8.13. Lineare Differentialgleichungen höherer Ordnung


Die Untersuchung linearer Differentialgleichungen einer beliebigen Ordnung im Reellen ist technisch unangemessen aufwändig. Dies zeigte sich in Ansätzen schon bei den Gleichungen 2. Ordnung im vorherigen Abschnitt. Interessanterweise ist der Aufwand im Komplexen deutlich niedriger, so dass eine Betrachtung im Komplexen angebracht ist.

Grundlage sind jetzt also die komplexen Zahlen ={x+iy|x,y} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHmQaeyypa0Jaai4EaiaadIhacqGHRaWkcaWGPbGaamyEaiaacYhacaWG4bGaaiilaiaadMhacqGHiiIZcqWIDesOcaGG9baaaa@44B3@ , deren identische Funktion wir mit dem Symbol Z bezeichen.

Die Differentialrechnung in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHmkaaa@3743@ verläuft in weiten Strecken parallel zu der in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@375C@ . Insbesondere gelten hier diesselben Ableitungsregeln. Eine Besonderheit betrifft allerdings die Differenzierbarkeitsgüte: Komplex differenzierbare Funktionen sind bereits analytisch und damit sofort beliebig oft differenzierbar. Für die Menge der analytischen Funktionen auf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHmkaaa@3743@ benutzen wir das Symbol C () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaey4fIOcaaOGaaiikaiablkqiJkaacMcaaaa@3A8A@ .

In diesem Abschnitt werden wir überdies konsequent die Sprache der linearen Algebra einsetzen, also z.B. den Erzeugnisbegriff

 i

So steht etwa das Symbol

< f 1 ,, f n > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamOzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamOzamaaBaaaleaacaWGUbaabeaakiabg6da+aaa@3E6A@

für die Menge aller Linearkombinationen der Funktionen f 1 ,, f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamOzamaaBaaaleaacaWGUbaabeaaaaa@3C54@ , dem Erzeugnis von f 1 ,, f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamOzamaaBaaaleaacaWGUbaabeaaaaa@3C54@ . Also:

f< f 1 ,, f n >      f= α 1 f 1 ++ α n f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolabgYda8iaadAgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAgadaWgaaWcbaGaamOBaaqabaGccqGH+aGpcaaMe8Uaeyi1HSTaaGjbVlaadAgacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGMbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaamOzamaaBaaaleaacaWGUbaabeaaaaa@5464@ .

  f 1 ,, f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamOzamaaBaaaleaacaWGUbaabeaaaaa@3C54@ selbst nennen wir die Erzeuger von < f 1 ,, f n > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamOzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamOzamaaBaaaleaacaWGUbaabeaakiabg6da+aaa@3E6A@ .

Erzeugnisse sind stets Untervektorräume. Für ihre Dimension gilt:

dim< f 1 ,, f n >=n       f 1 ,, f n   linear unabhängig MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacMgacaGGTbGaeyipaWJaamOzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamOzamaaBaaaleaacaWGUbaabeaakiabg6da+iabg2da9iaad6gacaaMe8Uaeyi1HSTaaGjbVlaadAgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAgadaWgaaWcbaGaamOBaaqabaGccaqGGaGaaeiBaiaabMgacaqGUbGaaeyzaiaabggacaqGYbGaaeiiaiaabwhacaqGUbGaaeyyaiaabkgacaqGObGaaei5aiaab6gacaqGNbGaaeyAaiaabEgaaaa@5F9B@
 verwenden und die Differentialgleichungen über Operatoren beschreiben. Dabei ordnen wir durch die Festsetzung

D r (f) a n f (n) + a n1 f (n1) ++ a 1 f + a 0 f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcaaaGccqGHRaWkcqWIVlctcqGHRaWkcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGabmOzayaafaGaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaakiaadAgaaaa@547B@

jedem Polynom r= a n Z n + a n1 Z n1 ++ a 1 Z+ a 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccaWGAbWaaWbaaSqabeaacaWGUbaaaOGaey4kaSIaamyyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaWGAbWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgUcaRiabl+UimjabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccaWGAbGaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaaaaa@4D61@ den Differentialoperator D r : C () C () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacQdacaWGdbWaaWbaaSqabeaacqGHxiIkaaGccaGGOaGaeSOaHmQaaiykaiabgkziUkaadoeadaahaaWcbeqaaiabgEHiQaaakiaacIcacqWIceYOcaGGPaaaaa@43C9@ zu. Es ist üblich und mit keinen Einschränkungen verbunden, sich auf normierte Polynome, also den Fall α n =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaeyypa0JaaGymaaaa@3A75@ zu beschränken. Ist g: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacqWIceYOcqGHsgIRcqWIceYOaaa@3C31@ eine analytische Funktion, so nennen wir dann die Gleichung

D r (f)=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaadEgaaaa@3C18@

eine (normierte) lineare Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten (über MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHmkaaa@3743@ ).
 

Wir beginnen unsere Untersuchungen mit einigen Rechenregeln und stellen zunächst fest, dass D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaaaaa@37D8@  linear im Argument ist.

Bemerkung:  Sei r= i=0 n a i Z i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9maaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaadQfadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@41C5@ . Dann gilt für alle f,g C () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4Saam4qamaaCaaaleqabaGaey4fIOcaaOGaaiikaiablkqiJkaacMcaaaa@3E95@ , α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyicI4SaeSOaHmkaaa@3A66@ :

  1. D r (αf)=α D r (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacqaHXoqycaWGMbGaaiykaiabg2da9iabeg7aHjaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamOzaiaacMcaaaa@42A4@ .
[8.13.1]
  1. D r (f+g)= D r (f)+ D r (g) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaey4kaSIaam4zaiaacMcacqGH9aqpcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadAgacaGGPaGaey4kaSIaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGNbGaaiykaaaa@4651@ .
[8.13.2]

Beweis:  

1.   Die Behauptung ergibt sich direkt mit der Faktorregel:

D r (αf)= i=0 n a i (αf) (i) = i=0 n a i α f (i) =α i=0 n a i f (i) =α D r (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacqaHXoqycaWGMbGaaiykaiabg2da9maaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaacIcacqaHXoqycaWGMbGaaiykamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0ZaaabCaeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaeqySdeMaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaeqySde2aaabCaeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaeqySdeMaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaaaa@6DCD@ .

2.   Und hier mit der Summenregel:

D r (f+g)= i=0 n a i (f+g) (i) = i=0 n a i ( f (i) + g (i) ) = i=0 n a i f (i) + i=0 n a i g (i) = D r (f)+ D r (g) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaey4kaSIaam4zaiaacMcacqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamOzaiabgUcaRiaadEgacaGGPaWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaey4kaSIaam4zamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiykaaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGaamyAaaqabaGccaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGHRaWkdaaeWbqaaiaadggadaWgaaWcbaGaamyAaaqabaGccaWGNbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadAgacaGGPaGaey4kaSIaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGNbGaaiykaaaa@8053@ .

Über die Spezialfälle α=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaaGimaaaa@394B@ und α=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaeyOeI0IaaGymaaaa@3A39@ erhält man mit 1. und 2. natürlich auch:

D r (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3BB5@
 
D r (fg)= D r (f) D r (g) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaeyOeI0Iaam4zaiaacMcacqGH9aqpcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadAgacaGGPaGaeyOeI0IaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGNbGaaiykaaaa@4667@ .

D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaaaaa@37D8@ ist auch linear im Index.

Bemerkung:  Ist r= i=0 n a i Z i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9maaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaadQfadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@41C5@ und s= i=0 m b i Z i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2da9maaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadQfadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaaa@41C6@ , so hat man für alle f C () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiabgEHiQaaakiaacIcacqWIceYOcaGGPaaaaa@3CF9@ und α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyicI4SaeSOaHmkaaa@3A66@ :

  1. D αr (f)=α D r (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacqaHXoqycaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iabeg7aHjaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamOzaiaacMcaaaa@42A4@ ,   also:  D αr =α D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacqaHXoqycaWGYbaabeaakiabg2da9iabeg7aHjaadseadaWgaaWcbaGaamOCaaqabaaaaa@3E12@ .
[8.13.3]
  1. D r+s (f)= D r (f)+ D s (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbGaey4kaSIaam4CaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadAgacaGGPaGaey4kaSIaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaaiykaaaa@465D@ ,   also:  D r+s = D r + D s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbGaey4kaSIaam4CaaqabaGccqGH9aqpcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaamiramaaBaaaleaacaWGZbaabeaaaaa@3F87@ .
[8.13.4]

Beweis:  

1.   Mit αr= i=0 n α a i Z i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaamOCaiabg2da9maaqahabaGaeqySdeMaamyyamaaBaaaleaacaWGPbaabeaakiaadQfadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@4503@ errechnet man:

D αr (f)= i=0 n α a i f (i) =α i=0 n a i f (i) =α D r (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacqaHXoqycaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9maaqahabaGaeqySdeMaamyyamaaBaaaleaacaWGPbaabeaakiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabg2da9iabeg7aHnaaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabg2da9iabeg7aHjaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamOzaiaacMcaaaa@5E84@ .

