7.9. The Mean Value Theorem


Extreme points are a basic concept in applied mathematics. Examples in 7.11 will demonstrate this. So we start this chapter introducing this notation.

The major part however is up to the mean value theorem and its implications. The theorem itself is easily depicted (look at the sketch in [7.9.4]), but its proof is far from being trivial. The actual clue is the extreme value theorem ([6.6.5]) for continuous functions.

The mean value theorem proves to be the most powerful device in calculus.

Definition:  For an arbitrary point aA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeaaaa@391C@ a function  f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB8@ is said to have a

  1. global maximum at a, if

    f(a)f(x)  for all  xA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabgwMiZkaadAgacaGGOaGaamiEaiaacMcacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaWGbbaaaa@490E@

  2. global minimum at a, if

    f(a)f(x)  for all  xA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabgsMiJkaadAgacaGGOaGaamiEaiaacMcacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaWGbbaaaa@48FD@

  3. local maximum at a, if there is a relative ε-neighbourhood  A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3A1B@

     i

    A a,ε =A]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaGccqGH9aqpcaWGbbGaeyykICSaaiyxaiaadggacqGHsislcqaH1oqzcaGGSaGaamyyaiabgUcaRiabew7aLjaacUfaaaa@46E5@

    such that

    f(a)f(x)  for all  x A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabgwMiZkaadAgacaGGOaGaamiEaiaacMcacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaWGbbWaaSbaaSqaaiaadggacaGGSaGaeqyTdugabeaaaaa@4C77@

  4. local minimum at a, if there is a relative ε-neighbourhood  A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3A1B@ such that

    f(a)f(x)  for all  x A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabgsMiJkaadAgacaGGOaGaamiEaiaacMcacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaWGbbWaaSbaaSqaaiaadggacaGGSaGaeqyTdugabeaaaaa@4C66@

[7.9.1]

In any case we speak of a global or local extremum. Occasionally the notations absolute extremum and relative extremum respectively are used. a is called an extreme point for the extremum (or the extreme value f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaaaa@3916@ .


 

To illustrate this new concept we look at the function  f:[2,[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaGGBbGaeyOeI0IaaGOmaiaacYcacqGHEisPcaGGBbGaeyOKH4QaeSyhHekaaa@407A@ given by

f(x)= 1 4 x 4 5 6 x 3 1 2 x 2 + 5 2 x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaGaamiEamaaCaaaleqabaGaaGinaaaakiabgkHiTmaalaaabaGaaGynaaqaaiaaiAdaaaGaamiEamaaCaaaleqabaGaaG4maaaakiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGynaaqaaiaaikdaaaGaamiEaaaa@49E9@ .

The sketch to the right obviously shows that  f has

  • a local minimum at −1 and at 2.5. The local minimum at −1 is even a global one.

  • a local maximum at −2 and at 1.

  • no global maximum as  f is unbounded from above.

Note that with the differentiable function  f a horizontal tangent is attached to all of the interior extreme points, but not to −2.

Consider:

  • The ability to have an extremum is not bound to differentiability. The absolute value function |X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfacaGG8baaaa@38C9@ for instance has a global minimum at 0, but fails to be differentiable.

  • Each global extreme point is a local one as well, because if an estimate holds for the whole of A it will certainly hold for every subset of the type A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3A1B@ , thus for instance for A a,1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiaaigdaaeqaaaaa@392F@ . The sketch above shows that the reverse does not hold.

  • As we used the relations MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImkaaa@37A1@ and MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImlaaa@37B2@ when stating [7.9.1] a constant function has a global maximum and a global minimum at each point simultaneously. This cannot happen however when strict extrema are involved.
     

It will be an important task to detect local extreme points. As noticed above, points with horizontal tangents will play a certain role in this quest and in fact this observation leads to a first existance criterion for local extreme points.

Proposition (necessary criterion):  Let   f:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaeSyhHekaaa@3BB8@ be differentiable at aA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeaaaa@391C@ . If a is an interior point

 i

i.e. there is an  ε>0  such that ]aε,a+ε[A A a,ε =]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiGaaaqaaiaabsgacaqGUaGaaeiAaiaab6cacaqGGaGaaeyzaiaabohacaqGGaGaae4zaiaabMgacaqGIbGaaeiDaiaabccacaqGLbGaaeyAaiaab6gacqaH1oqzcqGH+aGpcaaIWaGaae4Caiaab+gacaqGGaGaaeizaiaabggacaqGZbGaae4Caaqaaiaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbGaeyOGIWSaamyqaaqaaiabgsDiBlaaywW7aeaacaWGbbWaaSbaaSqaaiaadggacaGGSaGaeqyTdugabeaakiabg2da9iaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaaaa@6BB4@
of A the following implication holds:

If  f has a local extremum at a its derivative vanishes at a f (a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyypa0JaaGimaaaa@3AE2@ .
[7.9.2]

Proof:  Assume  f has a local maximum at a. So there is a relative ε-neighbourhood  A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3A1B@ such that

f(x)f(a)0  for all  x A a,ε =]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcacqGHKjYOcaaIWaGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWG4bGaeyicI4SaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaGccqGH9aqpcaGGDbGaamyyaiabgkHiTiabew7aLjaacYcacaWGHbGaey4kaSIaeqyTduMaai4waaaa@5876@ .

This allows to calculate the sign of the difference quotient function:

m a (x)= f(x)f(a) xa    { 0, if  aε<x<a 0, if  a<x<a+ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBaaaleaacaWGHbaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaabaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWG4bGaeyOeI0IaamyyaaaacaaMe8+aaiqaaeaafaqaaeGabaaabaGaeyyzImRaaGimaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGHbGaeyOeI0IaeqyTduMaeyipaWJaamiEaiabgYda8iaadggaaeaacqGHKjYOcaaIWaGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadggacqGH8aapcaWG4bGaeyipaWJaamyyaiabgUcaRiabew7aLbaaaiaawUhaaaaa@67D5@ .

With [6.9.1] and [6.9.4] we thus have:

lim xa m a (x)= lim xa m a |]a,a+ε[(x)0 lim xa m a |]aε,a[(x)= lim xa m a (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakiaad2gadaWgaaWcbaGaamyyaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamiEaiabgkziUkaadggaaeqaaOGaamyBamaaBaaaleaacaWGHbaabeaakiaacYhacaGGDbGaamyyaiaacYcacaWGHbGaey4kaSIaeqyTduMaai4waiaacIcacaWG4bGaaiykaiabgsMiJkaaicdacqGHKjYOdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamiEaiabgkziUkaadggaaeqaaOGaamyBamaaBaaaleaacaWGHbaabeaakiaacYhacaGGDbGaamyyaiabgkHiTiabew7aLjaacYcacaWGHbGaai4waiaacIcacaWG4bGaaiykaiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaamyyaaqabaGccaWGTbWaaSbaaSqaaiaadggaaeqaaOGaaiikaiaadIhacaGGPaaaaa@78CD@ ,

which finally results in:  f (a)= lim xa m a (x)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakiaad2gadaWgaaWcbaGaamyyaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpcaaIWaaaaa@472F@ .

Consider:

  • The necessary criterion confirms the presumed behavior: Tangents attached to interior local extreme points are always horizontal.

  • The reverse of [7.9.2] is not true (read: [7.9.2] is not sufficient). The function X 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaG4maaaaaaa@37B3@ for instance has no local extremum at 0 irrespective of ( X 3 ) (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaiodaaaGcceGGPaGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcaaIWaaaaa@3CF5@ . Actually the necessary criterion only filters out points with horizontal tangents.

    Looking for suitable sufficient criteria is thus worthwhile. [7.9.17] at the end of this part is a first example for such a criterion.

  • The necessary criterion is not valid at boundary points: The restriction X| 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaacYhacqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaaaaa@3BE6@ has a local (even global) minimum at 0, but its derivative number at 0 is 1.

  • [7.9.2] is often read as " f (a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyypa0JaaGimaaaa@3AE2@ is a necessary existence condition for interior local extreme points". Thus only the first derivative's zeros come into question when searching for local extreme points.
     

