaaIXaaabaGaaGOmaaaacqGH9aqpcaGGOaGaamOBaiabec8aWjabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyOeI0IaaGymaiabgYda8iaaicdaaeaaceWGMbGbauaacaGGOaGaaiikaiaad6gacqaHapaCcqGHRaWkcaaIZaWaaSaaaeaacqaHapaCaeaacaaI0aaaaiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaGaeyypa0JaaGOmaiaacIcacaWGUbGaeqiWdaNaey4kaSIaaG4mamaalaaabaGaeqiWdahabaGaaGinaaaacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyyXIC9aaSaaaeaacaaIXaaabaGaaGOmaaaacqGHRaWkcaaIYaGaeyyXIC9aaSaaaeaacaaIXaaabaGaaGOmaaaacqGH9aqpcaGGOaGaamOBaiabec8aWjabgUcaRmaalaaabaGaeqiWdahabaGaaGinaaaacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaey4kaSIaaGymaiabg6da+iaaicdaaaaaaa@92ED@

 

We turn to a second geometric aspect which is illustrated by the two functions below.

In the depicted section both have the same end points and both are monotone in the same direction, namely increasing. Nevertheless they differ in their appearance significantly, actually in the way they are curved. The first function is curved to the left whereas the second one is curved to the right.

We can visualise this different curvature using the secant test: Any secant to the function sits above the graph in the first case and below in the second. It is this oberservation that is behind the following definition.
 

Definition:  A function  f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB5@ is called

  1. convex (or curved to the left or said to have a positive curvature) on BA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgkOimlaadgeaaaa@3972@ if

    f(x)f(a)+ f(b)f(a) ba (xa)  for all  x]a,b[B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgsMiJkaadAgacaGGOaGaamyyaiaacMcacqGHRaWkdaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamiEaiabgIGiolaac2facaWGHbGaaiilaiaadkgacaGGBbGaeyykICSaamOqaaaa@5DED@
    [7.10.9]
  2. concave (or curved to the right or said to have a negative curvature) on BA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgkOimlaadgeaaaa@3972@ if

    f(x)f(a)+ f(b)f(a) ba (xa)  for all  x]a,b[B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgwMiZkaadAgacaGGOaGaamyyaiaacMcacqGHRaWkdaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamiEaiabgIGiolaac2facaWGHbGaaiilaiaadkgacaGGBbGaeyykICSaamOqaaaa@5DFE@
    [7.10.10]

holds for all a,bB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyicI4SaamOqaaaa@3AB1@ such that a<b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgYda8iaadkgaaaa@38BA@ .

If [7.10.9] even allows < MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWdaaa@36ED@ instead of MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImkaaa@379E@ f is called strictly convex on B. strictly concave is defined appropriately.

We omit the the phrase "on B" if A=B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iaadkeaaaa@387C@ .

Consider:

  • Multiplying [7.10.9] by −1 yields the correlation
     

    f convex f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7cqGHsislcaWGMbaaaa@3D39@ concave.

  • A linear function  f is curved to the left and to the right simultaneously, as for any two different points a,b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyicI4SaeSyhHekaaa@3B5A@   f may be represented as  f=f(a)+ f(b)f(a) ba (Xa) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadAgacaGGOaGaamyyaiaacMcacqGHRaWkdaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIfacqGHsislcaWGHbGaaiykaaaa@49FB@ as well. Otherwise, if a function  f: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C5F@ is convex and concave as well we have, as a start, for any n >1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaeyOpa4JaaGymaaaaaaa@3BBC@ and every x]n,n[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facqGHsislcaWGUbGaaiilaiaad6gacaGGBbaaaa@3DAD@ :

    f(x) =f(n)+ f(n)f(n) 2n (x+n) =f(n)+ f(n)f(n) 2 + f(n)f(n) 2n x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadAgacaGGOaGaamiEaiaacMcaaeaacqGH9aqpcaWGMbGaaiikaiabgkHiTiaad6gacaGGPaGaey4kaSYaaSaaaeaacaWGMbGaaiikaiaad6gacaGGPaGaeyOeI0IaamOzaiaacIcacqGHsislcaWGUbGaaiykaaqaaiaaikdacaWGUbaaaiaacIcacaWG4bGaey4kaSIaamOBaiaacMcaaeaaaeaacqGH9aqpcaWGMbGaaiikaiabgkHiTiaad6gacaGGPaGaey4kaSYaaSaaaeaacaWGMbGaaiikaiaad6gacaGGPaGaeyOeI0IaamOzaiaacIcacqGHsislcaWGUbGaaiykaaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaWGMbGaaiikaiaad6gacaGGPaGaeyOeI0IaamOzaiaacIcacqGHsislcaWGUbGaaiykaaqaaiaaikdacaWGUbaaaiaadIhaaaaaaa@687D@ [3]

    and thus especially:

    f(0)=f(n)+ f(n)f(n) 2 f(1)=f(n)+ f(n)f(n) 2 + f(n)f(n) 2n =f(0)+ f(n)f(n) 2n . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadAgacaGGOaGaaGimaiaacMcacqGH9aqpcaWGMbGaaiikaiabgkHiTiaad6gacaGGPaGaey4kaSYaaSaaaeaacaWGMbGaaiikaiaad6gacaGGPaGaeyOeI0IaamOzaiaacIcacqGHsislcaWGUbGaaiykaaqaaiaaikdaaaaabaGaamOzaiaacIcacaaIXaGaaiykaiabg2da9iaadAgacaGGOaGaeyOeI0IaamOBaiaacMcacqGHRaWkdaWcaaqaaiaadAgacaGGOaGaamOBaiaacMcacqGHsislcaWGMbGaaiikaiabgkHiTiaad6gacaGGPaaabaGaaGOmaaaacqGHRaWkdaWcaaqaaiaadAgacaGGOaGaamOBaiaacMcacqGHsislcaWGMbGaaiikaiabgkHiTiaad6gacaGGPaaabaGaaGOmaiaad6gaaaGaeyypa0JaamOzaiaacIcacaaIWaGaaiykaiabgUcaRmaalaaabaGaamOzaiaacIcacaWGUbGaaiykaiabgkHiTiaadAgacaGGOaGaeyOeI0IaamOBaiaacMcaaeaacaaIYaGaamOBaaaaaaaaaa@7408@