2.   Ohne Einschränkung nehmen wir mn MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgsMiJkaad6gaaaa@3986@ an und führen im Fall m<n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgYda8iaad6gaaaa@38D5@ zusätzlich die Koeffizienten b m+1 == b n =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaaleaacaWGTbGaey4kaSIaaGymaaqabaGccqGH9aqpcqWIMaYscqGH9aqpcaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0JaaGimaaaa@4096@ ein. Dann ist r+s= i=0 n ( a i + b i ) Z i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgUcaRiaadohacqGH9aqpdaaeWbqaaiaacIcacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGPbaabeaakiaacMcacaWGAbWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaaa@47E5@ und wir haben somit:

D r+s (f)= i=0 n ( a i + b i ) f (i) = i=0 n a i f (i) + b i f (i) = i=0 n a i f (i) + i=0 m b i f (i) = D r (f)+ D s (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbGaey4kaSIaam4CaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpdaaeWbqaaiaacIcacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGPbaabeaakiaacMcacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGaamyAaaqabaGccaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0ZaaabCaeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaey4kaScaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakmaaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad2gaa0GaeyyeIuoakiabg2da9iaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamOzaiaacMcacqGHRaWkcaWGebWaaSbaaSqaaiaadohaaeqaaOGaaiikaiaadAgacaGGPaaaaa@822E@ .

Wie zuvor erhält man durch Spezialisieren weitere Eigenschaften. Für α=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaaGimaaaa@394B@ , r=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaaigdaaaa@38A4@ und α=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaeyOeI0IaaGymaaaa@3A39@ etwa ergibt sich hier:

D 0 (f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaaIWaaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdaaaa@3BA9@
 
D α (f)=α D 1 (f)=αf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacqaHXoqyaeqaaOGaaiikaiaadAgacaGGPaGaeyypa0JaeqySdeMaamiramaaBaaaleaacaaIXaaabeaakiaacIcacaWGMbGaaiykaiabg2da9iabeg7aHjaadAgaaaa@4501@
 
D rs (f)= D r (f) D s (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbGaeyOeI0Iaam4CaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadAgacaGGPaGaeyOeI0IaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaaiykaaaa@4673@ .

Die folgende Verträglichkeitsregel zwischen der Multiplikation von Polynomen und der Hintereinanderausführung von Funktionen wird für unsere weiteren Überlegungen entscheidend sein.

Bemerkung:  Sei r= i=0 n a i Z i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9maaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaadQfadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@41C5@ und s= i=0 m b i Z i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2da9maaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadQfadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaaa@41C6@ . Dann gilt für alle f C () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiabgEHiQaaakiaacIcacqWIceYOcaGGPaaaaa@3CF9@ :

D rs (f)= D r ( D s (f)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbGaeyyXICTaam4CaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadseadaWgaaWcbaGaam4CaaqabaGccaGGOaGaamOzaiaacMcacaGGPaaaaa@45F8@ ,   d.h.:  D rs = D r D s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbGaeyyXICTaam4CaaqabaGccqGH9aqpcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaeSigI8MaamiramaaBaaaleaacaWGZbaabeaaaaa@4147@
[8.13.5]

Beweis:  Sei zunächst r= Z k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadQfadaahaaWcbeqaaiaadUgaaaaaaa@39E5@ ein Monom. Dann ist

Z k s= Z k i=0 m b i Z i = i=0 m b i Z i+k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaCaaaleqabaGaam4AaaaakiabgwSixlaadohacqGH9aqpcaWGAbWaaWbaaSqabeaacaWGRbaaaOWaaabCaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamOwamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad2gaa0GaeyyeIuoakiabg2da9maaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadQfadaahaaWcbeqaaiaadMgacqGHRaWkcaWGRbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamyBaaqdcqGHris5aaaa@54DA@

und wir erhalten für jedes f C () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiabgEHiQaaakiaacIcacqWIceYOcaGGPaaaaa@3CF9@ :

D Z k s (f)= i=0 m b i f (i+k) = ( i=0 m b i f (i) ) (k) = D Z k ( i=0 m b i f (i) )= D Z k ( D s (f)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGAbWaaWbaaWqabeaacaWGRbaaaSGaeyyXICTaam4CaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpdaaeWbqaaiaadkgadaWgaaWcbaGaamyAaaqabaGccaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiabgUcaRiaadUgacaGGPaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamyBaaqdcqGHris5aOGaeyypa0JaaiikamaaqahabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad2gaa0GaeyyeIuoakiaacMcadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakiabg2da9iaadseadaWgaaWcbaGaamOwamaaCaaameqabaGaam4AaaaaaSqabaGccaGGOaWaaabCaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamyBaaqdcqGHris5aOGaaiykaiabg2da9iaadseadaWgaaWcbaGaamOwamaaCaaameqabaGaam4AaaaaaSqabaGccaGGOaGaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaaiykaiaacMcaaaa@7718@ .

Sei nun r beliebig, also rs= i=0 n a i ( Z i s) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgwSixlaadohacqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamOwamaaCaaaleqabaGaamyAaaaakiabgwSixlaadohacaGGPaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaa@49B7@ . Neben dem gerade bewiesenen Spezialfall nutzen wir jetzt die Indexlinearität [8.13.3/4] und errechnen:

D rs (f)= i=0 n a i D Z i s (f) = i=0 n a i D Z i ( D s (f)) = D r ( D s (f)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbGaeyyXICTaam4CaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGaamyAaaqabaGccaWGebWaaSbaaSqaaiaadQfadaahaaadbeqaaiaadMgaaaWccqGHflY1caWGZbaabeaakiaacIcacaWGMbGaaiykaaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGaamyAaaqabaGccaWGebWaaSbaaSqaaiaadQfadaahaaadbeqaaiaadMgaaaaaleqaaOGaaiikaiaadseadaWgaaWcbaGaam4CaaqabaGccaGGOaGaamOzaiaacMcacaGGPaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabg2da9iaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaaiykaiaacMcaaaa@6916@ .

Beachte:  Da rs=sr MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgwSixlaadohacqGH9aqpcaWGZbGaeyyXICTaamOCaaaa@3F64@ , hat man hier: D r D s = D s D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiablIHiVjaadseadaWgaaWcbaGaam4CaaqabaGccqGH9aqpcaWGebWaaSbaaSqaaiaadohaaeqaaOGaeSigI8MaamiramaaBaaaleaacaWGYbaabeaaaaa@4136@ .

Nun zurück zu den eigentlichen Differentialgleichungen. Wie schon zuvor kommt dem Kern des Operators D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaaaaa@37D8@ eine Schlüsselrolle zu. Wir betrachten zunächst Operatoren des Typs D (Zc) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbaaaaWcbeaaaaa@3C1A@ , das zugehörige Polynom ist also die Linearfaktorpotenz (Zc) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadQfacqGHsislcaWGJbGaaiykamaaCaaaleqabaGaamOBaaaaaaa@3B19@ , und beginnen mit ein wenig Technik:

Bemerkung:  Für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ und ac MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadogaaaa@3981@ gilt:

  1. D (Zc) n ( 1 n! Z n e cZ )= e cZ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbaaaaWcbeaakiaacIcadaWcaaqaaiaaigdaaeaacaWGUbGaaiyiaaaacaWGAbWaaWbaaSqabeaacaWGUbaaaOGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGPaGaeyypa0JaamyzamaaCaaaleqabaGaam4yaiaadQfaaaaaaa@48B5@ .
[8.13.6]
  1. D (Za) n ( 1 (ca) n e cZ )= e cZ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadggacaGGPaWaaWbaaWqabeaacaWGUbaaaaWcbeaakiaacIcadaWcaaqaaiaaigdaaeaacaGGOaGaam4yaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGUbaaaaaakiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaaiykaiabg2da9iaadwgadaahaaWcbeqaaiaadogacaWGAbaaaaaa@4A50@ .
[8.13.7]

Beweis:  In beiden Fällen führen wir einen Induktionsbeweis.

1.    n=1: D Zc (Z e cZ )= e cZ +Zc e cZ cZ e cZ = e cZ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdacaGG6aGaaGzbVlaadseadaWgaaWcbaGaamOwaiabgkHiTiaadogaaeqaaOGaaiikaiaadQfacaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacMcacqGH9aqpcaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiabgUcaRiaadQfacaWGJbGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGHsislcaWGJbGaamOwaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaam4yaiaadQfaaaaaaa@56BE@ .

n      n+1:        D (Zc) n+1 ( 1 (n+1)! Z n+1 e cZ ) = D (Zc) n ( D Zc ( 1 (n+1)! Z n+1 e cZ )) = D (Zc) n ( 1 n! Z n e cZ + 1 (n+1)! Z n+1 c e cZ c 1 (n+1)! Z n+1 e cZ ) = D (Zc) n ( 1 n! Z n e cZ )= e cZ . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamOBaiaaysW7cqGHshI3caaMe8UaamOBaiabgUcaRiaaigdacaGG6aGaaGzbVdqaaiaaysW7caaMe8UaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbGaey4kaSIaaGymaaaaaSqabaGccaGGOaWaaSaaaeaacaaIXaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaamOwamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacMcaaeaaaeaacqGH9aqpcaWGebWaaSbaaSqaaiaacIcacaWGAbGaeyOeI0Iaam4yaiaacMcadaahaaadbeqaaiaad6gaaaaaleqaaOGaaiikaiaadseadaWgaaWcbaGaamOwaiabgkHiTiaadogaaeqaaOGaaiikamaalaaabaGaaGymaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacaGGHaaaaiaadQfadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGPaGaaiykaaqaaaqaaiabg2da9iaadseadaWgaaWcbaGaaiikaiaadQfacqGHsislcaWGJbGaaiykamaaCaaameqabaGaamOBaaaaaSqabaGccaGGOaWaaSaaaeaacaaIXaaabaGaamOBaiaacgcaaaGaamOwamaaCaaaleqabaGaamOBaaaakiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaamOwamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaWGJbGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGHsislcaWGJbWaaSaaaeaacaaIXaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaamOwamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacMcaaeaaaeaacqGH9aqpcaWGebWaaSbaaSqaaiaacIcacaWGAbGaeyOeI0Iaam4yaiaacMcadaahaaadbeqaaiaad6gaaaaaleqaaOGaaiikamaalaaabaGaaGymaaqaaiaad6gacaGGHaaaaiaadQfadaahaaWcbeqaaiaad6gaaaGccaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacMcacqGH9aqpcaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaaaaaaaa@B227@