Theorem (Rolle's theorem): Let  f be continuous on the closed interval [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ and differentiable on its interior ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3A29@ , i.e.  f C 0 ([a,b]) D 1 (]a,b[) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaGaeyykICSaamiramaaCaaaleqabaGaaGymaaaakiaacIcacaGGDbGaamyyaiaacYcacaWGIbGaai4waiaacMcaaaa@4899@ .

If  f(a)=f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaadAgacaGGOaGaamOyaiaacMcaaaa@3D47@ , then there is an x ˜ ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3CB9@ such that

f ( x ˜ )=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiqadIhagaacaiaacMcacqGH9aqpcaaIWaaaaa@3B08@
[7.9.3]

Proof:   f has a global maximum and a global minimum due to the extreme value theorem [6.6.5]. (Note that  f is continuous on a closed interval!) Thus there are two numbers x ¯ , x ¯ [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaDaGaaiilaiqadIhagaqeaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3E93@ such that

f( x ¯ )f(x)f( x ¯ )  for all  x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcaceWG4bGba0bacaGGPaGaeyizImQaamOzaiaacIcacaWG4bGaaiykaiabgsMiJkaadAgacaGGOaGabmiEayaaraGaaiykaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@51BD@ .[0]

If one of these numbers is an interior point of [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ , it is certainly a zero for  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E3@ as a result of the necessary criterion [7.9.2].

Otherwise we would know that x ¯ , x ¯ {a,b} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaDaGaaiilaiqadIhagaqeaiabgIGiolaacUhacaWGHbGaaiilaiaadkgacaGG9baaaa@3ED3@ , thus f( x ¯ )=f( x ¯ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcaceWG4bGba0bacaGGPaGaeyypa0JaamOzaiaacIcaceWG4bGbaebacaGGPaaaaa@3DB0@ as  f(a)=f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaadAgacaGGOaGaamOyaiaacMcaaaa@3D47@ due to the premise. [0]  now forces  f  to be a constant function,  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E3@ thus vanishes everywhere.

Consider:

  • Rolle's theorem is a pure existance theorem. It does not provide any information on uniqueness and on the precise location of x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ .

  • The continuity at a and at b is compulsory. As an example take the function  f:[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaGGBbGaaGimaiaacYcacaaIXaGaaiyxaiabgkziUkabl2riHcaa@3ED7@ defined by  f(x){ x, if  x1 0, if  x=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaadIhacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabgcMi5kaaigdaaeaacaaIWaGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadIhacqGH9aqpcaaIXaaaaaGaay5Eaaaaaa@4F33@ . We have  f (x)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadIhacaGGPaGaeyypa0JaaGymaaaa@3AFA@ for all x]0,1[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaaIWaGaaiilaiaaigdacaGGBbaaaa@3C52@ , although  f(0)=f(1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadAgacaGGOaGaaGymaiaacMcaaaa@3CEF@ .
    But  f is discontinuous at 1.

  • As  f(a)=f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaadAgacaGGOaGaamOyaiaacMcaaaa@3D47@ , the line segment joining (a,f(a)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacaGGSaGaamOzaiaacIcacaWGHbGaaiykaiaacMcaaaa@3C05@ and (b,f(b)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkgacaGGSaGaamOzaiaacIcacaWGIbGaaiykaiaacMcaaaa@3C07@ is horizontal. Thus Rolle's theorem is often stated in a more geometrical manner:

    There is an interior point x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ with a tangent parallel to the line segment which joins the end point of f.

    The sketch to the right illustrates this for the function 2 3 X 3 + 4 3 X 2 2 3 X 5 6 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIYaaabaGaaG4maaaacaWGybWaaWbaaSqabeaacaaIZaaaaOGaey4kaSYaaSaaaeaacaaI0aaabaGaaG4maaaacaWGybWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0YaaSaaaeaacaaIYaaabaGaaG4maaaacaWGybGaeyOeI0YaaSaaaeaacaaI1aaabaGaaGOnaaaaaaa@4352@ on the interval [2,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTiaaikdacaGGSaGaaGymaiaac2faaaa@3AC0@ . Apart from the marked position x ˜ = 2 7 3 1.55 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyypa0ZaaSaaaeaacqGHsislcaaIYaGaeyOeI0YaaOaaaeaacaaI3aaaleqaaaGcbaGaaG4maaaacqGHijYUcqGHsislcaaIXaGaaiilaiaaiwdacaaI1aaaaa@41CE@ there is obviously another option in this case for a horizontal tangent, namely at 2+ 7 3 0.22 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHsislcaaIYaGaey4kaSYaaOaaaeaacaaI3aaaleqaaaGcbaGaaG4maaaacqGHijYUcaaIWaGaaiilaiaaikdacaaIYaaaaa@3EBD@ .
     

It is tempting to ask if this geometric property is still valid if the restriction  f(a)=f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaadAgacaGGOaGaamOyaiaacMcaaaa@3D47@ is lifted. The function 2 3 X 3 + 4 3 X 2 + 1 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIYaaabaGaaG4maaaacaWGybWaaWbaaSqabeaacaaIZaaaaOGaey4kaSYaaSaaaeaacaaI0aaabaGaaG4maaaacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaaaa@3FEC@ on [2,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTiaaikdacaGGSaGaaGymaiaac2faaaa@3AC0@ depicted below suggests that the answer might be "yes". Luckily we are able to prove that "yes" is the actual answer.

Theorem (mean value theorem):  There is an x ˜ ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3CB9@ for each  f C 0 ([a,b]) D 1 (]a,b[) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaGaeyykICSaamiramaaCaaaleqabaGaaGymaaaakiaacIcacaGGDbGaamyyaiaacYcacaWGIbGaai4waiaacMcaaaa@4899@ such that

f ( x ˜ )= f(b)f(a) ba MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiqadIhagaacaiaacMcacqGH9aqpdaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamOyaiabgkHiTiaadggaaaaaaa@445A@
[7.9.4]

Proof: We apply Rolle's theorem [7.9.3] to a modification of  f. The function

gf f(b)f(a) ba (Xa) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadAgacqGHsisldaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIfacqGHsislcaWGHbGaaiykaaaa@47CB@

is certainly continuous on [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ and differentiable on ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3A29@ . As

g(b)=f(b) f(b)f(a) ba (ba)=f(a)=g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWGIbGaaiykaiabg2da9iaadAgacaGGOaGaamOyaiaacMcacqGHsisldaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadkgacqGHsislcaWGHbGaaiykaiabg2da9iaadAgacaGGOaGaamyyaiaacMcacqGH9aqpcaWGNbGaaiikaiaadggacaGGPaaaaa@54B6@

the special condition of Rolle's theorem is met, so that due to [7.9.3] there is an x ˜ ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3CB9@ such that

0= g ( x ˜ )= f ( x ˜ ) f(b)f(a) ba MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iqadEgagaqbaiaacIcaceWG4bGbaGaacaGGPaGaeyypa0JabmOzayaafaGaaiikaiqadIhagaacaiaacMcacqGHsisldaWcaaqaaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamOyaiabgkHiTiaadggaaaaaaa@4A64@ .

This however is the assertion.