    As  f(n)f(n) 2n =f(1)f(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaad6gacaGGPaGaeyOeI0IaamOzaiaacIcacqGHsislcaWGUbGaaiykaaqaaiaaikdacaWGUbaaaiabg2da9iaadAgacaGGOaGaaGymaiaacMcacqGHsislcaWGMbGaaiikaiaaicdacaGGPaaaaa@47E0@   we can restate [3] independently of n:

    f(x)=f(0)+(f(1)f(0))x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaaGimaiaacMcacqGHRaWkcaGGOaGaamOzaiaacIcacaaIXaGaaiykaiabgkHiTiaadAgacaGGOaGaaGimaiaacMcacaGGPaGaamiEaaaa@4750@ .

    But this identity is valid for all x as for every x there will be an n >1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaeyOpa4JaaGymaaaaaaa@3BBC@ such that x]n,n[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facqGHsislcaWGUbGaaiilaiaad6gacaGGBbaaaa@3DAD@ .
    f is thus linear.
     

We now concentrate on convex functions. All the results are transferable to concave functions as well, and, with only rare exceptions, even to the strict case.

Slightly rearranging [7.10.9] (note: xa>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgkHiTiaadggacqGH+aGpcaaIWaaaaa@3A7B@ !) yields

f(x)f(a) xa f(b)f(a) ba   for all  x]a,b[B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaaqaaiaadIhacqGHsislcaWGHbaaaiabgsMiJoaalaaabaGaamOzaiaacIcacaWGIbGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWGIbGaeyOeI0IaamyyaaaacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaGGDbGaamyyaiaacYcacaWGIbGaai4waiabgMIihlaadkeaaaa@5CAF@ ,[4]

as an equivalent condition for the convexity of  f. Considering further that the lines

f(a)+ f(b)f(a) ba (Xa) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabgUcaRmaalaaabaGaamOzaiaacIcacaWGIbGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWGIbGaeyOeI0IaamyyaaaacaGGOaGaamiwaiabgkHiTiaadggacaGGPaaaaa@480A@   and  f(b)+ f(b)f(a) ba (Xb) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGIbGaaiykaiabgUcaRmaalaaabaGaamOzaiaacIcacaWGIbGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWGIbGaeyOeI0IaamyyaaaacaGGOaGaamiwaiabgkHiTiaadkgacaGGPaaaaa@480C@

are the same, i.e. that [7.10.9] is replaceable by  f(x)f(b)+ f(b)f(a) ba (xb) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgsMiJkaadAgacaGGOaGaamOyaiaacMcacqGHRaWkdaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIhacqGHsislcaWGIbGaaiykaaaa@4D22@ , we get another convexity test (note: xb<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgkHiTiaadkgacqGH8aapcaaIWaaaaa@3A78@ !):

f(x)f(b) xb f(b)f(a) ba   for all  x]a,b[B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaWGIbGaaiykaaqaaiaadIhacqGHsislcaWGIbaaaiabgwMiZoaalaaabaGaamOzaiaacIcacaWGIbGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWGIbGaeyOeI0IaamyyaaaacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaGGDbGaamyyaiaacYcacaWGIbGaai4waiabgMIihlaadkeaaaa@5CC2@ [5]

Finally, combining [4] and [5] results in a third, more versatile convexity condition.

Proposition:   f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB5@ is convex on BA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgkOimlaadgeaaaa@3972@ if and only if for any a,bB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyicI4SaamOqaaaa@3AB1@ such that a<b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgYda8iaadkgaaaa@38BA@ the following condition holds:

f(x)f(a) xa f(b)f(x) bx   for all  x]a,b[B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaaqaaiaadIhacqGHsislcaWGHbaaaiabgsMiJoaalaaabaGaamOzaiaacIcacaWGIbGaaiykaiabgkHiTiaadAgacaGGOaGaamiEaiaacMcaaeaacaWGIbGaeyOeI0IaamiEaaaacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaGGDbGaamyyaiaacYcacaWGIbGaai4waiabgMIihlaadkeaaaa@5CDD@
[7.10.11]

Proof:  For all x]a,b[B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaWGHbGaaiilaiaadkgacaGGBbGaeyykICSaamOqaaaa@3F0C@ the following inequalities are equivalent:

f(x)f(a) xa f(b)f(x) bx f(x)( 1 xa + 1 bx ) f(a) xa + f(b) bx f(x)( bx+xa =ba ) f(a)( bx =ba+ax )+f(b)(xa) = f(a)(ba)+(f(b)f(a))(xa) f(x) f(a)+ f(b)f(a) ba (xa) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabuabaaaaaeaaaeaadaWcaaqaaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamiEaiabgkHiTiaadggaaaaabaGaeyizImkabaWaaSaaaeaacaWGMbGaaiikaiaadkgacaGGPaGaeyOeI0IaamOzaiaacIcacaWG4bGaaiykaaqaaiaadkgacqGHsislcaWG4baaaaqaaiabgsDiBlaaywW7aeaacaWGMbGaaiikaiaadIhacaGGPaGaaiikamaalaaabaGaaGymaaqaaiaadIhacqGHsislcaWGHbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaadkgacqGHsislcaWG4baaaiaacMcaaeaacqGHKjYOaeaadaWcaaqaaiaadAgacaGGOaGaamyyaiaacMcaaeaacaWG4bGaeyOeI0IaamyyaaaacqGHRaWkdaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcaaeaacaWGIbGaeyOeI0IaamiEaaaaaeaacqGHuhY2caaMf8oabaGaamOzaiaacIcacaWG4bGaaiykaiaacIcadaagaaqaaiaadkgacqGHsislcaWG4bGaey4kaSIaamiEaiabgkHiTiaadggaaSqaaiabg2da9iaadkgacqGHsislcaWGHbaakiaawIJ=aiaacMcaaeaacqGHKjYOaeaacaWGMbGaaiikaiaadggacaGGPaGaaiikamaayaaabaGaamOyaiabgkHiTiaadIhaaSqaaiabg2da9iaadkgacqGHsislcaWGHbGaey4kaSIaamyyaiabgkHiTiaadIhaaOGaayjo+dGaaiykaiabgUcaRiaadAgacaGGOaGaamOyaiaacMcacaGGOaGaamiEaiabgkHiTiaadggacaGGPaaabaaabaaabaGaeyypa0dabaGaamOzaiaacIcacaWGHbGaaiykaiaacIcacaWGIbGaeyOeI0IaamyyaiaacMcacqGHRaWkcaGGOaGaamOzaiaacIcacaWGIbGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcacaGGPaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaaqaaiabgsDiBlaaywW7aeaacaWGMbGaaiikaiaadIhacaGGPaaabaGaeyizImkabaGaamOzaiaacIcacaWGHbGaaiykaiabgUcaRmaalaaabaGaamOzaiaacIcacaWGIbGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWGIbGaeyOeI0IaamyyaaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaaaaaaa@CC01@