2.    n=1: D Za ( 1 ca e cZ )= c ca e cZ a 1 ca e cZ = e cZ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdacaGG6aGaaGzbVlaadseadaWgaaWcbaGaamOwaiabgkHiTiaadggaaeqaaOGaaiikamaalaaabaGaaGymaaqaaiaadogacqGHsislcaWGHbaaaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaaiykaiabg2da9maalaaabaGaam4yaaqaaiaadogacqGHsislcaWGHbaaaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaeyOeI0IaamyyamaalaaabaGaaGymaaqaaiaadogacqGHsislcaWGHbaaaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaam4yaiaadQfaaaaaaa@5A2A@ .

n      n+1:        D (Za) n+1 ( 1 (ca) n+1 e cZ ) = D Za ( D (Za) n ( 1 (ca) n+1 e cZ )) = D Za ( 1 ca D (Za) n ( 1 (ca) n e cZ )) = D Za ( 1 ca e cZ )= e cZ . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamOBaiaaysW7cqGHshI3caaMe8UaamOBaiabgUcaRiaaigdacaGG6aGaaGzbVdqaaiaayIW7caaMe8UaaGjbVlaadseadaWgaaWcbaGaaiikaiaadQfacqGHsislcaWGHbGaaiykamaaCaaameqabaGaamOBaiabgUcaRiaaigdaaaaaleqaaOGaaiikamaalaaabaGaaGymaaqaaiaacIcacaWGJbGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaakiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaaiykaaqaaaqaaiabg2da9iaadseadaWgaaWcbaGaamOwaiabgkHiTiaadggaaeqaaOGaaiikaiaadseadaWgaaWcbaGaaiikaiaadQfacqGHsislcaWGHbGaaiykamaaCaaameqabaGaamOBaaaaaSqabaGccaGGOaWaaSaaaeaacaaIXaaabaGaaiikaiaadogacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaOGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGPaGaaiykaaqaaaqaaiabg2da9iaadseadaWgaaWcbaGaamOwaiabgkHiTiaadggaaeqaaOGaaiikamaalaaabaGaaGymaaqaaiaadogacqGHsislcaWGHbaaaiaadseadaWgaaWcbaGaaiikaiaadQfacqGHsislcaWGHbGaaiykamaaCaaameqabaGaamOBaaaaaSqabaGccaGGOaWaaSaaaeaacaaIXaaabaGaaiikaiaadogacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamOBaaaaaaGccaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacMcacaGGPaaabaaabaGaeyypa0JaamiramaaBaaaleaacaWGAbGaeyOeI0IaamyyaaqabaGccaGGOaWaaSaaaeaacaaIXaaabaGaam4yaiabgkHiTiaadggaaaGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGPaGaeyypa0JaamyzamaaCaaaleqabaGaam4yaiaadQfaaaaaaaaa@9C51@

Wir können nun ein erstes Ergebnis notieren: Der Kern des Operators D (Zc) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbaaaaWcbeaaaaa@3C1A@ wird bereits von n vielen, einfach strukturierten Funktionen erzeugt.

Bemerkung:  Für jedes n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ ist

Ker D (Zc) n =< e cZ ,Z e cZ ,, Z n1 e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbaaaaWcbeaakiabg2da9iabgYda8iaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaaiilaiaadQfacaaMi8UaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGSaGaeSOjGSKaaiilaiaadQfadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGH+aGpaaa@53F2@
[8.13.8]

Beweis:  Wir weisen zwei Inklusionen nach und beginnen mit " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4GIKmaaa@37E6@ ". Dazu berechnen wir zunächst mit Hilfe von [8.13.6] für ein beliebiges i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgIGiolablwriLcaa@39CA@ (beachte dabei auch [8.13.5]):

D (Zc) i+1 ( Z i e cZ ) =i! D Zc ( D (Zc) i ( 1 i! Z i e cZ )) =i! D Zc ( e cZ ) =i!(c e cZ c e cZ )=0, MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaadseadaWgaaWcbaGaaiikaiaadQfacqGHsislcaWGJbGaaiykamaaCaaameqabaGaamyAaiabgUcaRiaaigdaaaaaleqaaOGaaiikaiaadQfadaahaaWcbeqaaiaadMgaaaGccaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacMcaaeaacqGH9aqpcaWGPbGaaiyiaiaadseadaWgaaWcbaGaamOwaiabgkHiTiaadogaaeqaaOGaaiikaiaadseadaWgaaWcbaGaaiikaiaadQfacqGHsislcaWGJbGaaiykamaaCaaameqabaGaamyAaaaaaSqabaGccaGGOaWaaSaaaeaacaaIXaaabaGaamyAaiaacgcaaaGaamOwamaaCaaaleqabaGaamyAaaaakiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaaiykaiaacMcaaeaaaeaacqGH9aqpcaWGPbGaaiyiaiaadseadaWgaaWcbaGaamOwaiabgkHiTiaadogaaeqaaOGaaiikaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaaiykaaqaaaqaaiabg2da9iaadMgacaGGHaGaaiikaiaadogacaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiabgkHiTiaadogacaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacMcacqGH9aqpcaaIWaaaaaaa@735A@

und haben damit für alle 0in1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadMgacqGHKjYOcaWGUbGaeyOeI0IaaGymaaaa@3D99@ :

D (Zc) n ( Z i e cZ )= D (Zc) ni1 ( D (Zc) i+1 ( Z i e cZ ))=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbaaaaWcbeaakiaacIcacaWGAbWaaWbaaSqabeaacaWGPbaaaOGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGPaGaeyypa0JaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbGaeyOeI0IaamyAaiabgkHiTiaaigdaaaaaleqaaOGaaiikaiaadseadaWgaaWcbaGaaiikaiaadQfacqGHsislcaWGJbGaaiykamaaCaaameqabaGaamyAaiabgUcaRiaaigdaaaaaleqaaOGaaiikaiaadQfadaahaaWcbeqaaiaadMgaaaGccaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacMcacaGGPaGaeyypa0JaaGimaaaa@5E58@ ,

so dass wegen der Linearität von D (Zc) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbaaaaWcbeaaaaa@3C1A@ die Inklusion " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4GIKmaaa@37E6@ " gesichert ist.

Den Nachweis der zweiten Teilmengenbeziehung " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOGIWmaaa@37E8@ " beginnen wir mit der folgenden Aussage:

Ist g< e cZ ,Z e cZ ,, Z n1 e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolabgYda8iaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaaiilaiaadQfacaaMi8UaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGSaGaeSOjGSKaaiilaiaadQfadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGH+aGpaaa@4C73@ , so gibt es ein h<Z e cZ ,, Z n e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgIGiolabgYda8iaadQfacaaMi8UaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGSaGaeSOjGSKaaiilaiaadQfadaahaaWcbeqaaiaad6gaaaGccaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiabg6da+aaa@4734@ , so dass

D Zc (h)=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGAbGaeyOeI0Iaam4yaaqabaGccaGGOaGaamiAaiaacMcacqGH9aqpcaWGNbaaaa@3DD7@ [1]

Beweis:  Sei g=( α 0 + α 1 Z++ α n1 Z n1 ) e cZ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaacIcacqaHXoqydaWgaaWcbaGaaGimaaqabaGccqGHRaWkcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGAbGaey4kaSIaeS47IWKaey4kaSIaeqySde2aaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaadQfadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaaaa@4EC8@ . Mit h( α 0 1 Z+ α 1 2 Z 2 ++ α n1 n Z n ) e cZ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabg2da9iaacIcadaWcaaqaaiabeg7aHnaaBaaaleaacaaIWaaabeaaaOqaaiaaigdaaaGaamOwaiabgUcaRmaalaaabaGaeqySde2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaWGAbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeS47IWKaey4kaSYaaSaaaeaacqaHXoqydaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGcbaGaamOBaaaacaWGAbWaaWbaaSqabeaacaWGUbaaaOGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaaaa@518D@ hat man dann: h<Z e cZ ,, Z n e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgIGiolabgYda8iaadQfacaaMi8UaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGSaGaeSOjGSKaaiilaiaadQfadaahaaWcbeqaaiaad6gaaaGccaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiabg6da+aaa@4734@ und

h ch=( α 0 + α 1 Z++ α n1 Z n1 ) e cZ +chch=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiAayaafaGaeyOeI0Iaam4yaiaadIgacqGH9aqpcaGGOaGaeqySde2aaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamOwaiabgUcaRiabl+UimjabgUcaRiabeg7aHnaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaWGAbWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiaacMcacaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiabgUcaRiaadogacaWGObGaeyOeI0Iaam4yaiaadIgacqGH9aqpcaWGNbaaaa@590C@ .