Consider:

  • On the one hand the mean value theorem is clearly an implication of Rolle's theorem due to the structure of its proof. We find on the other hand that Rolle's theorem comes as a special case from the mean value theorem, because if, in addition,  f(a)=f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaadAgacaGGOaGaamOyaiaacMcaaaa@3D47@ we get  f( x ˜ )= f(b)f(a) ba =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcaceWG4bGbaGaacaGGPaGaeyypa0ZaaSaaaeaacaWGMbGaaiikaiaadkgacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaaqaaiaadkgacqGHsislcaWGHbaaaiabg2da9iaaicdaaaa@460E@ . Both theorems are thus equivalent:

    Rolle's theorem MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7aaa@3B64@ mean value theorem

     

With the mean value theorem one of the major results in calculus is now at our disposal. There are a lot of non-trivial applications supporting this rating. Our present notation [7.9.4] however seldom proves to be suitable for a direct application. We will thus benefit from another, equivalent version which is more taylored to application purposes. As

f(b)f(a) ba = f(a)f(b) ab MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadkgacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaaqaaiaadkgacqGHsislcaWGHbaaaiabg2da9maalaaabaGaamOzaiaacIcacaWGHbGaaiykaiabgkHiTiaadAgacaGGOaGaamOyaiaacMcaaeaacaWGHbGaeyOeI0IaamOyaaaaaaa@4B0A@

[7.9.4] is always valid, wheather or not a is actually left of b. Thus we will subsequently use the phrase " x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ lies in between a and b" as an abbreviation for

x ˜ ]a,b[,  if  a<b x ˜ ]b,a[,  if  a>b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiqadIhagaacaiabgIGiolaac2facaWGHbGaaiilaiaadkgacaGGBbGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadggacqGH8aapcaWGIbaabaGabmiEayaaiaGaeyicI4SaaiyxaiaadkgacaGGSaGaamyyaiaacUfacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamyyaiabg6da+iaadkgaaaaaaa@551E@

Solving [7.9.4] for  f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGIbGaaiykaaaa@3917@ provides a new version of the mean value theorem:

Let I be an arbitrary interval

 i

We understand this as a common notation for open and closed intervals. In the open case we also allow the values MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@375A@ for the right and MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaeyOhIukaaa@3847@ for the left boundery. Thus MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ and e.g. >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacqGH+aGpcaaIWaaaaaaa@3948@ are regarded as intervals as well.

and let a,bI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyicI4Saamysaaaa@3ABB@ be any two different points of I. If  f D 1 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaamysaiaacMcaaaa@3C3D@ , then there is an x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ in between a and b such that

f(b)=f(a)+(ba) f ( x ˜ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGIbGaaiykaiabg2da9iaadAgacaGGOaGaamyyaiaacMcacqGHRaWkcaGGOaGaamOyaiabgkHiTiaadggacaGGPaGaeyyXICTabmOzayaafaGaaiikaiqadIhagaacaiaacMcaaaa@47E2@

[7.9.5]

Consider:

  • The closed interval generated by a and b is a subset of I. Any function differentiable on I is as well differentiable, and thus also continuous, on that closed subinterval. The conditions of [7.9.4] are thus satisfied.

  • [7.9.5] extends (on intervals) the basic representation theorem [7.5.1] as all the values r(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacIcacaWG4bGaaiykaaaa@3939@ now prove to be derivative numbers of  f.

  • The mean value theorem is only valid for intervals. The Heaviside step function H

     i

    H(x)={ 1, if  x0 0, if  x<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaaigdacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadIhacqGHLjYScaaIWaaabaGaaGimaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabgYda8iaaicdaaaaacaGL7baaaaa@4C27@
    for example is D 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGymaaaaaaa@379D@ on 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacqGHGjsUcaaIWaaaaaaa@3A0A@ . But as H (x)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaafaGaaiikaiaadIhacaGGPaGaeyypa0JaaGimaaaa@3ADB@ for all x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@396A@ there will be no x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ such that

    H(1)=H(1)+(11) H ( x ˜ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaacIcacqGHsislcaaIXaGaaiykaiabg2da9iaadIeacaGGOaGaaGymaiaacMcacqGHRaWkcaGGOaGaeyOeI0IaaGymaiabgkHiTiaaigdacaGGPaGaeyyXICTabmisayaafaGaaiikaiqadIhagaacaiaacMcaaaa@48B4@ ,

    because that would imply:  0=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iaaigdaaaa@3867@ .
     

Our first application goes back to a promise made in the context of [7.5.3/4]. Now we are able to show that regular functions on intervals are always injective.

The way the mean value theorem is used in the subsequent proof is a characteristic one: The equation [7.9.5] allows to access properties of  f as soon as global features of its derivative are available. In this case for example we know that the derivative values  f (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadIhacaGGPaaaaa@3939@ are non-zero everywhere and thus certainly non-zero as well at the normally unknown point x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ provided by the mean value theorem.

Proposition:  If  f C 0 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaamysaiaacMcaaaa@3C3B@ is differentiable at each interior point of I we have:

f (x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadIhacaGGPaGaeyiyIKRaaGimaaaa@3BBA@ for all interior points x of I MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7aaa@3B65@ f is injective on I.
[7.9.6]

Proof:  If x and  y are any two different points of I there is an x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ in between x and  y according to [7.9.5] such that

f(x)=f(y)+ (xy) 0 f ( x ˜ ) 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaamyEaiaacMcacqGHRaWkdaagaaqaaiaacIcacaWG4bGaeyOeI0IaamyEaiaacMcaaSqaaiabgcMi5kaaicdaaOGaayjo+dGaeyyXIC9aaGbaaeaaceWGMbGbauaacaGGOaGabmiEayaaiaGaaiykaaWcbaGaeyiyIKRaaGimaaGccaGL44paaaa@5140@ .

With (xy) f ( x ˜ )0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacqGHsislcaWG5bGaaiykaiabgwSixlqadAgagaqbaiaacIcaceWG4bGbaGaacaGGPaGaeyiyIKRaaGimaaaa@4254@ we now see:  f(x)f(y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgcMi5kaadAgacaGGOaGaamyEaiaacMcaaaa@3E36@ .

A second example will classify the constant functions using only their derivative behaviour.

Proposition:  For any function  f D 1 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaamysaiaacMcaaaa@3C3D@ the following holds:

f(x)=c  for all  xI f (x)=0  for all  xI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadogacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaWGjbGaaGzbVlabgsDiBlaaywW7ceWGMbGbauaacaGGOaGaamiEaiaacMcacqGH9aqpcaaIWaGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWG4bGaeyicI4Saamysaaaa@5B92@
[7.9.7]

Proof:  Whereas the direction " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3849@ " is trivial (see [7.3.6]) the reverse one " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3845@ " turns out to be the actual task. And again this is a characteristic context for the mean value theorem. If we choose a fixed point aI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadMeaaaa@3924@   [7.9.5] guarantees an x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ in between a and x for each xI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeaaaa@393B@ different from a such that

f(x)=f(a)+(xa) f ( x ˜ ) =0 =f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaamyyaiaacMcacqGHRaWkcaGGOaGaamiEaiabgkHiTiaadggacaGGPaGaeyyXIC9aaGbaaeaaceWGMbGbauaacaGGOaGabmiEayaaiaGaaiykaaWcbaGaeyypa0JaaGimaaGccaGL44pacqGH9aqpcaWGMbGaaiikaiaadggacaGGPaaaaa@4FFE@

Taking cf(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaadAgacaGGOaGaamyyaiaacMcaaaa@3B04@ now proves the assertion.

An appropriate statement for polynomials extends [7.9.7] considerably.

Proposition:  Let n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CF@ be an arbitrary natural number. For any D n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@3972@ -function  f: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C62@ we have:

f is a ploynomial of degree n f (n+1) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamOBaiaaywW7cqGHuhY2caaMf8UaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaaicdaaaa@44D7@
[7.9.8]

Proof:  " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3849@ " is an immediate consequence from [7.8.14]. We prove " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3845@ " by induction. As the base step ( n=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaicdaaaa@389F@ ) is already done by [7.9.7] it remains to prove the induction step. To that end let  f be a D n+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaikdaaaaaaa@3973@ -function such that

( f (n+1) ) = f (n+2) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGcceGGPaGbauaacqGH9aqpcaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaikdacaGGPaaaaOGaeyypa0JaaGimaaaa@442E@ .

According to [7.9.7] the differentiable function  f (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaaa@3AED@ is a constant one (the weird notation of c is due to [7.8.14]):

f (n+1) =c= ( c (n+1)! X n+1 ) (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaadogacqGH9aqpcaGGOaWaaSaaaeaacaWGJbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaamiwamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@4C84@ .

Now we consider the D n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@3972@ -function  pf c (n+1)! X n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iaadAgacqGHsisldaWcaaqaaiaadogaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaaacaWGybWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaa@42DF@ . As obviously

p (n+1) = (f c (n+1)! X n+1 ) (n+1) = f (n+1) ( c (n+1)! X n+1 ) (n+1) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaacIcacaWGMbGaeyOeI0YaaSaaaeaacaWGJbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaamiwamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabgkHiTiaacIcadaWcaaqaaiaadogaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaaacaWGybWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacMcadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGH9aqpcaaIWaaaaa@63E3@

we know that p is a polynomial of degree n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamOBaaaa@3894@ due to the induction hypothesis. But that means: f=p+ c (n+1)! X n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadchacqGHRaWkdaWcaaqaaiaadogaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaaacaWGybWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaa@42D4@ is a polynomial of degree n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamOBaiabgUcaRiaaigdaaaa@3A31@ .