Now we are prepared, at least for differentiable functions on intervals, to prove some more comfortable convexity criteria.

Proposition:  

  1. If  f D 1 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaamysaiaacMcaaaa@3C3A@ , then:

f is convex f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7ceWGMbGbauaaaaa@3C58@ is monotonic increasing
[7.10.12]
  1. If  f D 2 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamysaiaacMcaaaa@3C3B@ , then:

f is convex f (x)0  for all  xI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7ceWGMbGbauGbauaacaGGOaGaamiEaiaacMcacqGHLjYScaaIWaGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWG4bGaeyicI4Saamysaaaa@4C32@
[7.10.13]

Proof:  

1.  For the direction " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ " we take two points a and b of I such that a<b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgYda8iaadkgaaaa@38BA@ . Due to [4] and [5] we have for all x]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaWGHbGaaiilaiaadkgacaGGBbaaaa@3CA7@ :

m a (x)= f(x)f(a) xa f(b)f(a) ba f(x)f(b) xb = m b (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBaaaleaacaWGHbaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaabaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWG4bGaeyOeI0IaamyyaaaacqGHKjYOdaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamOyaiabgkHiTiaadggaaaGaeyizIm6aaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaWGIbGaaiykaaqaaiaadIhacqGHsislcaWGIbaaaiabg2da9iaad2gadaWgaaWcbaGaamOyaaqabaGccaGGOaGaamiEaiaacMcaaaa@62A6@ .

As  f (a)= lim xa m a (x)= lim xa m a |]a,b[(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakiaad2gadaWgaaWcbaGaamyyaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamiEaiabgkziUkaadggaaeqaaOGaamyBamaaBaaaleaacaWGHbaabeaakiaacYhacaGGDbGaamyyaiaacYcacaWGIbGaai4waiaacIcacaWG4bGaaiykaaaa@56F6@ and  f (b)= lim xb m b (x)= lim xb m b |]a,b[(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadkgacaGGPaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGIbaabeaakiaad2gadaWgaaWcbaGaamOyaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamiEaiabgkziUkaadkgaaeqaaOGaamyBamaaBaaaleaacaWGIbaabeaakiaacYhacaGGDbGaamyyaiaacYcacaWGIbGaai4waiaacIcacaWG4bGaaiykaaaa@56FB@ (see [6.9.1] for details) we thus know:

f (a) f(b)f(a) ba f (b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyizIm6aaSaaaeaacaWGMbGaaiikaiaadkgacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaaqaaiaadkgacqGHsislcaWGHbaaaiabgsMiJkqadAgagaqbaiaacIcacaWGIbGaaiykaaaa@49CC@ ,

which in fact proves that  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ is increasing.

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ ":  Now we take a fixed point x]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaWGHbGaaiilaiaadkgacaGGBbaaaa@3CA7@ , a,bI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyicI4Saamysaaaa@3AB8@ . According to the mean value theorem [7.9.4] we find two points x ˜ 1 , x ˜ 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiqadIhagaacamaaBaaaleaacaaIYaaabeaaaaa@3A8A@ nested a< x ˜ 1 <x< x ˜ 2 <b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgYda8iqadIhagaacamaaBaaaleaacaaIXaaabeaakiabgYda8iaadIhacqGH8aapceWG4bGbaGaadaWgaaWcbaGaaGOmaaqabaGccqGH8aapcaWGIbaaaa@40BE@ , such that, due to the monotony of  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ , the following estimate holds:

f(x)f(a) xa = f ( x ˜ 1 ) f ( x ˜ 2 )= f(b)f(x) bx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaaqaaiaadIhacqGHsislcaWGHbaaaiabg2da9iqadAgagaqbaiaacIcaceWG4bGbaGaadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyizImQabmOzayaafaGaaiikaiqadIhagaacamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpdaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadIhacaGGPaaabaGaamOyaiabgkHiTiaadIhaaaaaaa@56B7@ .

[7.10.11] now guarantees the convexity of  f.

2.  follows immediately from 1. due to [7.10.5].

Consider:

  • As common with the mean value theorem the direction " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ " is also valid for a strict version of [7.10.12/13]:

    f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ strictly increasing MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7aaa@3B62@   f strictly convex

    f (x)>0  for all  xI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadIhacaGGPaGaeyOpa4JaaGimaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamiEaiabgIGiolaadMeacaaMf8UaeyO0H4TaaGzbVdaa@4B75@   f strictly convex

    " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ " however fails in the strict case.
     

[7.10.7] illustrated the role of transition points between two different monotony domains. We should pay attention to transition points between two different curvature domains as well.