Per Induktion zeigen wir jetzt für ein beliebiges f C () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiabgEHiQaaakiaacIcacqWIceYOcaGGPaaaaa@3CF9@ :

D (Zc) n (f)=0f< e cZ ,Z e cZ ,, Z n1 e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbaaaaWcbeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdacaaMf8UaeyO0H4TaaGzbVlaadAgacqGHiiIZcqGH8aapcaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacYcacaWGAbGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGSaGaeSOjGSKaaiilaiaadQfadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGH+aGpaaa@5A96@   für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ .

n=1: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdacaGG6aGaaGzbVdaa@3AEC@ Sei D Zc (f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGAbGaeyOeI0Iaam4yaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpcaaIWaaaaa@3DA3@ . Analytische Funktionen auf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHmkaaa@3743@ (einem Gebiet 

 i

Unter einem Gebiet in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHmkaaa@3743@ versteht man eine offene und zusammenhängende Teilmenge von MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHmkaaa@3743@ .
Offen und zusammenhängend sind Begriffe aus der Topologie.

also) haben ähnliche Eigenschaften wie differenzierbare Funktionen auf Intervallen. Insbesondere sind auch sie konstant, falls ihre Ableitung überall gleich Null ist. Wir können also wieder mit dem Trick aus [8.11.2] arbeiten und berechnen die Ableitung

( f e cZ ) = f e cZ fc e cZ e 2cZ = f cf e cZ =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaamOzaaqaaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaaaakiqacMcagaqbaiabg2da9maalaaabaGabmOzayaafaGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGHsislcaWGMbGaam4yaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaaGcbaGaamyzamaaCaaaleqabaGaaGOmaiaadogacaWGAbaaaaaakiabg2da9maalaaabaGabmOzayaafaGaeyOeI0Iaam4yaiaadAgaaeaacaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaaaaGccqGH9aqpcaaIWaaaaa@52EA@

f ist damit ein Vielfaches von e cZ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaaaaa@38CA@ , ein Element aus < e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGH+aGpaaa@3AE0@ also.

n   n+1: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaysW7cqGHshI3caaMc8UaamOBaiabgUcaRiaaigdacaGG6aGaaGzbVdaa@4130@ Sei jetzt D (Zc) n+1 (f)= D (Zc) n ( D Zc (f))=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogacaGGPaWaaWbaaWqabeaacaWGUbGaey4kaSIaaGymaaaaaSqabaGccaGGOaGaamOzaiaacMcacqGH9aqpcaWGebWaaSbaaSqaaiaacIcacaWGAbGaeyOeI0Iaam4yaiaacMcadaahaaadbeqaaiaad6gaaaaaleqaaOGaaiikaiaadseadaWgaaWcbaGaamOwaiabgkHiTiaadogaaeqaaOGaaiikaiaadAgacaGGPaGaaiykaiabg2da9iaaicdaaaa@5053@ . Gemäß Induktionsvoraussetzung ist damit D Zc (f)< e cZ ,Z e cZ ,, Z n1 e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGAbGaeyOeI0Iaam4yaaqabaGccaGGOaGaamOzaiaacMcacqGHiiIZcqGH8aapcaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacYcacaWGAbGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccaGGSaGaeSOjGSKaaiilaiaadQfadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGH+aGpaaa@4FED@ und mit [1] finden wir ein h<Z e cZ ,, Z n e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgIGiolabgYda8iaadQfacaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacYcacqWIMaYscaGGSaGaamOwamaaCaaaleqabaGaamOBaaaakiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaeyOpa4daaa@45A3@ so dass D Zc (h)= D Zc (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGAbGaeyOeI0Iaam4yaaqabaGccaGGOaGaamiAaiaacMcacqGH9aqpcaWGebWaaSbaaSqaaiaadQfacqGHsislcaWGJbaabeaakiaacIcacaWGMbGaaiykaaaa@42E2@ . Da

D Zc (fh)= D Zc (f) D Zc (f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGAbGaeyOeI0Iaam4yaaqabaGccaGGOaGaamOzaiabgkHiTiaadIgacaGGPaGaeyypa0JaamiramaaBaaaleaacaWGAbGaeyOeI0Iaam4yaaqabaGccaGGOaGaamOzaiaacMcacqGHsislcaWGebWaaSbaaSqaaiaadQfacqGHsislcaWGJbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdaaaa@4D5E@

ergibt sich aus dem Induktionsanfang: fh=α e cZ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgkHiTiaadIgacqGH9aqpcqaHXoqycaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaaaaa@3E34@ , also f=α e cZ +h< e cZ ,Z e cZ ,, Z n e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iabeg7aHjaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaey4kaSIaamiAaiabgIGiolabgYda8iaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaaiilaiaadQfacaWGLbWaaWbaaSqabeaacaWGJbGaamOwaaaakiaacYcacqWIMaYscaGGSaGaamOwamaaCaaaleqabaGaamOBaaaakiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaeyOpa4daaa@5095@ .

Als ein Beispiel betrachten wir etwa

Ker D Z 2 2iZ1 =Ker D (Zi) 2 =< e iZ ,Z e iZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGAbWaaWbaaWqabeaacaaIYaaaaSGaeyOeI0IaaGOmaiaadMgacaWGAbGaeyOeI0IaaGymaaqabaGccqGH9aqpcaWGlbGaamyzaiaadkhacaWGebWaaSbaaSqaaiaacIcacaWGAbGaeyOeI0IaamyAaiaacMcadaahaaadbeqaaiaaikdaaaaaleqaaOGaeyypa0JaeyipaWJaamyzamaaCaaaleqabaGaamyAaiaadQfaaaGccaGGSaGaamOwaiaadwgadaahaaWcbeqaaiaadMgacaWGAbaaaOGaeyOpa4daaa@54C9@ .

Nach diesen Vorbereitungen gehen wir nun den Fall eines beliebigen Operators D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaaaaa@37D8@ an. Nach dem Fundamentalsatz der Algebra dürfen wir uns ein normiertes Polynom r als das Produkt seiner Linearfaktorpotenzen vorstellen:

r= (Z c 1 ) n 1 (Z c k ) n k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaacIcacaWGAbGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad6gadaWgaaadbaGaaGymaaqabaaaaOGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadQfacqGHsislcaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaaiykamaaCaaaleqabaGaamOBamaaBaaameaacaWGRbaabeaaaaaaaa@4C1F@ ,

wobei c 1 ,, c k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4yamaaBaaaleaacaWGRbaabeaaaaa@3C4B@ die paarweise verschiedenen Nullstellen von r sind. In [8.13.8] haben wir die Kerne dieser Linearfaktorpotenzen ermittelt:

Ker D (Z c i ) n i =< e c i Z ,Z e c i Z ,, Z n i 1 e c i Z > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogadaWgaaadbaGaamyAaaqabaWccaGGPaWaaWbaaWqabeaacaWGUbWaaSbaaeaacaWGPbaabeaaaaaaleqaaOGaeyypa0JaeyipaWJaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaWGPbaabeaaliaadQfaaaGccaGGSaGaamOwaiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaamyAaaqabaWccaWGAbaaaOGaaiilaiablAciljaacYcacaWGAbWaaWbaaSqabeaacaWGUbWaaSbaaWqaaiaadMgaaeqaaSGaeyOeI0IaaGymaaaakiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaamyAaaqabaWccaWGAbaaaOGaeyOpa4daaa@592E@ .

In ihrer Gesamtheit erzeugen sie nun den Kern von D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaaaaa@37D8@ :

Bemerkung:  Sei r= (Z c 1 ) n 1 (Z c k ) n k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaacIcacaWGAbGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad6gadaWgaaadbaGaaGymaaqabaaaaOGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadQfacqGHsislcaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaaiykamaaCaaaleqabaGaamOBamaaBaaameaacaWGRbaabeaaaaaaaa@4C1F@ . Bezeichnet M i { e c i Z ,Z e c i Z ,, Z n i 1 e c i Z } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGPbaabeaakiabg2da9iaacUhacaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaadMgaaeqaaSGaamOwaaaakiaacYcacaWGAbGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaWGPbaabeaaliaadQfaaaGccaGGSaGaeSOjGSKaaiilaiaadQfadaahaaWcbeqaaiaad6gadaWgaaadbaGaamyAaaqabaWccqGHsislcaaIXaaaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaWGPbaabeaaliaadQfaaaGccaGG9baaaa@4FFA@ die Erzeugermenge von Ker D (Z c i ) n i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogadaWgaaadbaGaamyAaaqabaWccaGGPaWaaWbaaWqabeaacaWGUbWaaSbaaeaacaWGPbaabeaaaaaaleqaaaaa@4100@ , so ist:

Ker D r =< M 1 M k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGYbaabeaakiabg2da9iabgYda8iaad2eadaWgaaWcbaGaaGymaaqabaGccqGHQicYcqWIMaYscqGHQicYcaWGnbWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4daaa@45C2@ .
[8.13.9]

Beweis:   Den Fall k=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaigdaaaa@389D@ , also r= (Zc) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaacIcacaWGAbGaeyOeI0Iaam4yaiaacMcadaahaaWcbeqaaiaad6gaaaaaaa@3D16@ , haben wir in [8.13.8] bereits erledigt, so dass wir k>1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg6da+iaaigdaaaa@389F@ annehmen dürfen.

Wir beginnen wieder mit der Inklusion " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4GIKmaaa@37E6@ ". Wegen der Linearität reicht es hier zu zeigen:

D r (f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdaaaa@3BE6@

für jedes f M 1 M k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaad2eadaWgaaWcbaGaaGymaaqabaGccqGHQicYcqWIMaYscqGHQicYcaWGnbWaaSbaaSqaaiaadUgaaeqaaaaa@406E@ . Sei etwa f M i Ker D (Z c i ) n i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaad2eadaWgaaWcbaGaamyAaaqabaGccqGHckcZcaWGlbGaamyzaiaadkhacaWGebWaaSbaaSqaaiaacIcacaWGAbGaeyOeI0Iaam4yamaaBaaameaacaWGPbaabeaaliaacMcadaahaaadbeqaaiaad6gadaWgaaqaaiaadMgaaeqaaaaaaSqabaaaaa@4761@ . Da die Reihenfolge der Linearfaktoren ohne Bedeutung ist, dürfen wir r=s (Z c i ) n i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadohacqGHflY1caGGOaGaamOwaiabgkHiTiaadogadaWgaaWcbaGaamyAaaqabaGccaGGPaWaaWbaaSqabeaacaWGUbWaaSbaaWqaaiaadMgaaeqaaaaaaaa@4297@ setzen und haben damit:

D r (f)= D s ( D (Z c i ) n i (f))= D s (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaadseadaWgaaWcbaGaam4CaaqabaGccaGGOaGaamiramaaBaaaleaacaGGOaGaamOwaiabgkHiTiaadogadaWgaaadbaGaamyAaaqabaWccaGGPaWaaWbaaWqabeaacaWGUbWaaSbaaeaacaWGPbaabeaaaaaaleqaaOGaaiikaiaadAgacaGGPaGaaiykaiabg2da9iaadseadaWgaaWcbaGaam4CaaqabaGccaGGOaGaaGimaiaacMcacqGH9aqpcaaIWaaaaa@4FFD@ .