[7.9.8] allows to spot the polynomials within the C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -functions on MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@375C@ simply by checking if the zero function is one of their derivatives. The derivatives calculated in [7.8.11-13] thus prove that exp, sin and cos are no polynomials.

When dealing with continuity we introduced one of its special forms in [6.5.6], the so called lipschitz-continuity. From the mean value theorem we now get the information that a differentiable function with a bounded derivative will be lipschitz-continuous automatically.

Task:  If  f D 1 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaamysaiaacMcaaaa@3C3D@ and | f (x)|c MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadAgagaqbaiaacIcacaWG4bGaaiykaiaacYhacqGHKjYOcaWGJbaaaa@3DD6@ for all interior points x of I, then all x,yI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4Saamysaaaa@3A66@ satisfy:

|f(x)f(y)|<c|xy| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadMhacaGGPaGaaiiFaiabgYda8iaadogacqGHflY1caGG8bGaamiEaiabgkHiTiaadMhacaGG8baaaa@47F7@
[7.9.9]

Proof: ?

|f(x)f(y)|= | f ( x ˜ )| c |xy|c|xy| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadMhacaGGPaGaaiiFaiabg2da9maayaaabaGaaiiFaiqadAgagaqbaiaacIcaceWG4bGbaGaacaGGPaGaaiiFaaWcbaGaeyizImQaam4yaaGccaGL44pacqGHflY1caGG8bGaamiEaiabgkHiTiaadMhacaGG8bGaeyizImQaam4yaiabgwSixlaacYhacaWG4bGaeyOeI0IaamyEaiaacYhaaaa@5B5C@ .

Consider:

  • Every function  f C 1 ([a,b]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaaaaa@3FAB@ is lipschitz-continuous, because now  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E3@ is a continuous function on a closed interval and thus bounded due to [6.6.4].

  • As sin and cos have only values between −1 and 1, we get for all x,y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaeSyhHekaaa@3B8B@ :

    |sinxsiny||xy| |cosxcosy||xy| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaacYhaciGGZbGaaiyAaiaac6gacaWG4bGaeyOeI0Iaci4CaiaacMgacaGGUbGaamyEaiaacYhacqGHKjYOcaGG8bGaamiEaiabgkHiTiaadMhacaGG8baabaGaaiiFaiGacogacaGGVbGaai4CaiaadIhacqGHsislciGGJbGaai4BaiaacohacaWG5bGaaiiFaiabgsMiJkaacYhacaWG4bGaeyOeI0IaamyEaiaacYhaaaaaaa@5858@

     

We are now going to extend the mean value theorem. Two options are at our disposal: We could try to find a version for two functions, as we did successfully with the intermediate value theorem (see [6.6.3]), and we could check if the mean value theorem reveals additional features if repeatedly differentiable functions are involved.

Proposition (second mean value theorem):  For any two functions f,g C 0 ([a,b]) D 1 (]a,b[) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaacMcacqGHPiYXcaWGebWaaWbaaSqabeaacaaIXaaaaOGaaiikaiaac2facaWGHbGaaiilaiaadkgacaGGBbGaaiykaaaa@4A35@ there is an x ˜ ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3CB9@ such that

(f(b)f(a)) g ( x ˜ )=(g(b)g(a)) f ( x ˜ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaGaaiykaiabgwSixlqadEgagaqbaiaacIcaceWG4bGbaGaacaGGPaGaeyypa0JaaiikaiaadEgacaGGOaGaamOyaiaacMcacqGHsislcaWGNbGaaiikaiaadggacaGGPaGaaiykaiabgwSixlqadAgagaqbaiaacIcaceWG4bGbaGaacaGGPaaaaa@5377@
[7.9.10]

Proof:  It is easily calculated that the function

h(f(b)f(a))g(g(b)g(a))f C 0 ([a,b]) D 1 (]a,b[) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabg2da9iaacIcacaWGMbGaaiikaiaadkgacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaiaacMcacqGHflY1caWGNbGaeyOeI0IaaiikaiaadEgacaGGOaGaamOyaiaacMcacqGHsislcaWGNbGaaiikaiaadggacaGGPaGaaiykaiabgwSixlaadAgacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIWaaaaOGaaiikaiaacUfacaWGHbGaaiilaiaadkgacaGGDbGaaiykaiabgMIihlaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaaiyxaiaadggacaGGSaGaamOyaiaacUfacaGGPaaaaa@6231@

satifies  h(a)=f(b)g(a)f(a)g(b)=h(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaacIcacaWGHbGaaiykaiabg2da9iaadAgacaGGOaGaamOyaiaacMcacqGHflY1caWGNbGaaiikaiaadggacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaaiykaiabgwSixlaadEgacaGGOaGaamOyaiaacMcacqGH9aqpcaWGObGaaiikaiaadkgacaGGPaaaaa@507E@ . According to Rolle's theorem [7.9.3] we thus find an x ˜ ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3CB9@ such that

0= h ( x ˜ )=(f(b)f(a)) g ( x ˜ )(g(b)g(a)) f ( x ˜ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iqadIgagaqbaiaacIcaceWG4bGbaGaacaGGPaGaeyypa0JaaiikaiaadAgacaGGOaGaamOyaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaGaaiykaiabgwSixlqadEgagaqbaiaacIcaceWG4bGbaGaacaGGPaGaeyOeI0IaaiikaiaadEgacaGGOaGaamOyaiaacMcacqGHsislcaWGNbGaaiikaiaadggacaGGPaGaaiykaiabgwSixlqadAgagaqbaiaacIcaceWG4bGbaGaacaGGPaaaaa@5982@ ,

which in fact is the assertion.

Consider:

  • If we interchange a and b in [7.8.10], i.e. if we multiply the equation by −1, [7.8.10] is still valid. The second mean value theorem thus does also not depend on wheather or not a is actually left of b.
     

With the second mean value theorem we will get L'Hôpital's rule, a very efficient technique for calculating certain limits. We start with the following observation:

Let  f,g:A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaaiOoaiaadgeacqGHsgIRcqWIDesOaaa@3D54@ be differentiable at a and assume g (a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikaiaadggacaGGPaGaeyiyIKRaaGimaaaa@3BA4@ . If  f(a)=g(a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaadEgacaGGOaGaamyyaiaacMcacqGH9aqpcaaIWaaaaa@3F07@ then f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbaabaGaam4zaaaaaaa@37D3@ is continuously continuable at a by the limit

lim xa f(x) g(x) = f (a) g (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGaamOzaiaacIcacaWG4bGaaiykaaqaaiaadEgacaGGOaGaamiEaiaacMcaaaGaeyypa0ZaaSaaaeaaceWGMbGbauaacaGGOaGaamyyaiaacMcaaeaaceWGNbGbauaacaGGOaGaamyyaiaacMcaaaaaaa@4AE5@ .
[7.9.11]

Proof:  At first we consider the representation (see [7.5.1] for details)

g=g(a)+(Xa)r=(Xa)r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadEgacaGGOaGaamyyaiaacMcacqGHRaWkcaGGOaGaamiwaiabgkHiTiaadggacaGGPaGaamOCaiabg2da9iaacIcacaWGybGaeyOeI0IaamyyaiaacMcacaWGYbaaaa@46F1@

to show that a is an accumulation point

 i

According to [6.4.4] we would manage this by creating a sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3954@ in {xA|g(x)0}\{a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadIhacqGHiiIZcaWGbbGaaiiFaiaadEgacaGGOaGaamiEaiaacMcacqGHGjsUcaaIWaGaaiyFaGqaaiaa=XfacaGG7bGaamyyaiaac2haaaa@45C2@ such that a n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaadggaaaa@3ACE@ .