Definition:  Let aI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadMeaaaa@3921@ be an interior point of I. A function  f:I MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGjbGaeyOKH4QaeSyhHekaaa@3BBD@ is said to have an inflection point at a if there is an ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ such that the curvature sign of  f differs on the semi-neighbourhoods

I]aε,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabgMIihlaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacaGGDbaaaa@3F27@   and   I[a,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabgMIihlaacUfacaWGHbGaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@3F18@ .
[7.10.14]

If in addition  f is differentiable at a and  f (a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyypa0JaaGimaaaa@3ADF@ the inflection point (a,f(a)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacaGGSaGaamOzaiaacIcacaWGHbGaaiykaiaacMcaaaa@3C02@ is also called a saddle point for  f. Saddle points are thus inflection points with a horizontal tangent.

Consider:

  • As a linear function is convex and concave simultaneously, its curvature sign changes at every point. Linear functions thus have an inflection point at each x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39DA@ .

  • Due to [7.10.12] we have for D 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGymaaaaaaa@379A@ -functions:

    f has an inflection point at a f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7ceWGMbGbauaaaaa@3C58@ changes its monotony behaviour at a.[6]
     
  • Due to [7.10.13] we have D 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGOmaaaaaaa@379B@ -functions:

    f has an inflection point at a f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7ceWGMbGbauGbauaaaaa@3C63@ changes its sign at a.[7]
     

[6] and [7] make it easy to find necessary existence criteria for inflection points.

Proposition:  If  f:I MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGjbGaeyOKH4QaeSyhHekaaa@3BBD@ has an inflection point at aI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadMeaaaa@3921@ we have for any

  1. D 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGymaaaaaaa@379A@ -function:

    f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ has a local extremum at a.
    [7.10.15]
  2. D 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGOmaaaaaaa@379B@ -function:

    f (a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadggacaGGPaGaeyypa0JaaGimaaaa@3AEA@
    [7.10.16]

In both cases the reverse does not hold.

Proof:  

1.  According to [6] the monotony behaviour of  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ changes at a so that  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ has a local extremum at a due to [7.10.7].

We need a counter example to prove that the reverse is not valid. We turn back to the differentiable, thus continuous function  f: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C5F@ introduced in [7.10.8] by

f(x){ 0,  if  x=0 (xsin x 1 ) 2 ,  if  x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaaicdacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabg2da9iaaicdaaeaacaGGOaGaamiEaiabgwSixlGacohacaGGPbGaaiOBaiaaykW7caWG4bWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyiyIKRaaGimaaaaaiaawUhaaaaa@5B03@

As  f is continuous [8.1.5] guarantees that there will be a differentiable function g: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C60@ such that g =f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaeyypa0JaamOzaaaa@38D2@ . We read the properties of  f proved in [7.10.8] now like this:

  • g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaaaaa@36E1@ has a global minimum at 0.

  • g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafyaafaaaaa@36EC@ does'nt change its sign at 0 so that g has no inflection point at 0 due to [7].
     

2.  is an immediate consequence of [7.9.2] due to 1.

The non-constant power function X 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGinaaaaaaa@37B1@ is convex on the whole of MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ according to [7.10.13] ( ( X 4 ) (x)=12 x 2 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaisdaaaGcceGGPaGbauGbauaacaGGOaGaamiEaiaacMcacqGH9aqpcaaIXaGaaGOmaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHLjYScaaIWaaaaa@426E@ for all x! ) thus has no inflection point at all. Nevertheless we have ( X 4 ) (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaisdaaaGcceGGPaGbauGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcaaIWaaaaa@3CFE@ .

We now get a sufficient criterion for C n+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaiabgUcaRiaaikdaaaaaaa@396F@ -functions with the help of Taylor's formula [7.9.16]. The approach will be parallel to [7.9.17].

Proposition (sufficient criterion for C n+2 ¯ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaiabgUcaRiaaikdaaaaaaa@396F@ -functions):  Take  f C n+2 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gacqGHRaWkcaaIYaaaaOGaaiikaiaadMeacaGGPaaaaa@3E0F@ and an interior point a of I such that

f (a)== f (n+1) (a)=0 f (n+2) (a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadggacaGGPaGaeyypa0JaeSOjGSKaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcacaWGHbGaaiykaiabg2da9iaaicdacaaMf8Uaey4jIKTaaGzbVlaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGOmaiaacMcaaaGccaGGOaGaamyyaiaacMcacqGHGjsUcaaIWaaaaa@53F8@ .
[7.10.17]

Then we have:

  1. If n + 2 is odd  f  has an inflection point at a.

  2. If n + 2 is even   f  has no inflection point at a.

Proof:  We apply Taylor's formula to the C n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaaaaa@37D1@ -function  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaaaaa@36EB@ . Assuming  f (a)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadggacaGGPaGaeyOpa4JaaGimaaaa@3AEC@ will provide, due to continuity, an ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ such that f (x)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadIhacaGGPaGaeyOpa4JaaGimaaaa@3B03@ for all x I a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeadaWgaaWcbaGaamyyaiaacYcacqaH1oqzaeqaaaaa@3CA1@ . For each of these x there is now an x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F5@ in between x and a such that

f (x)= i=0 n1 f (i+2) (a) i! (xa) i + f (n+2) ( x ˜ ) n! (xa) n = f (n+2) ( x ˜ ) n! >0 (xa) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadIhacaGGPaGaeyypa0ZaaabCaeaadaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaey4kaSIaaGOmaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakiabgUcaRmaalaaabaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIYaGaaiykaaaakiaacIcaceWG4bGbaGaacaGGPaaabaGaamOBaiaacgcaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamOBaaaakiabg2da9maayaaabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaikdacaGGPaaaaOGaaiikaiqadIhagaacaiaacMcaaeaacaWGUbGaaiyiaaaaaSqaaiabg6da+iaaicdaaOGaayjo+dGaaiikaiaadIhacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamOBaaaaaaa@7276@ .

f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaaaaa@36EB@ thus changes its sign at a iff n is odd. Due to [7] this is the assertion.

Consider:

  • If  f is C 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaG4maaaaaaa@379B@ we get the well known result:

    f (a)=0 f (a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadggacaGGPaGaeyypa0JaaGimaiaaywW7cqGHNis2caaMf8UabmOzayaafyaafyaafaGaaiikaiaadggacaGGPaGaeyiyIKRaaGimaiaaywW7cqGHshI3caaMf8oaaa@4AFA@ f has an inflection point at a.