Die zweite Inklusion " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOGIWmaaa@37E8@ " zeigen wir durch Induktion über den Grad von r, d.h. über n= n 1 ++ n k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaad6gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcaWGUbWaaSbaaSqaaiaadUgaaeqaaaaa@3EBE@ .

n=1: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdacaGG6aGaaGzbVdaa@3AEC@ Hier ist r=Zc MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadQfacqGHsislcaWGJbaaaa@3A9D@ , so dass dieser Fall mit [8.13.8] bereits vollständig erledigt ist:

Ker D r =Ker D Zc =< e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGYbaabeaakiabg2da9iaadUeacaWGLbGaamOCaiaadseadaWgaaWcbaGaamOwaiabgkHiTiaadogaaeqaaOGaeyypa0JaeyipaWJaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGH+aGpaaa@47F7@ .

n      n+1: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaysW7cqGHshI3caaMe8UaamOBaiabgUcaRiaaigdacaGG6aGaaGzbVdaa@4132@ Sei jetzt r= (Z c 1 ) n 1 (Z c k ) n k (Zc) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaacIcacaWGAbGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad6gadaWgaaadbaGaaGymaaqabaaaaOGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadQfacqGHsislcaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaaiykamaaCaaaleqabaGaamOBamaaBaaameaacaWGRbaabeaaaaGccqGHflY1caGGOaGaamOwaiabgkHiTiaadogacaGGPaaaaa@5280@ . Mit s (Z c 1 ) n 1 (Z c k ) n k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2da9iaacIcacaWGAbGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad6gadaWgaaadbaGaaGymaaqabaaaaOGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadQfacqGHsislcaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaaiykamaaCaaaleqabaGaamOBamaaBaaameaacaWGRbaabeaaaaaaaa@4C20@ hat man also r=s(Zc)=(Zc)s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadohacqGHflY1caGGOaGaamOwaiabgkHiTiaadogacaGGPaGaeyypa0JaaiikaiaadQfacqGHsislcaWGJbGaaiykaiabgwSixlaadohaaaa@478D@ und damit:

D Zc ( D s (f))= D r (f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGAbGaeyOeI0Iaam4yaaqabaGccaGGOaGaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaaiykaiaacMcacqGH9aqpcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadAgacaGGPaGaeyypa0JaaGimaaaa@4633@ ,

d.h. D s (f)Ker D Zc =< e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaaiykaiabgIGiolaadUeacaWGLbGaamOCaiaadseadaWgaaWcbaGaamOwaiabgkHiTiaadogaaeqaaOGaeyypa0JaeyipaWJaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGH+aGpaaa@4809@ , etwa D s (f)=α e cZ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iabeg7aHjaadwgadaahaaWcbeqaaiaadogacaWGAbaaaaaa@3FAA@ . Wir unterscheiden nun zwei Fälle:

  • c c i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgcMi5kaadogadaWgaaWcbaGaamyAaaqabaaaaa@3A9D@ für alle i. Mit [8.13.7] errechnet man hier für die Funktion

    hα 1 (c c 1 ) n 1 1 (c c k ) n k e cZ < e cZ > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabg2da9iabeg7aHnaalaaabaGaaGymaaqaaiaacIcacaWGJbGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad6gadaWgaaadbaGaaGymaaqabaaaaaaakiabgwSixlablAciljabgwSixpaalaaabaGaaGymaaqaaiaacIcacaWGJbGaeyOeI0Iaam4yamaaBaaaleaacaWGRbaabeaakiaacMcadaahaaWcbeqaaiaad6gadaWgaaadbaGaam4AaaqabaaaaaaakiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaeyicI4SaeyipaWJaamyzamaaCaaaleqabaGaam4yaiaadQfaaaGccqGH+aGpaaa@58C6@

    D s (h)=α e cZ = D s (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGObGaaiykaiabg2da9iabeg7aHjaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaeyypa0JaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaaiykaaaa@44F7@ , also D s (fh)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaeyOeI0IaamiAaiaacMcacqGH9aqpcaaIWaaaaa@3DC1@ . Die Differenz fh MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgkHiTiaadIgaaaa@38B1@ liegt damit im Kern von D s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGZbaabeaaaaa@37D9@ , nach Induktionsvoraussetzung also in < M 1 M k > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamytamaaBaaaleaacaaIXaaabeaakiabgQIiilablAciljabgQIiilaad2eadaWgaaWcbaGaam4AaaqabaGccqGH+aGpaaa@4015@ , d.h.

    fh+< M 1 M k >< M 1 M k { e cZ }> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadIgacqGHRaWkcqGH8aapcaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaeyOkIGSaeSOjGSKaeyOkIGSaamytamaaBaaaleaacaWGRbaabeaakiabg6da+iabgkOimlabgYda8iaad2eadaWgaaWcbaGaaGymaaqabaGccqGHQicYcqWIMaYscqGHQicYcaWGnbWaaSbaaSqaaiaadUgaaeqaaOGaeyOkIGSaai4EaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaaiyFaiabg6da+aaa@5700@ .

     
  • c= c i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaadogadaWgaaWcbaGaamyAaaqabaaaaa@39DC@ für ein i, o.E. etwa c= c k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaadogadaWgaaWcbaGaam4Aaaqabaaaaa@39DE@ , d.h. r= (Z c 1 ) n 1 (Z c k ) n k +1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaacIcacaWGAbGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad6gadaWgaaadbaGaaGymaaqabaaaaOGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadQfacqGHsislcaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaaiykamaaCaaaleqabaGaamOBamaaBaaameaacaWGRbaabeaaliabgUcaRiaaigdaaaaaaa@4DC7@ . Jetzt setzen wir

    hα 1 ( c k c 1 ) n 1 1 ( c k c k1 ) n k1 1 n k ! Z n k e c k Z < Z n k e c k Z > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabg2da9iabeg7aHnaalaaabaGaaGymaaqaaiaacIcacaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad6gadaWgaaadbaGaaGymaaqabaaaaaaakiabgwSixlablAciljabgwSixpaalaaabaGaaGymaaqaaiaacIcacaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaWGRbGaeyOeI0IaaGymaaqabaGccaGGPaWaaWbaaSqabeaacaWGUbWaaSbaaWqaaiaadUgacqGHsislcaaIXaaabeaaaaaaaOGaeyyXIC9aaSaaaeaacaaIXaaabaGaamOBamaaBaaaleaacaWGRbaabeaakiaacgcaaaGaamOwamaaCaaaleqabaGaamOBamaaBaaameaacaWGRbaabeaaaaGccaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaadUgaaeqaaSGaamOwaaaakiabgIGiolabgYda8iaadQfadaahaaWcbeqaaiaad6gadaWgaaadbaGaam4AaaqabaaaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaWGRbaabeaaliaadQfaaaGccqGH+aGpaaa@6CD1@

    und errechnen mit [8.13.6/7] wieder: D s (h)=α e c k Z = D s (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGObGaaiykaiabg2da9iabeg7aHjaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaam4AaaqabaWccaWGAbaaaOGaeyypa0JaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaaiykaaaa@461F@ . Also gilt D s (fh)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGZbaabeaakiaacIcacaWGMbGaeyOeI0IaamiAaiaacMcacqGH9aqpcaaIWaaaaa@3DC1@ auch hier und daher haben wir wie zuvor:

    fh+< M 1 M k >< M 1 M k1 { e c k Z ,Z e c k Z ,, Z n k e c k Z }> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadIgacqGHRaWkcqGH8aapcaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaeyOkIGSaeSOjGSKaeyOkIGSaamytamaaBaaaleaacaWGRbaabeaakiabg6da+iabgkOimlabgYda8iaad2eadaWgaaWcbaGaaGymaaqabaGccqGHQicYcqWIMaYscqGHQicYcaWGnbWaaSbaaSqaaiaadUgacqGHsislcaaIXaaabeaakiabgQIiilaacUhacaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaadUgaaeqaaSGaamOwaaaakiaacYcacaWGAbGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaWGRbaabeaaliaadQfaaaGccaGGSaGaeSOjGSKaaiilaiaadQfadaahaaWcbeqaaiaad6gadaWgaaadbaGaam4AaaqabaaaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaWGRbaabeaaliaadQfaaaGccaGG9bGaeyOpa4daaa@6927@ .

So hat man z.B. für r= (Z+1) 2 (Z2) 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaacIcacaWGAbGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamOwaiabgkHiTiaaikdacaGGPaWaaWbaaSqabeaacaaIZaaaaaaa@417C@ :

Ker D r =< e Z ,Z e Z , e 2Z ,Z e 2Z , Z 2 e 2Z > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGYbaabeaakiabg2da9iabgYda8iaadwgadaahaaWcbeqaaiabgkHiTiaadQfaaaGccaGGSaGaamOwaiaadwgadaahaaWcbeqaaiabgkHiTiaadQfaaaGccaGGSaGaamyzamaaCaaaleqabaGaaGOmaiaadQfaaaGccaGGSaGaamOwaiaadwgadaahaaWcbeqaaiaaikdacaWGAbaaaOGaaiilaiaadQfadaahaaWcbeqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaacaaIYaGaamOwaaaakiabg6da+aaa@5203@ .