As a is already an accumulation point of A (otherwise there would be no function differentiable at a) it is sufficient to that end to find a relative ε-neighbourhood A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3A1B@ satisfying A a,ε \{a}{xA|g(x)0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaGccaGGCbGaai4EaiaadggacaGG9bGaeyOGIWSaai4EaiaadIhacqGHiiIZcaWGbbGaaiiFaiaadEgacaGGOaGaamiEaiaacMcacqGHGjsUcaaIWaGaaiyFaaaa@4BF1@ .

of {xA|g(x)0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadIhacqGHiiIZcaWGbbGaaiiFaiaadEgacaGGOaGaamiEaiaacMcacqGHGjsUcaaIWaGaaiyFaaaa@41F6@ . As r is continuous at a the information r(a)= g (a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacIcacaWGHbGaaiykaiabg2da9iqadEgagaqbaiaacIcacaWGHbGaaiykaiabgcMi5kaaicdaaaa@3FE0@ yields a relative ε-neighbourhood A a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3A1B@ such that g(x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWG4bGaaiykaiabgcMi5kaaicdaaaa@3BAF@ for all x A a,ε \{a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadgeadaWgaaWcbaGaamyyaiaacYcacqaH1oqzaeqaaGqaaOGaa8hxaiaacUhacaWGHbGaaiyFaaaa@4072@ .

As f (a)= lim xa f(x)f(a) xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcaaeaacaWG4bGaeyOeI0Iaamyyaaaaaaa@4B43@ and g (a)= lim xa g(x)g(a) xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikaiaadggacaGGPaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGaam4zaiaacIcacaWG4bGaaiykaiabgkHiTiaadEgacaGGOaGaamyyaiaacMcaaeaacaWG4bGaeyOeI0Iaamyyaaaaaaa@4B46@   [7.9.11] now follows immediately with [6.9.8] from the equation

f(x) g(x) = f(x)f(a) g(x)g(a) = f(x)f(a) xa g(x)g(a) xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaaabaGaam4zaiaacIcacaWG4bGaaiykaaaacqGH9aqpdaWcaaqaaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaam4zaiaacIcacaWG4bGaaiykaiabgkHiTiaadEgacaGGOaGaamyyaiaacMcaaaGaeyypa0ZaaSaaaeaadaWcaaqaaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaamiEaiabgkHiTiaadggaaaaabaWaaSaaaeaacaWGNbGaaiikaiaadIhacaGGPaGaeyOeI0Iaam4zaiaacIcacaWGHbGaaiykaaqaaiaadIhacqGHsislcaWGHbaaaaaaaaa@61CF@

which holds for all x A a,ε \{a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadgeadaWgaaWcbaGaamyyaiaacYcacqaH1oqzaeqaaOGaaiixaiaacUhacaWGHbGaaiyFaaaa@406C@ .

 

Proposition (L'Hôpital's rule):  Let I be an interval, aI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadMeaaaa@3924@ and  f,g C 0 (I) D 1 (I\{a}) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaWGjbGaaiykaiabgMIihlaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaamysaiaacYfacaGG7bGaamyyaiaac2hacaGGPaaaaa@471D@ such that g (x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikaiaadIhacaGGPaGaeyiyIKRaaGimaaaa@3BBB@ for all xI\{a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeacaGGCbGaai4EaiaadggacaGG9baaaa@3D01@ . If  f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaceWGMbGbauaaaeaaceWGNbGbauaaaaaaaa@37EB@ is continuously continuable at a the following holds:

  1. f(a)=g(a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaadEgacaGGOaGaamyyaiaacMcacqGH9aqpcaaIWaGaaGzbVlabgkDiElaaywW7aaa@4480@

    f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbaabaGaam4zaaaaaaa@37D3@ is continuously continuable at a by  lim xa f(x) g(x) = lim xa f (x) g (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGaamOzaiaacIcacaWG4bGaaiykaaqaaiaadEgacaGGOaGaamiEaiaacMcaaaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGabmOzayaafaGaaiikaiaadIhacaGGPaaabaGabm4zayaafaGaaiikaiaadIhacaGGPaaaaaaa@51F6@ .

 

[7.9.12]

  1. lim xa 1 g(x) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGaaGymaaqaaiaadEgacaGGOaGaamiEaiaacMcaaaGaeyypa0JaaGimaiaaywW7cqGHshI3caaMf8oaaa@4815@

    f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbaabaGaam4zaaaaaaa@37D3@ is continuously continuable at a by  lim xa f(x) g(x) = lim xa f (x) g (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGaamOzaiaacIcacaWG4bGaaiykaaqaaiaadEgacaGGOaGaamiEaiaacMcaaaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGabmOzayaafaGaaiikaiaadIhacaGGPaaabaGabm4zayaafaGaaiikaiaadIhacaGGPaaaaaaa@51F6@ .

 

[7.9.13]

Proof:  We go ahead with the sequence criterion [6.8.4] and take a sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in I\{a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaacYfacaGG7bGaamyyaiaac2haaaa@3A80@ such that a n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaadggaaaa@3ACE@ . We may assume that g( a n )0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgcMi5kaaicdaaaa@3CC1@ for all n, because: As g (x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikaiaadIhacaGGPaGaeyiyIKRaaGimaaaa@3BBB@ , [7.9.6] allows at most one zero for g left of a, i.e. within the interval I <a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabgMIihlabl2riHoaaCaaaleqabaGaeyipaWJaamyyaaaaaaa@3BDF@ and at most one zero within the right subinterval I >a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabgMIihlabl2riHoaaCaaaleqabaGaeyOpa4Jaamyyaaaaaaa@3BE3@ . According to the second mean value theorem [7.9.10] there is now an x ˜ n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaaaa@3817@ in between a and a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaaaaa@37F1@ , that means | x ˜ n a|| a n a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadIhagaacamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggacaGG8bGaeyizImQaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaaaa@438B@ , for each n such that

(f( a n )f(a)) g ( x ˜ n )=(g( a n )g(a)) f ( x ˜ n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaGaaiykaiabgwSixlqadEgagaqbaiaacIcaceWG4bGbaGaadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaaiikaiaadEgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGHsislcaWGNbGaaiikaiaadggacaGGPaGaaiykaiabgwSixlqadAgagaqbaiaacIcaceWG4bGbaGaadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@5819@ .[1]

If ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ converges to a the same is true for ( x ˜ n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiqadIhagaacamaaBaaaleaacaWGUbaabeaakiaacMcaaaa@397A@ (see the nesting theorem [5.5.8]!) which guarantees the convergence  f ( x ˜ n ) g ( x ˜ n ) lim xa f (x) g (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaceWGMbGbauaacaGGOaGabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaqaaiqadEgagaqbaiaacIcaceWG4bGbaGaadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaiabgkziUoaaxababaGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaamyyaaqabaGcdaWcaaqaaiqadAgagaqbaiaacIcacaWG4bGaaiykaaqaaiqadEgagaqbaiaacIcacaWG4bGaaiykaaaaaaa@4E82@ due to the premise. From [1] we thus get:

1.   f( a n ) g( a n ) = f( a n )f(a) g( a n )g(a) = f ( x ˜ n ) g ( x ˜ n ) lim xa f (x) g (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaabaGaam4zaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaacqGH9aqpdaWcaaqaaiaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGHsislcaWGMbGaaiikaiaadggacaGGPaaabaGaam4zaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgkHiTiaadEgacaGGOaGaamyyaiaacMcaaaGaeyypa0ZaaSaaaeaaceWGMbGbauaacaGGOaGabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaqaaiqadEgagaqbaiaacIcaceWG4bGbaGaadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaiabgkziUoaaxababaGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaamyyaaqabaGcdaWcaaqaaiqadAgagaqbaiaacIcacaWG4bGaaiykaaqaaiqadEgagaqbaiaacIcacaWG4bGaaiykaaaaaaa@6A2B@ .