     

We use the terms "convex" and "concave" to describe the quality of a curvature. Deciding if a function is curved to the left or curved to the right however does not provide any information of the curvature's quantity, i.e. we are unable to measure how small or how big the curvature at a certain point is.

It is only with circles that we have an idea how to measure curvature, namely by considering the radius: As the curvature looks the smaller the bigger the radius is, we will introduce the reciprocal of the radius as a psychological sound measure for the curvature of a circle.

If we succeed now to find an appropriate circle, the so called circle of curvature, that nestles perfectly to a given function  f at a suitable point a we could take its radius as the radius of curvature of  f at a.

The sketch to the left shows the circle of curvature with respect to the reciprocal function 1 X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamiwaaaaaaa@3791@ at 1. The distance between its centre (2,2) and its boundary point (1,1), i.e. the radius of curvature calculates to 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaIYaaaleqaaaaa@36C0@ in this case.

But how to construct such a ideal circle, how to find its centre and its radius? The first idea is to look for it among those circles that are attached vertically to  f. Thus we will concentrate on circles through (af(a)) that have its centre on the normal n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGHbaabeaaaaa@37EE@ , i.e. on the perpendicular to the tangent t a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBaaaleaacaWGHbaabeaaaaa@37F4@ .

To pick the "right" one out of those we need to know the local geometry of the graph, so that the values of  f in the vicinity of a are involved. When we constructed the tangent we used secants, auxiliary lines that resulted from considering additional points (xf(x)). Analog to that we will introduce "secant circles" that have (xf(x)) as an additional point. Subsequently we will calculate their centres as the insection points of the normal and the perpendicular bisector of the secant determined by a and x. The following interactive applet illustrates the concept quite convincing.

We now consider C 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGOmaaaaaaa@379A@ -functions at points a with a definite curvature. We will thus subsequently exclude inflection points and will assume that f (a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadggacaGGPaGaeyiyIKRaaGimaaaa@3BAB@ . Further we will markedly benefit from the vector notation in the calculations ahead. Tangent, normal and perpendicular bisector are thus presented like this:

t a =( a f(a) )+<( 1 f (a) )> n a =( a f(a) )+<( f (a) 1 )> s x = 1 2 ( x+a f(x)+f(a) )+<( f(x)f(a) (xa) )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaaqaaiaadshadaWgaaWcbaGaamyyaaqabaGccqGH9aqpdaqadaqaauaabeqaceaaaeaacaWGHbaabaGaamOzaiaacIcacaWGHbGaaiykaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqaceaaaeaacaaIXaaabaGabmOzayaafaGaaiikaiaadggacaGGPaaaaaGaayjkaiaawMcaaiabg6da+aqaaiaad6gadaWgaaWcbaGaamyyaaqabaGccqGH9aqpdaqadaqaauaabeqaceaaaeaacaWGHbaabaGaamOzaiaacIcacaWGHbGaaiykaaaaaiaawIcacaGLPaaacqGHRaWkcqGH8aapdaqadaqaauaabeqaceaaaeaaceWGMbGbauaacaGGOaGaamyyaiaacMcaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaiabg6da+aqaaiaadohadaWgaaWcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaqbaeqabiqaaaqaaiaadIhacqGHRaWkcaWGHbaabaGaamOzaiaacIcacaWG4bGaaiykaiabgUcaRiaadAgacaGGOaGaamyyaiaacMcaaaaacaGLOaGaayzkaaGaey4kaSIaeyipaWZaaeWaaeaafaqabeGabaaabaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacqGHsislcaGGOaGaamiEaiabgkHiTiaadggacaGGPaaaaaGaayjkaiaawMcaaiabg6da+aaaaaa@7A9C@
 

Proposition:  If  f C 2 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamysaiaacMcaaaa@3C3A@ and a is an interior point of I such that f (a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadggacaGGPaGaeyiyIKRaaGimaaaa@3BAB@ there are, without restriction, two points x ˜ , x ˜ ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaaiilaiqadIhagaacgaacaaaa@38BF@ in between x and a for every xI\{a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeacaGGCbGaai4EaiaadggacaGG9baaaa@3CFE@ such that the lines n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGHbaabeaaaaa@37EE@ and s x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaWG4baabeaaaaa@380A@ intersect solely at

M a (x) 1 2 ( x+a f(x)+f(a) ) 1+ f (a) f ( x ˜ ) f ( x ˜ ˜ ) ( f(x)f(a) xa 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGHbaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaafaqabeGabaaabaGaamiEaiabgUcaRiaadggaaeaacaWGMbGaaiikaiaadIhacaGGPaGaey4kaSIaamOzaiaacIcacaWGHbGaaiykaaaaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdacqGHRaWkceWGMbGbauaacaGGOaGaamyyaiaacMcaceWGMbGbauaacaGGOaGabmiEayaaiaGaaiykaaqaaiqadAgagaqbgaqbaiaacIcaceWG4bGbaGGbaGaacaGGPaaaamaabmaabaqbaeqabiqaaaqaamaalaaabaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWG4bGaeyOeI0IaamyyaaaaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaaaa@6279@
[7.10.18]

Proof:  As  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaaaaa@36EB@ is continuous we know that  f (x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadIhacaGGPaGaeyiyIKRaaGimaaaa@3BC2@ for all x in an appropriate neighbourhood I a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3A20@ of a. Without restriction we assume I a,ε =I MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaGccqGH9aqpcaWGjbaaaa@3BFE@ .