Wir ermitteln nun die (komplexe) Dimension.von Ker D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGYbaabeaaaaa@3A89@ .

Bemerkung:  Für jedes Polynom r= (Z c 1 ) n 1 (Z c k ) n k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaacIcacaWGAbGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad6gadaWgaaadbaGaaGymaaqabaaaaOGaeyyXICTaeSOjGSKaeyyXICTaaiikaiaadQfacqGHsislcaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaaiykamaaCaaaleqabaGaamOBamaaBaaameaacaWGRbaabeaaaaaaaa@4C1F@ vom Grad n= n 1 ++ n k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaad6gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcaWGUbWaaSbaaSqaaiaadUgaaeqaaaaa@3EBE@ gilt:

dim Ker D r =n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacMgacaGGTbWaaSbaaSqaaiablkqiJcqabaGccaWGlbGaamyzaiaadkhacaWGebWaaSbaaSqaaiaadkhaaeqaaOGaeyypa0JaamOBaaaa@40E1@ .
[8.13.10]

Beweis:  Wir verwenden die Notation aus [8.13.9]. Da M i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGPbaabeaaaaa@37D8@ genau n i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaaaa@37F9@ viele Elemente enthält und die Erzeugermenge M die disjunkte Vereinigung der M i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWGPbaabeaaaaa@37D8@ ist, wird Ker D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGYbaabeaaaaa@3A89@ von n vielen Funktionen erzeugt. Es reicht daher zu zeigen, dass die Menge M linear unabhängig ist. Sei dazu

f=( α 11 ++ α 1 n 1 Z n 1 1 = p 1 ) e c 1 Z ++( α k1 ++ α k n k Z n k 1 = p k ) e c k Z MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaacIcadaagaaqaaiabeg7aHnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaaGymaiaad6gadaWgaaadbaGaaGymaaqabaaaleqaaOGaamOwamaaCaaaleqabaGaamOBamaaBaaameaacaaIXaaabeaaliabgkHiTiaaigdaaaaabaGaeyypa0JaamiCamaaBaaameaacaaIXaaabeaaaOGaayjo+dGaaiykaiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGymaaqabaWccaWGAbaaaOGaey4kaSIaeSOjGSKaey4kaSIaaiikamaayaaabaGaeqySde2aaSbaaSqaaiaadUgacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiabeg7aHnaaBaaaleaacaWGRbGaamOBamaaBaaameaacaWGRbaabeaaaSqabaGccaWGAbWaaWbaaSqabeaacaWGUbWaaSbaaWqaaiaadUgaaeqaaSGaeyOeI0IaaGymaaaaaeaacqGH9aqpcaWGWbWaaSbaaWqaaiaadUgaaeqaaaGccaGL44pacaGGPaGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaWGRbaabeaaliaadQfaaaaaaa@6E91@

eine beliebige Linearkombination von Funktionen aus M mit komplexen Koeffizienten α ij MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaSbaaSqaaiaadMgacaWGQbaabeaaaaa@3994@ . Wir zeigen jetzt für paarweise verschiedenen komplexe Zahlen c 1 ,, c k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4yamaaBaaaleaacaWGRbaabeaaaaa@3C4B@ :

f=0       p 1 == p k =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaaicdacaaMe8UaeyO0H4TaaGjbVlaadchadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqWIMaYscqGH9aqpcaWGWbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaaGimaaaa@46FD@ ,[2]

Den Beweis führen wir per Induktion über k. Mit [2] folgt dann die lineare Unabhängigkeit von M aus dem Identitätssatz für Polynome: f=0       α ij =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaaicdacaaMe8UaeyO0H4TaaGjbVlabeg7aHnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaaIWaaaaa@4380@ für alle i,j.

k=1: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaigdacaGG6aGaaGzbVdaa@3AE9@ Ist p e cZ =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaadwgadaahaaWcbeqaaiaadogacaWGAbaaaOGaeyypa0JaaGimaaaa@3B89@ , so ist p(z)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacIcacaWG6bGaaiykaiabg2da9iaaicdaaaa@3AF9@ für alle z, denn e cz 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaam4yaiaadQhaaaGccqGHGjsUcaaIWaaaaa@3B75@ stets.

k      k+1: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaysW7cqGHshI3caaMe8Uaam4AaiabgUcaRiaaigdacaGG6aGaaGzbVdaa@412C@ Sei jetzt   p 1 e c 1 Z ++ p k+1 e c k+1 Z =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaIXaaabeaakiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGymaaqabaWccaWGAbaaaOGaey4kaSIaeSOjGSKaey4kaSIaamiCamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaadUgacqGHRaWkcaaIXaaabeaaliaadQfaaaGccqGH9aqpcaaIWaaaaa@49B8@ mit paarweise verschiedenen c i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaWGPbaabeaaaaa@37EE@ . Folgt:

p k+1 = p 1 e ( c 1 c k+1 )Z ++ p k e ( c k c k+1 )Z MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamiCamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaamyzamaaCaaaleqabaGaaiikaiaadogadaWgaaadbaGaaGymaaqabaWccqGHsislcaWGJbWaaSbaaWqaaiaadUgacqGHRaWkcaaIXaaabeaaliaacMcacaWGAbaaaOGaey4kaSIaeSOjGSKaey4kaSIaamiCamaaBaaaleaacaWGRbaabeaakiaadwgadaahaaWcbeqaaiaacIcacaWGJbWaaSbaaWqaaiaadUgaaeqaaSGaeyOeI0Iaam4yamaaBaaameaacaWGRbGaey4kaSIaaGymaaqabaWccaGGPaGaamOwaaaaaaa@5645@ .[3]

Für m=grad p k+1 +1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2da9iaadEgacaWGYbGaamyyaiaadsgacaWGWbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiabgUcaRiaaigdaaaa@40EB@ ist ( p k+1 ) (m) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaadchadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaaiikaiaad2gacaGGPaaaaOGaeyypa0JaaGimaaaa@402C@ und da gemäß Leibnizregel [7.8.18]

( p i e ( c i c k+1 )Z ) (m) =( ( c i c k+1 ) m p i + j=1 m ( m j ) p i (j) ( c i c k+1 ) mj ) e ( c i c k+1 )Z MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadchadaWgaaWcbaGaamyAaaqabaGccaWGLbWaaWbaaSqabeaacaGGOaGaam4yamaaBaaameaacaWGPbaabeaaliabgkHiTiaadogadaWgaaadbaGaam4AaiabgUcaRiaaigdaaeqaaSGaaiykaiaadQfaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamyBaiaacMcaaaGccqGH9aqpcaGGOaGaaiikaiaadogadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad2gaaaGccaWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad2gaaeaacaWGQbaaaiaacMcacaWGWbWaa0baaSqaaiaadMgaaeaacaGGOaGaamOAaiaacMcaaaGccaGGOaGaam4yamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadogadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaamyBaiabgkHiTiaadQgaaaaabaGaamOAaiabg2da9iaaigdaaeaacaWGTbaaniabggHiLdGccaGGPaGaamyzamaaCaaaleqabaGaaiikaiaadogadaWgaaadbaGaamyAaaqabaWccqGHsislcaWGJbWaaSbaaWqaaiaadUgacqGHRaWkcaaIXaaabeaaliaacMcacaWGAbaaaaaa@76DC@ ,

ist ( p k+1 ) (m) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaadchadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaaiikaiaad2gacaGGPaaaaaaa@3E62@ von der Form q 1 e ( c 1 c k+1 )Z ++ q k e ( c k c k+1 )Z MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBaaaleaacaaIXaaabeaakiaadwgadaahaaWcbeqaaiaacIcacaWGJbWaaSbaaWqaaiaaigdaaeqaaSGaeyOeI0Iaam4yamaaBaaameaacaWGRbGaey4kaSIaaGymaaqabaWccaGGPaGaamOwaaaakiabgUcaRiablAciljabgUcaRiaadghadaWgaaWcbaGaam4AaaqabaGccaWGLbWaaWbaaSqabeaacaGGOaGaam4yamaaBaaameaacaWGRbaabeaaliabgkHiTiaadogadaWgaaadbaGaam4AaiabgUcaRiaaigdaaeqaaSGaaiykaiaadQfaaaaaaa@509C@ . Da auch die Differenzen c i c k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadogadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaaaa@3C86@ paarweise verschieden sind, hat man nach Induktionsvoraussetzung:

( c i c k+1 ) m p i + j=1 m ( m j ) p i (j) ( c i c k+1 ) mj = q i =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad2gaaaGccaWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad2gaaeaacaWGQbaaaiaacMcacaWGWbWaa0baaSqaaiaadMgaaeaacaGGOaGaamOAaiaacMcaaaGccaGGOaGaam4yamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadogadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaamyBaiabgkHiTiaadQgaaaaabaGaamOAaiabg2da9iaaigdaaeaacaWGTbaaniabggHiLdGccqGH9aqpcaWGXbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaaGimaaaa@5F71@ ,

und da c i c k+1 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadogadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaeyiyIKRaaGimaaaa@3F11@ , liefert dies die Darstellung

p i = 1 ( c i c k+1 ) m j=1 m ( m j ) p i (j) ( c i c k+1 ) mj MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaWGPbaabeaakiabg2da9iabgkHiTmaalaaabaGaaGymaaqaaiaacIcacaWGJbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGccaGGPaWaaWbaaSqabeaacaWGTbaaaaaakmaaqahabaGaaiikauaabeqaceaaaeaacaWGTbaabaGaamOAaaaacaGGPaGaamiCamaaDaaaleaacaWGPbaabaGaaiikaiaadQgacaGGPaaaaOGaaiikaiaadogadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad2gacqGHsislcaWGQbaaaaqaaiaadQgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaaa@5C63@ ,

die aber im Fall grad p i >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaadkhacaWGHbGaamizaiaadchadaWgaaWcbaGaamyAaaqabaGccqGH+aGpcaaIWaaaaa@3D79@ keinen Bestand haben kann, denn das Polynom rechts vom Gleichheitszeichen hat als Linearkombination gewisser Ableitungen von p i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaWGPbaabeaaaaa@37FB@ einen geringeren Grad als p i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaWGPbaabeaaaaa@37FB@ . Also ist p i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaWGPbaabeaaaaa@37FB@ konstant, folglich ist das rechte Polynom, und damit auch p i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaWGPbaabeaaaaa@37FB@ selbst, das Nullpolynom. Mit [3] schließlich hat man also:

p 1 == p k = p k+1 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaaIXaaabeaakiabg2da9iablAciljabg2da9iaadchadaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaWGWbWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiabg2da9iaaicdaaaa@4399@ .