2.   f( a n ) g( a n ) = f(a) g( a n ) 0 +(1 g(a) g( a n ) 0 ) f ( x ˜ n ) g ( x ˜ n ) lim xa f (x) g (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaabaGaam4zaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaacqGH9aqpdaagaaqaaiaaykW7daWcaaqaaiaadAgacaGGOaGaamyyaiaacMcaaeaacaWGNbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaiaaykW7aSqaaiabgkziUkaaicdaaOGaayjo+dGaey4kaSIaaiikaiaaigdacqGHsisldaagaaqaaiaaykW7daWcaaqaaiaadEgacaGGOaGaamyyaiaacMcaaeaacaWGNbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaiaaykW7aSqaaiabgkziUkaaicdaaOGaayjo+dGaaiykaiabgwSixpaalaaabaGabmOzayaafaGaaiikaiqadIhagaacamaaBaaaleaacaWGUbaabeaakiaacMcaaeaaceWGNbGbauaacaGGOaGabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaacqGHsgIRdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamiEaiabgkziUkaadggaaeqaaOWaaSaaaeaaceWGMbGbauaacaGGOaGaamiEaiaacMcaaeaaceWGNbGbauaacaGGOaGaamiEaiaacMcaaaaaaa@7D03@ .

Consider:

  • Of course are we allowed to iterate the above rules: Take e.g.  f,g C 1 (I) D 2 (I\{a}) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakiaacIcacaWGjbGaaiykaiabgMIihlaadseadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamysaiaacYfacaGG7bGaamyyaiaac2hacaGGPaaaaa@471F@ such that  f(a)=g(a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaadEgacaGGOaGaamyyaiaacMcacqGH9aqpcaaIWaaaaa@3F07@ f (a)= g (a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyypa0Jabm4zayaafaGaaiikaiaadggacaGGPaGaeyypa0JaaGimaaaa@3F1F@ and g (x), g (x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaGaaiikaiaadIhacaGGPaGaaiilaiqadEgagaqbgaqbaiaacIcacaWG4bGaaiykaiabgcMi5kaaicdaaaa@3FC4@ for all xI\{a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeacaGGCbGaai4EaiaadggacaGG9baaaa@3D01@ .

    If the limit lim xa f (x) g (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGabmOzayaafyaafaGaaiikaiaadIhacaGGPaaabaGabm4zayaafyaafaGaaiikaiaadIhacaGGPaaaaaaa@4390@ exists the following ones exist as well and are all the same:

    lim xa f(x) g(x) = lim xa f (x) g (x) = lim xa f (x) g (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGaamOzaiaacIcacaWG4bGaaiykaaqaaiaadEgacaGGOaGaamiEaiaacMcaaaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakmaalaaabaGabmOzayaafaGaaiikaiaadIhacaGGPaaabaGabm4zayaafaGaaiikaiaadIhacaGGPaaaaiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaamyyaaqabaGcdaWcaaqaaiqadAgagaqbgaqbaiaacIcacaWG4bGaaiykaaqaaiqadEgagaqbgaqbaiaacIcacaWG4bGaaiykaaaaaaa@60A0@ .

     

Example:  Many problems could already be solved using only [7.9.11]. The logarithm function ln from the third example is introduced in [8.7.1].

  • lim x0 1cosx x = (1cos ) (0) X (0) = sin(0) 1 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakmaalaaabaGaaGymaiabgkHiTiGacogacaGGVbGaai4CaiaadIhaaeaacaWG4baaaiabg2da9maalaaabaGaaiikaiaaigdacqGHsislciGGJbGaai4BaiaacohaceGGPaGbauaacaGGOaGaaGimaiaacMcaaeaaceWGybGbauaacaGGOaGaaGimaiaacMcaaaGaeyypa0ZaaSaaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaaGimaiaacMcaaeaacaaIXaaaaiabg2da9iaaicdaaaa@57A9@

  • lim x0 1cosx x 2 = lim x0 (1cos ) (x) ( X 2 ) (x) = (1cos ) (0) ( X 2 ) (0) = cos(0) 2 = 1 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakmaalaaabaGaaGymaiabgkHiTiGacogacaGGVbGaai4CaiaadIhaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaaGimaaqabaGcdaWcaaqaaiaacIcacaaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGabiykayaafaGaaiikaiaadIhacaGGPaaabaGaaiikaiaadIfadaahaaWcbeqaaiaaikdaaaGcceGGPaGbauaacaGGOaGaamiEaiaacMcaaaGaeyypa0ZaaSaaaeaacaGGOaGaaGymaiabgkHiTiGacogacaGGVbGaai4CaiqacMcagaqbgaqbaiaacIcacaaIWaGaaiykaaqaaiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGabiykayaafyaafaGaaiikaiaaicdacaGGPaaaaiabg2da9maalaaabaGaci4yaiaac+gacaGGZbGaaiikaiaaicdacaGGPaaabaGaaGOmaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@7155@

  • lim x0 ( x a lnx)= lim x0 ln(x) ( X a ) (x) = lim x0 ( x a a )=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakiaacIcacaWG4bWaaWbaaSqabeaacaWGHbaaaOGaeyyXICTaciiBaiaac6gacaWG4bGaaiykaiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaaGimaaqabaGcdaWcaaqaaiGacYgacaGGUbGaai4jaiaacIcacaWG4bGaaiykaaqaaiaacIcacaWGybWaaWbaaSqabeaacqGHsislcaWGHbaaaOGabiykayaafaGaaiikaiaadIhacaGGPaaaaiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWG4bGaeyOKH4QaaGimaaqabaGccaGGOaGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaacaWGHbaaaaGcbaGaamyyaaaacaGGPaGaeyypa0JaaGimaaaa@6768@    for each a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@

[7.9.14]

This justifies the phrase "If 0<x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadIhacqGHsgIRcaaIWaaaaa@3B4E@ , then the logarithm function ln approaches MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaeyOhIukaaa@384A@ slower than every positive power of X".

An analogue statement is true for the exponential function exp. "If x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamiEaiabgkziUkabg6HiLcaa@3A48@ , then exp approaches MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaeyOhIukaaa@375E@ quicker than every positive power of X":

  • lim x x a exp(x) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHEisPaeqaaOWaaSaaaeaacaWG4bWaaWbaaSqabeaacaWGHbaaaaGcbaGaciyzaiaacIhacaGGWbGaaiikaiaadIhacaGGPaaaaiabg2da9iaaicdaaaa@4675@    for each a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@  

[7.9.15]

Proof:  L'Hôpital's rule is not necessary in this case. We just need the series representation of exp

 i

exp(x)= i=0 x i i! MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacIhacaGGWbGaaiikaiaadIhacaGGPaGaeyypa0ZaaabCaeaadaWcaaqaaiaadIhadaahaaWcbeqaaiaadMgaaaaakeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaa@45C6@    See [5.9.18] for details

. Choosing a k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLcaa@39CC@ such that k>a+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg6da+iaadggacqGHRaWkcaaIXaaaaa@3A67@ will yield the assertion as the following estimate is true for all x1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgwMiZkaaigdaaaa@396A@ :

0 x a exp(x) = x a i=0 x i i! k! x a x k =k! 1 x ka k! 1 x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJoaalaaabaGaamiEamaaCaaaleqabaGaamyyaaaaaOqaaiGacwgacaGG4bGaaiiCaiaacIcacaWG4bGaaiykaaaacqGH9aqpdaWcaaqaaiaadIhadaahaaWcbeqaaiaadggaaaaakeaadaaeWbqaamaalaaabaGaamiEamaaCaaaleqabaGaamyAaaaaaOqaaiaadMgacaGGHaaaaaWcbaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaGccqGHKjYOcaWGRbGaaiyiamaalaaabaGaamiEamaaCaaaleqabaGaamyyaaaaaOqaaiaadIhadaahaaWcbeqaaiaadUgaaaaaaOGaeyypa0Jaam4AaiaacgcadaWcaaqaaiaaigdaaeaacaWG4bWaaWbaaSqabeaacaWGRbGaeyOeI0IaamyyaaaaaaGccqGHKjYOcaWGRbGaaiyiamaalaaabaGaaGymaaqaaiaadIhaaaaaaa@611D@ .

We now turn to the second promised extension of the mean value theorem. This will, amongst others, result in a special method (Taylor polynomials) to study analytical functions.