To calculate the intersection we now use a method outlined in 9.9. For an arbitrary vector

z = 1 2 ( x+a f(x)+f(a) )+α( f(x)f(a) ax ) s x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOEayaalaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaauaabeqaceaaaeaacaWG4bGaey4kaSIaamyyaaqaaiaadAgacaGGOaGaamiEaiaacMcacqGHRaWkcaWGMbGaaiikaiaadggacaGGPaaaaaGaayjkaiaawMcaaiabgUcaRiabeg7aHnaabmaabaqbaeqabiqaaaqaaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamyyaiabgkHiTiaadIhaaaaacaGLOaGaayzkaaGaeyicI4Saam4CamaaBaaaleaacaWG4baabeaaaaa@5713@

the following equivalence accordingly holds:

z n a       ( f (a) 1 ) y =( x+a 2 a+α(f(x)f(a)) f(x)+f(a) 2 f(a)+α(ax) )  is solvable        I+ f (a)II ( 0 1 ) y =( xa 2 +α(f(x)f(a))+ f (a)( f(x)f(a) 2 +α(ax)) f(x)f(a) 2 +α(ax) )  is solvable       α(f(x)f(a)+ f (a)(ax))+ xa 2 + f (a) f(x)f(a) 2 =0[ 8 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiqadQhagaWcaiabgIGiolaad6gadaWgaaWcbaGaamyyaaqabaaakeaacaaMe8EcLbyacqGHuhY2kiaaysW7daqadaqaauaabeqaceaaaeaaceWGMbGbauaacaGGOaGaamyyaiaacMcaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaiqadMhagaWcaiabg2da9maabmaabaqbaeqabiqaaaqaamaalaaabaGaamiEaiabgUcaRiaadggaaeaacaaIYaaaaiabgkHiTiaadggacqGHRaWkcqaHXoqycaGGOaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcacaGGPaaabaWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaey4kaSIaamOzaiaacIcacaWGHbGaaiykaaqaaiaaikdaaaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaiabgUcaRiabeg7aHjaacIcacaWGHbGaeyOeI0IaamiEaiaacMcaaaaacaGLOaGaayzkaaGaaeyAaiaabohacaqG0bGaaeiiaiaabYgacaqG2dGaae4CaiaabkgacaqGHbGaaeOCaaqaaaqaamaawafabeadbaqcLbiacaqGjbGaey4kaSIabmOzayaafaGaaiikaiaadggacaGGPaGaeyyXICTaaeysaiaabMeaaSqabOqaaiaaysW7jugGbiabgsDiBRGaaGjbVdaadaqadaqaauaabeqaceaaaeaacaaIWaaabaGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaaceWG5bGbaSaacqGH9aqpdaqadaqaauaabeqaceaaaeaadaWcaaqaaiaadIhacqGHsislcaWGHbaabaGaaGOmaaaacqGHRaWkcqaHXoqycaGGOaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcacaGGPaGaey4kaSIabmOzayaafaGaaiikaiaadggacaGGPaGaaiikamaalaaabaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaaIYaaaaiabgUcaRiabeg7aHjaacIcacaWGHbGaeyOeI0IaamiEaiaacMcacaGGPaaabaWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaaqaaiaaikdaaaGaey4kaSIaeqySdeMaaiikaiaadggacqGHsislcaWG4bGaaiykaaaaaiaawIcacaGLPaaacaqGPbGaae4CaiaabshacaqGGaGaaeiBaiaabApacaqGZbGaaeOyaiaabggacaqGYbaabaaabaGaaGjbVlabgsDiBlaaysW7cqaHXoqycaGGOaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcacqGHRaWkceWGMbGbauaacaGGOaGaamyyaiaacMcacaGGOaGaamyyaiabgkHiTiaadIhacaGGPaGaaiykaiabgUcaRmaalaaabaGaamiEaiabgkHiTiaadggaaeaacaaIYaaaaiabgUcaRiqadAgagaqbaiaacIcacaWGHbGaaiykamaalaaabaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaaIYaaaaiabg2da9iaaicdacaqGBbGaaeioaiaab2faaaaaaa@F8FA@

Using Taylor's theorem [7.9.16] we find two points x ˜ , x ˜ ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaaiilaiqadIhagaacgaacaaaa@38BF@ in between x and a such that

  • f(x)f(a)= f ( x ˜ )(xa) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcacqGH9aqpceWGMbGbauaacaGGOaGabmiEayaaiaGaaiykaiaacIcacaWG4bGaeyOeI0IaamyyaiaacMcaaaa@45CC@

  • f(x)f(a) f (a)(xa)= 1 2 f ( x ˜ ˜ ) (xa) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcacqGHsislceWGMbGbauaacaGGOaGaamyyaiaacMcacaGGOaGaamiEaiabgkHiTiaadggacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaaceWGMbGbauGbauaacaGGOaGabmiEayaaiyaaiaGaaiykaiaacIcacaWG4bGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@50A1@

which allows to extend the equivalence [8] by

α 1 2 f ( x ˜ ˜ ) (xa) 2 + xa 2 + f (a) f ( x ˜ )(xa) 2 =0 α f ( x ˜ ˜ )(xa)+1+ f (a) f ( x ˜ )=0 α= 1+ f (a) f ( x ˜ ) f ( x ˜ ˜ )(xa) , MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiabeg7aHnaalaaabaGaaGymaaqaaiaaikdaaaGabmOzayaafyaafaGaaiikaiqadIhagaacgaacaiaacMcacaGGOaGaamiEaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWG4bGaeyOeI0IaamyyaaqaaiaaikdaaaGaey4kaSIabmOzayaafaGaaiikaiaadggacaGGPaWaaSaaaeaaceWGMbGbauaacaGGOaGabmiEayaaiaGaaiykaiaacIcacaWG4bGaeyOeI0IaamyyaiaacMcaaeaacaaIYaaaaiabg2da9iaaicdaaeaacqGHuhY2aeaacqaHXoqyceWGMbGbauGbauaacaGGOaGabmiEayaaiyaaiaGaaiykaiaacIcacaWG4bGaeyOeI0IaamyyaiaacMcacqGHRaWkcaaIXaGaey4kaSIabmOzayaafaGaaiikaiaadggacaGGPaGabmOzayaafaGaaiikaiqadIhagaacaiaacMcacqGH9aqpcaaIWaaabaGaeyi1HSnabaGaeqySdeMaeyypa0JaeyOeI0YaaSaaaeaacaaIXaGaey4kaSIabmOzayaafaGaaiikaiaadggacaGGPaGabmOzayaafaGaaiikaiqadIhagaacaiaacMcaaeaaceWGMbGbauGbauaacaGGOaGabmiEayaaiyaaiaGaaiykaiaacIcacaWG4bGaeyOeI0IaamyyaiaacMcaaaaaaaaa@808E@