Da Ker D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGYbaabeaaaaa@3A89@ unendlich viele Elemente enthält, ist die homogene Differentialgleichung D r (f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdaaaa@3BE6@ nicht eindeutig lösbar. Im letzen Abschnitt konnten wir die Eindeutigkeit jedoch durch Setzen einer Anfangsbedingung erzwingen. Dies gelingt auch hier, allerdings sind jetzt die Ableitungen bis zur Ordnung n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgkHiTiaaigdaaaa@3887@ betroffen. Zur Vorbereitung ordnen wir jeder Lösung f der homogenen Gleichung den Anfangsvektor bzgl. eines ausgewählten Punktes b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgIGiolablkqiJcaa@39AE@ zu:

A b (f)( f(b) f (b) f (n1) (b) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaacIcafaqabeabbaaaaeaacaWGMbGaaiikaiaadkgacaGGPaaabaGabmOzayaafaGaaiikaiaadkgacaGGPaaabaGaeSO7I0eabaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHsislcaaIXaGaaiykaaaakiaacIcacaWGIbGaaiykaaaacaGGPaaaaa@4C29@

Summen- und Faktorregel garantieren dass A b :Ker D r n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaakiaacQdacaWGlbGaamyzaiaadkhacaWGebWaaSbaaSqaaiaadkhaaeqaaOGaeyOKH4QaeSOaHm6aaWbaaSqabeaacaWGUbaaaaaa@4198@ eine lineare Abbildung, d.h. ein Homomorphismus ist. A b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaaaaa@37C5@ ist sogar ein Monomorphismus, denn wir können die Injektivität

 i

Im allgemeinen heißt eine Funktion f:AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGbbGaeyOKH4QaamOqaaaa@3B0F@  injektiv, falls verschiedene Elemente von A auch verschiedene Bilder in B erhalten:

xy      f(x)f(y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaadMhacaaMe8UaeyO0H4TaaGjbVlaadAgacaGGOaGaamiEaiaacMcacqGHGjsUcaWGMbGaaiikaiaadMhacaGGPaaaaa@476F@ für alle x,yA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4Saamyqaaaa@3AE1@ .

Ist f jedoch eine lineare Funktion zwischen zwei Vektorräumen, so ist dies bereits durch die Implikation

f(x)=0      x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaaicdacaaMe8UaeyO0H4TaaGjbVlaadIhacqGH9aqpcaaIWaaaaa@4321@

gewährleistet, denn gäbe es zwei Elemente xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaadMhaaaa@39AE@ in A so dass f(x)=f(y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaamyEaiaacMcaaaa@3D75@ wäre, so hätte man

0=f(x)f(y)=f(xy)      xy=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadMhacaGGPaGaeyypa0JaamOzaiaacIcacaWG4bGaeyOeI0IaamyEaiaacMcacaaMe8UaeyO0H4TaaGjbVlaadIhacqGHsislcaWG5bGaeyypa0JaaGimaaaa@4F6D@

im Widerspruch zu xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaadMhaaaa@39AE@ .

von A b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaaaaa@37C5@ nachweisen.

Bemerkung:  

A b :Ker D r n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaakiaacQdacaWGlbGaamyzaiaadkhacaWGebWaaSbaaSqaaiaadkhaaeqaaOGaeyOKH4QaeSOaHm6aaWbaaSqabeaacaWGUbaaaaaa@4198@ ist injektiv.
[8.13.11]

Beweis:  Wir zeigen für ein beliebiges fKer D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadUeacaWGLbGaamOCaiaadseadaWgaaWcbaGaamOCaaqabaaaaa@3CF8@ : A b (f)=0      f=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdacaaMe8UaeyO0H4TaaGjbVlaadAgacqGH9aqpcaaIWaaaaa@43F5@ . Für eine C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaey4fIOcaaaaa@37D0@ -Funktion f mit D r (f)= f (n) + j=0 n1 a j f (j) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiabgUcaRmaaqahabaGaamyyamaaBaaaleaacaWGQbaabeaakiaadAgadaahaaWcbeqaaiaacIcacaWGQbGaaiykaaaaaeaacaWGQbGaeyypa0JaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGccqGH9aqpcaaIWaaaaa@4E32@ hat man zunächst f (n) = j=0 n1 a j f (j) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaeyOeI0YaaabCaeaacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaamOzamaaCaaaleqabaGaaiikaiaadQgacaGGPaaaaaqaaiaadQgacqGH9aqpcaaIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoaaaa@4839@ und damit für alle i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgIGiolablwriLcaa@39CA@ :

f (n+i) = j=0 n1 a j f (j+i) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaWGPbGaaiykaaaakiabg2da9iabgkHiTmaaqahabaGaamyyamaaBaaaleaacaWGQbaabeaakiaadAgadaahaaWcbeqaaiaacIcacaWGQbGaey4kaSIaamyAaiaacMcaaaaabaGaamOAaiabg2da9iaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aaaa@4BD9@ .[4]

Ist nun A b (f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdaaaa@3BD3@ , also f(b)= f (b)== f (n1) (b)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGIbGaaiykaiabg2da9iqadAgagaqbaiaacIcacaWGIbGaaiykaiabg2da9iablAciljabg2da9iaadAgadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcaaaGccaGGOaGaamOyaiaacMcacqGH9aqpcaaIWaaaaa@4998@ , so ergibt sich mit [4] über einen einfachen Induktionsbeweis: f (n+i) (b)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaWGPbGaaiykaaaakiaacIcacaWGIbGaaiykaiabg2da9iaaicdaaaa@3F2A@ , insgesamt also:

f (i) (b)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaadkgacaGGPaGaeyypa0JaaGimaaaa@3D55@ für alle i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgIGiolablwriLcaa@39CA@ .

Da die analytische Funktion f durch ihre Taylorentwicklung f= i=0 f (i) (b) i! (Zb) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamOyaiaacMcaaeaacaWGPbGaaiyiaaaacaGGOaGaamOwaiabgkHiTiaadkgacaGGPaWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaa@4AA6@ darstellbar ist, folgt daraus sofort: f=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaaicdaaaa@3897@ .

Im Beweis zu [8.13.10] haben wir gezeigt, dass die Erzeugerfunktionen f 1 ,, f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamOzamaaBaaaleaacaWGUbaabeaaaaa@3C54@ von Ker D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGYbaabeaaaaa@3A89@ , also die Elemente von M 1 M k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaaIXaaabeaakiabgQIiilablAciljabgQIiilaad2eadaWgaaWcbaGaam4Aaaqabaaaaa@3DFF@ (siehe [8.13.9]), linear unabhängig sind. Da eine injektive lineare Abbildung die lineare Unabhängigkeit erhält

 i

Sei L:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B1F@ linear und injektiv. Dann gilt für jede Sequenz x 1 ,, x n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3C78@ in V:

x 1 ,, x n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3C78@ linear unabhängig L( x 1 ),,L( x n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caWGmbGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiilaiablAciljaacYcacaWGmbGaaiikaiaadIhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@464F@ linear unabhängig.

Beweis:  Ist 0= α 1 L( x 1 )++ α n L( x n )=L( α 1 x 1 ++ α n x n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadYeacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiikaiaadIhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaamitaiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaacaWGUbaabeaakiaacMcaaaa@57D4@ , so folgt mit der Injektivität von L zunächst

α 1 x 1 ++ α n x n =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiabeg7aHnaaBaaaleaacaWGUbaabeaakiaadIhadaWgaaWcbaGaamOBaaqabaGccqGH9aqpcaaIWaaaaa@43FE@ ,

damit nach Voraussetzung aber auch α 1 == α n =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeSOjGSKaeyypa0JaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaeyypa0JaaGimaaaa@4032@ .

, ist die Sequenz

A b ( f 1 ),, A b ( f n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@42D6@

für jedes b linear unabhängig. Damit aber ist die Wronski-Matrix

W( f 1 f n f 1 (n1) f n (n1) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2da9iaacIcafaqabeWadaaabaGaamOzamaaBaaaleaacaaIXaaabeaaaOqaaiabl+UimbqaaiaadAgadaWgaaWcbaGaamOBaaqabaaakeaacqWIUlstaeaacqWIXlYtaeaacqWIUlstaeaacaWGMbWaa0baaSqaaiaaigdaaeaacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaaaaaGcbaGaeS47IWeabaGaamOzamaaDaaaleaacaWGUbaabaGaaiikaiaad6gacqGHsislcaaIXaGaaiykaaaaaaGccaGGPaaaaa@52B3@

in jedem b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgIGiolablkqiJcaa@39AE@ regulär

 i

Eine quadratische Matrix M heißt regulär falls ihre Spaltenvektoren linear unabhängig sind.