Theorem (Taylor's theorem):  Take n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CF@ . For any function  f C n ([a,b]) D n+1 (]a,b[) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaGaeyykICSaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGGOaGaaiyxaiaadggacaGGSaGaamOyaiaacUfacaGGPaaaaa@4AA7@ there is an x ˜ ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3CB9@ such that Taylor's formula holds:

f(b)= i=0 n f (i) (a) i! (ba) i + f (n+1) ( x ˜ ) (n+1)! (ba) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGIbGaaiykaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiikaiaadkgacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaakiabgUcaRmaalaaabaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcaceWG4bGbaGaacaGGPaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaaiikaiaadkgacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@604D@
[7.9.16]

Proof:  It is Rolle's theorem again that will do the trick. As a start we find a real number c such that

f(b)= i=0 n f (i) (a) i! (ba) i + c (n+1)! (ba) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGIbGaaiykaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiikaiaadkgacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaakiabgUcaRmaalaaabaGaam4yaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacaGGHaaaaiaacIcacaWGIbGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaa@59C5@ [2]

by simply solving the linear equation [2] for c. So it remains to find an x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ such that c= f (n+1) ( x ˜ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccaGGOaGabmiEayaaiaGaaiykaaaa@3F4A@ . To that end we consider the function

g i=0 n f (i) i! (bX) i + c (n+1)! (bX) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaakeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiikaiaadkgacqGHsislcaWGybGaaiykamaaCaaaleqabaGaamyAaaaakiabgUcaRmaalaaabaGaam4yaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacaGGHaaaaiaacIcacaWGIbGaeyOeI0IaamiwaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaa@5535@ .

Due to the premise g is continuous on [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ and differentiable on ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3A29@ . We use the product rule to calculate its derivative and observe that the resulting series is a telescopic one collapsing to a single difference:

g = f + i=1 n ( f (i+1) i! (bX) i f (i) (i1)! (bX) i1 ) c n! (bX) n = f + f (n+1) n! (bX) n f (1) 0! (bX) 0 c n! (bX) n = f (n+1) n! (bX) n c n! (bX) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiqadEgagaqbaaqaaiabg2da9iqadAgagaqbaiabgUcaRmaaqahabaGaaiikamaalaaabaGaamOzamaaCaaaleqabaGaaiikaiaadMgacqGHRaWkcaaIXaGaaiykaaaaaOqaaiaadMgacaGGHaaaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccaGGOaGaamOyaiabgkHiTiaadIfacaGGPaWaaWbaaSqabeaacaWGPbaaaOGaeyOeI0YaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaakeaacaGGOaGaamyAaiabgkHiTiaaigdacaGGPaGaaiyiaaaacaGGOaGaamOyaiabgkHiTiaadIfacaGGPaWaaWbaaSqabeaacaWGPbGaeyOeI0IaaGymaaaakiaacMcacqGHsisldaWcaaqaaiaadogaaeaacaWGUbGaaiyiaaaacaGGOaGaamOyaiabgkHiTiaadIfacaGGPaWaaWbaaSqabeaacaWGUbaaaaGcbaaabaGaeyypa0JabmOzayaafaGaey4kaSYaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaGcbaGaamOBaiaacgcaaaGaaiikaiaadkgacqGHsislcaWGybGaaiykamaaCaaaleqabaGaamOBaaaakiabgkHiTmaalaaabaGaamOzamaaCaaaleqabaGaaiikaiaaigdacaGGPaaaaaGcbaGaaGimaiaacgcaaaGaaiikaiaadkgacqGHsislcaWGybGaaiykamaaCaaaleqabaGaaGimaaaakiabgkHiTmaalaaabaGaam4yaaqaaiaad6gacaGGHaaaaiaacIcacaWGIbGaeyOeI0IaamiwaiaacMcadaahaaWcbeqaaiaad6gaaaaakeaaaeaacqGH9aqpdaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaakeaacaWGUbGaaiyiaaaacaGGOaGaamOyaiabgkHiTiaadIfacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyOeI0YaaSaaaeaacaWGJbaabaGaamOBaiaacgcaaaGaaiikaiaadkgacqGHsislcaWGybGaaiykamaaCaaaleqabaGaamOBaaaaaaaaaa@9D0E@ [3]

g(b)=f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWGIbGaaiykaiabg2da9iaadAgacaGGOaGaamOyaiaacMcaaaa@3D49@ is obvious and according to [2]  g(a)=f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcacaWGHbGaaiykaiabg2da9iaadAgacaGGOaGaamOyaiaacMcaaaa@3D48@ is valid as well. Thus Rolle's theorem [7.9.3] provides an x ˜ ]a,b[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaGaeyicI4SaaiyxaiaadggacaGGSaGaamOyaiaacUfaaaa@3CB9@ such that

0= g ( x ˜ )= f (n+1) ( x ˜ ) n! (b x ˜ ) n c n! (b x ˜ ) n c (b x ˜ ) n = f (n+1) ( x ˜ ) (b x ˜ ) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iqadEgagaqbaiaacIcaceWG4bGbaGaacaGGPaGaeyypa0ZaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaaiikaiqadIhagaacaiaacMcaaeaacaWGUbGaaiyiaaaacaGGOaGaamOyaiabgkHiTiqadIhagaacaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGHsisldaWcaaqaaiaadogaaeaacaWGUbGaaiyiaaaacaGGOaGaamOyaiabgkHiTiqadIhagaacaiaacMcadaahaaWcbeqaaiaad6gaaaGccaaMf8Uaeyi1HSTaaGzbVlaadogacaGGOaGaamOyaiabgkHiTiqadIhagaacaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGH9aqpcaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaaiikaiqadIhagaacaiaacMcacaGGOaGaamOyaiabgkHiTiqadIhagaacaiaacMcadaahaaWcbeqaaiaad6gaaaaaaa@6CFC@ .

As b x ˜ 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgkHiTiqadIhagaacaiabgcMi5kaaicdaaaa@3B4D@ , we see that  c= f (n+1) ( x ˜ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccaGGOaGabmiEayaaiaGaaiykaaaa@3F4A@ .

Consider:

  • If n=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaicdaaaa@389F@   [7.9.16] and [7.9.5] coincide. Thus Taylor's theorem is indeed an extension of the mean value theorem.

  • And again we find that the actual order of a and b is of no relevance for the validity of Taylor's theorem. The proof however is a bit more tricky this time. We need to introduce the linear function

    gb+(aX) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadkgacqGHRaWkcaGGOaGaamyyaiabgkHiTiaadIfacaGGPaaaaa@3DB0@

    and to apply Taylor's formula to the composit  fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgaaaa@38FD@ . Noting that (fg) (i) (x)= f (i) (g(x)) (1) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqWIyiYBcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaadIhacaGGPaGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaadEgacaGGOaGaamiEaiaacMcacaGGPaGaeyyXICTaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaaaa@4E9A@ , especially  fg(b)=f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgacaGGOaGaamOyaiaacMcacqGH9aqpcaWGMbGaaiikaiaadggacaGGPaaaaa@3F6D@ and (fg) (i) (a)= f (i) (b) (1) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqWIyiYBcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaadggacaGGPaGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaadkgacaGGPaGaeyyXICTaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaaaa@4C28@ , we get

    f(a) = i=0 n f (i) (b) (1) i i! (ba) i + f (n+1) (g( x ˜ )) (1) n+1 (n+1)! (ba) n+1 = i=0 n f (i) (b) i! (ab) i + f (n+1) (g( x ˜ )) (n+1)! (ab) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadAgacaGGOaGaamyyaiaacMcaaeaacqGH9aqpdaaeWbqaamaalaaabaGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaadkgacaGGPaGaeyyXICTaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGPbaaaaGcbaGaamyAaiaacgcaaaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacIcacaWGIbGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgaaaGccqGHRaWkdaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccaGGOaGaam4zaiaacIcaceWG4bGbaGaacaGGPaGaaiykaiabgwSixlaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaaacaGGOaGaamOyaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaOqaaaqaaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamOyaiaacMcaaeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiikaiaadggacqGHsislcaWGIbGaaiykamaaCaaaleqabaGaamyAaaaakiabgUcaRmaalaaabaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcacaWGNbGaaiikaiqadIhagaacaiaacMcacaGGPaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaaiikaiaadggacqGHsislcaWGIbGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaaaa@9AA9@

    Thus Taylor's formula holds for  f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGHbGaaiykaaaa@3916@ as well when we take g( x ˜ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacIcaceWG4bGbaGaacaGGPaaaaa@393D@ as the "new" x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ . So we may restate Taylor's theorem the following way:

    For any function  f D n+1 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiaadMeacaGGPaaaaa@3E12@ and any two different points a,bI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyicI4Saamysaaaa@3ABB@ there is an x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ in between a und b that satisfies [7.9.16].