so that finally the unique solution is calculated to

z = 1 2 ( x+a f(x)+f(a) ) 1+ f (a) f ( x ˜ ) f ( x ˜ ˜ )(xa) ( f(x)f(a) ax ) = 1 2 ( x+a f(x)+f(a) ) 1+ f (a) f ( x ˜ ) f ( x ˜ ˜ ) ( f(x)f(a) xa 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiqadQhagaWcaaqaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaafaqabeGabaaabaGaamiEaiabgUcaRiaadggaaeaacaWGMbGaaiikaiaadIhacaGGPaGaey4kaSIaamOzaiaacIcacaWGHbGaaiykaaaaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdacqGHRaWkceWGMbGbauaacaGGOaGaamyyaiaacMcaceWGMbGbauaacaGGOaGabmiEayaaiaGaaiykaaqaaiqadAgagaqbgaqbaiaacIcaceWG4bGbaGGbaGaacaGGPaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaaaadaqadaqaauaabeqaceaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaaqaaiaadggacqGHsislcaWG4baaaaGaayjkaiaawMcaaaqaaaqaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaafaqabeGabaaabaGaamiEaiabgUcaRiaadggaaeaacaWGMbGaaiikaiaadIhacaGGPaGaey4kaSIaamOzaiaacIcacaWGHbGaaiykaaaaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdacqGHRaWkceWGMbGbauaacaGGOaGaamyyaiaacMcaceWGMbGbauaacaGGOaGabmiEayaaiaGaaiykaaqaaiqadAgagaqbgaqbaiaacIcaceWG4bGbaGGbaGaacaGGPaaaamaabmaabaqbaeqabiqaaaqaamaalaaabaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWG4bGaeyOeI0IaamyyaaaaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaaaaaaa@8A12@

.

Now we are able to analyse the limit behaviour of the intersection points M a (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGHbaabeaakiaacIcacaWG4bGaaiykaaaa@3A2D@ which in fact are the centres of the secant circles. If x converges to a the intermediate points x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F5@ and x ˜ ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiyaaiaaaaa@3703@ are forced to do the same. Now that  f is differentiable at a and  f, f , f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcaceWGMbGbauaacaGGSaGabmOzayaafyaafaaaaa@3A2D@ are continuous at that point, the function M a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGHbaabeaaaaa@37CD@ has a limit at a:

lim xa M a (x)=( a f(a) ) 1+ ( f (a)) 2 f (a) ( f (a) 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakiaad2eadaWgaaWcbaGaamyyaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaqadaqaauaabeqaceaaaeaacaWGHbaabaGaamOzaiaacIcacaWGHbGaaiykaaaaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdacqGHRaWkcaGGOaGabmOzayaafaGaaiikaiaadggacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiqadAgagaqbgaqbaiaacIcacaWGHbGaaiykaaaadaqadaqaauaabeqaceaaaeaaceWGMbGbauaacaGGOaGaamyyaiaacMcaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaaaa@598D@ .

Obviously this limit is a point on the normal n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGHbaabeaaaaa@37EE@ and its distance to the boundary point (af(a)) calculates to

| lim xa M a (x)( a f(a) )|=| 1+ ( f (a)) 2 f (a) ||( f (a) 1 )|=| 1+ ( f (a)) 2 f (a) | 1+ ( f (a)) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFamaaxababaGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaamyyaaqabaGccaWGnbWaaSbaaSqaaiaadggaaeqaaOGaaiikaiaadIhacaGGPaGaeyOeI0YaaeWaaeaafaqabeGabaaabaGaamyyaaqaaiaadAgacaGGOaGaamyyaiaacMcaaaaacaGLOaGaayzkaaGaaiiFaiabg2da9iaacYhadaWcaaqaaiaaigdacqGHRaWkcaGGOaGabmOzayaafaGaaiikaiaadggacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiqadAgagaqbgaqbaiaacIcacaWGHbGaaiykaaaacaGG8bGaeyyXICTaaiiFamaabmaabaqbaeqabiqaaaqaaiqadAgagaqbaiaacIcacaWGHbGaaiykaaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaaiiFaiabg2da9iaacYhadaWcaaqaaiaaigdacqGHRaWkcaGGOaGabmOzayaafaGaaiikaiaadggacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiqadAgagaqbgaqbaiaacIcacaWGHbGaaiykaaaacaGG8bWaaOaaaeaacaaIXaGaey4kaSIaaiikaiqadAgagaqbaiaacIcacaWGHbGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaaabeaaaaa@7672@ .

With these results we have achieved our aim: To describe curvature in quantitative terms.

Definition:  For any  f C 2 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamysaiaacMcaaaa@3C3A@ and an interior point a of I such that  f (a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadggacaGGPaGaeyiyIKRaaGimaaaa@3BAB@ the circle of curvature of  f with respect to a is defined by its

centre of curvature  M(a) ( a f(a) ) 1+ ( f (a)) 2 f (a) ( f (a) 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaacIcacaWGHbGaaiykaiabg2da9maabmaabaqbaeqabiqaaaqaaiaadggaaeaacaWGMbGaaiikaiaadggacaGGPaaaaaGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaiabgUcaRiaacIcaceWGMbGbauaacaGGOaGaamyyaiaacMcacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaGabmOzayaafyaafaGaaiikaiaadggacaGGPaaaamaabmaabaqbaeqabiqaaaqaaiqadAgagaqbaiaacIcacaWGHbGaaiykaaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaaaaa@5177@
[7.10.19]

and its

radius of curvature  r(a) 1+ ( f (a)) 2 3 | f (a)| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacIcacaWGHbGaaiykaiabg2da9maalaaabaWaaOaaaeaacaaIXaGaey4kaSIaaiikaiqadAgagaqbaiaacIcacaWGHbGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaaabeaakmaaCaaaleqabaGaaG4maaaaaOqaaiaacYhaceWGMbGbauGbauaacaGGOaGaamyyaiaacMcacaGG8baaaaaa@4799@
[7.10.20]

The number  k(a)= 1 r(a) = | f (a)| 1+ ( f (a)) 2 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaacIcacaWGHbGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaadkhacaGGOaGaamyyaiaacMcaaaGaeyypa0ZaaSaaaeaacaGG8bGabmOzayaafyaafaGaaiikaiaadggacaGGPaGaaiiFaaqaamaakaaabaGaaGymaiabgUcaRiaacIcaceWGMbGbauaacaGGOaGaamyyaiaacMcacaGGPaWaaWbaaSqabeaacaaIYaaaaaqabaGcdaahaaWcbeqaaiaaiodaaaaaaaaa@4C8F@ is called the curvature of  f at a.

In case  f (a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaadggacaGGPaGaeyypa0JaaGimaaaa@3AEA@ we additionally set  r(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacIcacaWGHbGaaiykaiabg2da9iabg6HiLcaa@3B96@  and  k(a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaacIcacaWGHbGaaiykaiabg2da9iaaicdaaaa@3AD8@ .

As an example we calculate the curvature data of the standard parabola and of a semi-circle with radius r centered at the origin. With the latter we expect all radii of curvature to coincide with r and all centres of curvature to be (0,0).

Example:  

  • For  f= X 2 , f =2X, f =2  and  a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadIfadaahaaWcbeqaaiaaikdaaaGccaGGSaGabmOzayaafaGaeyypa0JaaGOmaiaadIfacaGGSaGabmOzayaafyaafaGaeyypa0JaaGOmaiaabwhacaqGUbGaaeizaiaadggacqGHiiIZcqWIDesOaaa@480E@ we get:

    M(a) =( a a 2 ) 1+4 a 2 2 ( 2a 1 )=( 4 a 3 1 2 +3 a 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaacIcacaWGHbGaaiykaiabg2da9maabmaabaqbaeqabiqaaaqaaiaadggaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaiabgUcaRiaaisdacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaadaqadaqaauaabeqaceaaaeaacaaIYaGaamyyaaqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaafaqabeGabaaabaGaeyOeI0IaaGinaiaadggadaahaaWcbeqaaiaaiodaaaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiabgUcaRiaaiodacaWGHbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@5442@

    r(a)= 1+4 a 2 3 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacIcacaWGHbGaaiykaiabg2da9maalaaabaWaaOaaaeaacaaIXaGaey4kaSIaaGinaiaadggadaahaaWcbeqaaiaaikdaaaaabeaakmaaCaaaleqabaGaaG4maaaaaOqaaiaaikdaaaaaaa@4029@

    k(a)= 2 1+4 a 2 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaacIcacaWGHbGaaiykaiabg2da9maalaaabaGaaGOmaaqaamaakaaabaGaaGymaiabgUcaRiaaisdacaWGHbWaaWbaaSqabeaacaaIYaaaaaqabaGcdaahaaWcbeqaaiaaiodaaaaaaaaa@4018@

  • For  f= r 2 X 2 ,    f = X r 2 X 2 ,    f = r 2 r 2 X 2 3   and  a]r,r[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9maakaaabaGaamOCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIfadaahaaWcbeqaaiaaikdaaaaabeaakiaacYcacaaMe8UabmOzayaafaGaeyypa0JaeyOeI0YaaSaaaeaacaWGybaabaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaaaeqaaaaakiaacYcacaaMe8UabmOzayaafyaafaGaeyypa0JaeyOeI0YaaSaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaGcbaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaaaeqaaOWaaWbaaSqabeaacaaIZaaaaaaakiaabwhacaqGUbGaaeizaiaadggacqGHiiIZcaGGDbGaeyOeI0IaamOCaiaacYcacaWGYbGaai4waaaa@5EB8@ we initially have

    1+ a 2 r 2 a 2 r 2 r 2 a 2 3 = r 2 a 2 3 + a 2 r 2 a 2 r 2 = r 2 a 2 r 2 a 2 2 + a 2 r 2 = r 2 a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaaaaaGcbaGaeyOeI0YaaSaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaGcbaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaaaeqaaOWaaWbaaSqabeaacaaIZaaaaaaaaaGccqGH9aqpcqGHsisldaWcaaqaamaakaaabaGaamOCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaaabeaakmaaCaaaleqabaGaaG4maaaakiabgUcaRiaadggadaahaaWcbeqaaiaaikdaaaGcdaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaaqabaaakeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iabgkHiTmaakaaabaGaamOCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaaabeaakmaalaaabaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaeyOeI0YaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaaaeqaaaaa@6FAA@ .

    and from that we calculate

    M(a)=( a r 2 a 2 )+ r 2 a 2 ( a r 2 a 2 1 )=( 0 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaacIcacaWGHbGaaiykaiabg2da9maabmaabaqbaeqabiqaaaqaaiaadggaaeaadaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaaqabaaaaaGccaGLOaGaayzkaaGaey4kaSYaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaaaeqaaOWaaeWaaeaafaqabeGabaaabaGaeyOeI0YaaSaaaeaacaWGHbaabaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaaaeqaaaaaaOqaaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaafaqabeGabaaabaGaaGimaaqaaiaaicdaaaaacaGLOaGaayzkaaaaaa@54CF@

    r(a)= 1+ a 2 r 2 a 2 3 r 2 r 2 a 2 3 = r 2 a 2 + a 2 3 r 2 =r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacIcacaWGHbGaaiykaiabg2da9maalaaabaWaaOaaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaaaaaqabaGcdaahaaWcbeqaaiaaiodaaaaakeaadaWcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaakeaadaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaaqabaGcdaahaaWcbeqaaiaaiodaaaaaaaaakiabg2da9maalaaabaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggadaahaaWcbeqaaiaaikdaaaaabeaakmaaCaaaleqabaGaaG4maaaaaOqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaamOCaaaa@5889@

    k(a)= 1 r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaacIcacaWGHbGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaadkhaaaaaaa@3BE0@


7.9. 7.11.