  • If  f D n+1 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiaadMeacaGGPaaaaa@3E12@ and aI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadMeaaaa@3924@ we call the polynomial

    T a,n i=0 n f (i) (a) i! (Xa) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaOGaeyypa0ZaaabCaeaadaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaakiaacIcacaWGHbGaaiykaaqaaiaadMgacaGGHaaaaaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGOaGaamiwaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaaaa@4CE6@

    the n-th Taylor polynomial and the function R a,n :I MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaOGaaiOoaiaadMeacqGHsgIRcqWIDesOaaa@3E6B@ defined by

    R a,n (x){ f (n+1) ( x ˜ ) (n+1)! (xa) n+1 ,  if  xa 0,  if  x=a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0ZaaiqaaeaafaqaaeGabaaabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaaiikaiqadIhagaacaiaacMcaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabgcMi5kaadggaaeaacaaIWaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyypa0JaamyyaaaaaiaawUhaaaaa@6191@

    the n-th remainder of  f with respect to a. The function R a,n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaaaa@3978@ is well defined: There might be several x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F8@ for a fixed x satisfiying Taylor's formula, but the value  f (n+1) ( x ˜ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcaceWG4bGbaGaacaGGPaaaaa@3D5C@ is the unique solution c of [2] belonging to x and a. R a,n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaaaa@3978@ is sometimes referred to as the Lagrange form of the remainder.

  • If  f C (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiabg6HiLcaakiaacIcacaWGjbGaaiykaaaa@3CF2@ and aI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadMeaaaa@3924@ we call the power series ( i=0 n f (i) (a) i! (Xa) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiikaiaadIfacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaakiaacMcaaaa@49AB@ the Taylor series of  f with respect to a. If the Taylor series is convergent with r as its radius of convergence and if  f| I a,r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYhacaWGjbWaaSbaaSqaaiaadggacaGGSaGaamOCaaqabaaaaa@3B5E@ is its limit function, i.e.

    f(x)= i=0 f (i) (a) i! (xa) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccaGGOaGaamiEaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaaaa@4D2D@   for all x]ar,a+r[I MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaWGHbGaeyOeI0IaamOCaiaacYcacaWGHbGaey4kaSIaamOCaiaacUfacqGHPiYXcaWGjbaaaa@42D2@ ,[4]

    the equation [4] is said to be the Taylor expansion of  f at a. C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -functions, which allow a Taylor expansion for each aI MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadMeaaaa@3924@ are thus analytical.
     

In chapter 8.10 we will access the Taylor formula in a different way. On this occasion we will learn how to test if a C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -function is analytical.

We return to the quest for local extreme points. With Taylor's formula we are now able to state a first sufficient existence criterion for local extreme points that in many cases successfully tells apart the candidates provided by the necessary criterion [7.9.2]. It is however confined to high quality functions on intervals only. Criteria for weaker functions will follow in the next part.

Proposition (sufficient criterion for C n+1 ¯ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWaaaeaacaWGdbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaaaaa@397E@ -functions):  For a function  f C n+1 (I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiaadMeacaGGPaaaaa@3E0E@ and an interior point a of I with

f (a)== f (n) (a)=0 f (n+1) (a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyypa0JaeSOjGSKaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaaiikaiaadggacaGGPaGaeyypa0JaaGimaiaaywW7cqGHNis2caaMf8UaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcacaWGHbGaaiykaiabgcMi5kaaicdaaaa@524F@
[7.9.17]

it depends on the kind of  n + 1 wheather or not  f has an extremum at a:

  1. If n + 1 is odd,  f  has no local extremum at a.

  2. If n + 1 is even,  f  has a strict local { maximum at a, if   f (n+1) (a)<0 minimum at a, if   f (n+1) (a)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafaqaaeGabaaabaGaaeytaiaabggacaqG4bGaaeyAaiaab2gacaqG1bGaaeyBaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaaiikaiaadggacaGGPaGaeyipaWJaaGimaaqaaiaab2eacaqGPbGaaeOBaiaabMgacaqGTbGaaeyDaiaab2gacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcacaWGHbGaaiykaiabg6da+iaaicdaaaaacaGL7baaaaa@61ED@

Proof:  Let's say  f (n+1) (a)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcacaWGHbGaaiykaiabg6da+iaaicdaaaa@3EF5@ . As  f (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaaa@3AEA@ is continuous, there is an ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ such that  f (n+1) (x)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcacaWG4bGaaiykaiabg6da+iaaicdaaaa@3F0C@ for all x I a,ε =I]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeadaWgaaWcbaGaamyyaiaacYcacqaH1oqzaeqaaOGaeyypa0JaamysaiabgMIihlaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@4976@ . [7.9.16] now provides an x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F5@ in between x and a for all those x different from a such that

f(x)= i=0 n f (i) (a) i! (xa) i + f (n+1) ( x ˜ ) (n+1)! (xa) n+1 =f(a)+ f (n+1) ( x ˜ ) (n+1)! (xa) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiikaiaadIhacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaakiabgUcaRmaalaaabaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcaceWG4bGbaGaacaGGPaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGH9aqpcaWGMbGaaiikaiaadggacaGGPaGaey4kaSYaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaaiikaiqadIhagaacaiaacMcaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaa@789F@ .

As  f (n+1) ( x ˜ )>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacIcaceWG4bGbaGaacaGGPaGaeyOpa4JaaGimaaaa@3F1B@ for all x I a,ε \{a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeadaWgaaWcbaGaamyyaiaacYcacqaH1oqzaeqaaOGaaiixaiaacUhacaWGHbGaaiyFaaaa@4071@ , we may argue now as follows:

1.  If n + 1 is odd the term (xa) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@3CD2@ - and thence  f(x)f(a)= f (n+1) ( x ˜ ) (n+1)! (xa) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcacqGH9aqpdaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccaGGOaGabmiEayaaiaGaaiykaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacaGGHaaaaiaacIcacaWG4bGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaa@513E@ as well - is less then zero for all x left of a, and greater than zero for all x right of a. As a is an interior point of I both typs of x actually occur in I a,ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBaaaleaacaWGHbGaaiilaiabew7aLbqabaaaaa@3A20@ . Thus  f fails to have a local extremum at a.

2.  Now, if n + 1 is even the term (xa) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@3CD2@ is greater than zero for all xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaadggaaaa@3993@ and so we have:   f(x)f(a)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMcacqGH+aGpcaaIWaaaaa@3F06@ for all x I a,ε ,   xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadMeadaWgaaWcbaGaamyyaiaacYcacqaH1oqzaeqaaOGaaiilaiaaysW7caWG4bGaeyiyIKRaamyyaaaa@4292@ , which proves  f to have a strict local minimum at a.

Consider:

  • If  f is a C 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGOmaaaaaaa@379A@ -function [7.9.17] turns into the "classical" criterion
     

    f (a)=0 f (a)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggacaGGPaGaeyypa0JaaGimaiaaywW7cqGHNis2caaMf8UabmOzayaafyaafaGaaiikaiaadggacaGGPaGaeyiyIKRaaGimaiaaywW7cqGHshI3caaMf8oaaa@4AE4@ f has a local extremum at a.

  • The proof of [7.9.17] shows that 2. is also valid for boundary points of I. A similar result for 1. however does not hold as is demonstrated by the restriction X| 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaacYhacqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaaaaa@3BE6@ .

  • The reverse of 2. is not true, the criterion thus not necessary. The function  f: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C5F@ defined by

    f(x){ e 1 x ,  if  x>0 0,  if  0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaadwgadaahaaWcbeqaaiabgkHiTmaalaaabaGaaGymaaqaaiaadIhaaaaaaOGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadIhacqGH+aGpcaaIWaaabaGaaGimaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacqGHKjYOcaaIWaaaaaGaay5Eaaaaaa@50FA@

    is our counter example in this case. In 9.12 we will prove that  f is a C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@384F@ -function with all its derivatives vanishing at 0 which is a local minimum point for  f.


7.8. 7.10.