Reguläre Matrizen besitzen eine inverse Matrix und zeichnen sich damit durch ihr Verhalten bei linearen Gleichungssystemen aus: Für jedes y ist die Gleichung

Mx=y      x= M 1 y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadIhacqGH9aqpcaWG5bGaaGjbVlabgsDiBlaaysW7caWG4bGaeyypa0JaamytamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadMhaaaa@44E7@

stets eindeutig lösbar.

, denn die Spalten von W(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaacIcacaWGIbGaaiykaaaa@3908@ sind genau die Vektoren A b ( f 1 ),, A b ( f n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@42D6@ .

Über die inverse Matrix W (b) 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaacIcacaWGIbGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3ADD@ gelingt nun der Nachweis der angestrebten Eindeutigkeitsaussage.

Bemerkung:  Für jeden Vektor w=( w 0 w n1 ) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiabg2da9iaacIcafaqabeWabaaabaGaam4DamaaBaaaleaacaaIWaaabeaaaOqaaiabl6UinbqaaiaadEhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaaakiaacMcacqGHiiIZcqWIceYOdaahaaWcbeqaaiaad6gaaaaaaa@44F8@ hat die homogene Differentialgleichung D r (f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdaaaa@3BE6@ unter der Anfangsbedingung A b (f)=w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaadEhaaaa@3C15@ genau eine Lösung:

f (n) + a n1 f (n1) ++ a 1 f + a 0 f=0 f(b)= w 0        f (n1) (b)= w n1 f= c 1 f 1 ++ c n f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiabgUcaRiaadggadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHsislcaaIXaGaaiykaaaakiabgUcaRiablAciljabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGcceWGMbGbauaacqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaamOzaiabg2da9iaaicdaaeaaaeaacaaMf8Uaey4jIKTaaGzbVlaadAgacaGGOaGaamOyaiaacMcacqGH9aqpcaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaaGjbVlabgEIizlablAciljabgEIizlaaysW7caWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaaaaOGaaiikaiaadkgacaGGPaGaeyypa0Jaam4DamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaakeaacqGHuhY2caaMf8oabaGaamOzaiabg2da9iaadogadaWgaaWcbaGaaGymaaqabaGccaWGMbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaam4yamaaBaaaleaacaWGUbaabeaakiaadAgadaWgaaWcbaGaamOBaaqabaaaaaaa@7D6B@
[8.13.12]

Die Koeffizienten c 1 ,, c n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4yamaaBaaaleaacaWGUbaabeaaaaa@3C4E@ sind dabei die eindeutigen Lösungen des Gleichungssystems W(b)c=w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaacIcacaWGIbGaaiykaiaadogacqGH9aqpcaWG3baaaa@3BF2@ , also die Koordinaten des Vektors W (b) 1 w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaacIcacaWGIbGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadEhaaaa@3BE3@ .

Beweis:  Da W(b)c= c 1 A b ( f 1 )++ c n A b ( f n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaacIcacaWGIbGaaiykaiaadogacqGH9aqpcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiablAciljabgUcaRiaadogadaWgaaWcbaGaamOBaaqabaGccaWGbbWaaSbaaSqaaiaadkgaaeqaaOGaaiikaiaadAgadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@4C2E@

 i

Man beachte, dass für eine Matrix M mit den Spaltenvektoren s 1 ,, s n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4CamaaBaaaleaacaWGUbaabeaaaaa@3C6E@ das Produkt Mx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadIhaaaa@37BB@ berechnet werden kann indem man eine Linearkombination der Spaltenvektoren mit den Koordinaten von x als Koeffizienten bildet:

Mx= x 1 s 1 ++ x n s n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadIhacqGH9aqpcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaam4CamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiaadIhadaWgaaWcbaGaamOBaaqabaGccaWGZbWaaSbaaSqaaiaad6gaaeqaaaaa@43BB@
, hat man sofort:

D r (f)=0    A b (f)=w fKer D r =< f 1 ,, f n >    A b (f)=w f= c 1 f 1 ++ c n f n     c 1 A b ( f 1 )++ c n A b ( f n )=w f= c 1 f 1 ++ c n f n    W(b)c=w f= c 1 f 1 ++ c n f n    c=W (b) 1 w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaaabaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdacaaMe8Uaey4jIKTaaGPaVlaadgeadaWgaaWcbaGaamOyaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpcaWG3baabaGaeyi1HSnabaGaamOzaiabgIGiolaadUeacaWGLbGaamOCaiaadseadaWgaaWcbaGaamOCaaqabaGccqGH9aqpcqGH8aapcaWGMbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGMbWaaSbaaSqaaiaad6gaaeqaaOGaeyOpa4JaaGjbVlabgEIizlaaykW7caWGbbWaaSbaaSqaaiaadkgaaeqaaOGaaiikaiaadAgacaGGPaGaeyypa0Jaam4DaaqaaiabgsDiBdqaaiaadAgacqGH9aqpcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOzamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiaadogadaWgaaWcbaGaamOBaaqabaGccaWGMbWaaSbaaSqaaiaad6gaaeqaaOGaaGjbVlabgEIizlaaykW7caWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamyqamaaBaaaleaacaWGIbaabeaakiaacIcacaWGMbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiablAciljabgUcaRiaadogadaWgaaWcbaGaamOBaaqabaGccaWGbbWaaSbaaSqaaiaadkgaaeqaaOGaaiikaiaadAgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0Jaam4DaaqaaiabgsDiBdqaaiaadAgacqGH9aqpcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOzamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiaadogadaWgaaWcbaGaamOBaaqabaGccaWGMbWaaSbaaSqaaiaad6gaaeqaaOGaaGjbVlabgEIizlaaykW7caWGxbGaaiikaiaadkgacaGGPaGaam4yaiabg2da9iaadEhaaeaacqGHuhY2aeaacaWGMbGaeyypa0Jaam4yamaaBaaaleaacaaIXaaabeaakiaadAgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcaWGJbWaaSbaaSqaaiaad6gaaeqaaOGaamOzamaaBaaaleaacaWGUbaabeaakiaaysW7cqGHNis2caaMc8Uaam4yaiabg2da9iaadEfacaGGOaGaamOyaiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWG3baaaaaa@C170@

Als ein Beispiel untersuchen wir die homogene Differentialgleichung

f f + f f=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafyaafaGaeyOeI0IabmOzayaafyaafaGaey4kaSIabmOzayaafaGaeyOeI0IaamOzaiabg2da9iaaicdaaaa@3E59@

unter der Anfangsbedingung f(0)=4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaisdaaaa@3AAE@ , f (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaGimaaaa@3AB6@ und f (0)=8 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaGioaaaa@3AC9@ .

Mit r= Z 3 Z 2 +Z1=(Zi)(Z+i)(Z1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadQfadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGAbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOwaiabgkHiTiaaigdacqGH9aqpcaGGOaGaamOwaiabgkHiTiaadMgacaGGPaGaaiikaiaadQfacqGHRaWkcaWGPbGaaiykaiaacIcacaWGAbGaeyOeI0IaaGymaiaacMcaaaa@4CE5@ betrachten wir also die Gleichung

D r (f)=0       A 0 (f)=( 4 0 8 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdacaaMe8Uaey4jIKTaaGjbVlaadgeadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpcaGGOaqbaeqabmqaaaqaaiaaisdaaeaacaaIWaaabaGaaGioaaaacaGGPaaaaa@4950@ .

Gemäß [8.13.9] ist Ker D r =< e iZ , e iZ , e Z > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGYbaabeaakiabg2da9iabgYda8iaadwgadaahaaWcbeqaaiaadMgacaWGAbaaaOGaaiilaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacaWGAbaaaOGaaiilaiaadwgadaahaaWcbeqaaiaadQfaaaGccqGH+aGpaaa@47CE@ , die Wronski-Matrix errechnet sich daher zu

W=( e iZ e iZ e Z i e iZ i e iZ e Z e iZ e iZ e Z ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2da9iaacIcafaqabeWadaaabaGaamyzamaaCaaaleqabaGaamyAaiaadQfaaaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaamOwaaaaaOqaaiaadwgadaahaaWcbeqaaiaadQfaaaaakeaacaWGPbGaamyzamaaCaaaleqabaGaamyAaiaadQfaaaaakeaacqGHsislcaWGPbGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiaadQfaaaaakeaacaWGLbWaaWbaaSqabeaacaWGAbaaaaGcbaGaeyOeI0IaamyzamaaCaaaleqabaGaamyAaiaadQfaaaaakeaacqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaamOwaaaaaOqaaiaadwgadaahaaWcbeqaaiaadQfaaaaaaOGaaiykaaaa@583C@ .

Zum Einbinden der Anfangsbedingung benötigen wir die Matrix

W(0)=( 1 1 1 i i 1 1 1 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaacIcacaaIWaGaaiykaiabg2da9iaacIcafaqabeWadaaabaGaaGymaaqaaiaaigdaaeaacaaIXaaabaGaamyAaaqaaiabgkHiTiaadMgaaeaacaaIXaaabaGaeyOeI0IaaGymaaqaaiabgkHiTiaaigdaaeaacaaIXaaaaiaacMcaaaa@4511@ und ihre inverse Matrix W (0) 1 = 1 4 ( 1+i 2i 1+i 1i 2i 1i 2 0 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaacIcacaaIWaGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaGaaiikauaabeqadmaaaeaacaaIXaGaey4kaSIaamyAaaqaaiabgkHiTiaaikdacaWGPbaabaGaeyOeI0IaaGymaiabgUcaRiaadMgaaeaacaaIXaGaeyOeI0IaamyAaaqaaiaaikdacaWGPbaabaGaeyOeI0IaaGymaiabgkHiTiaadMgaaeaacaaIYaaabaGaaGimaaqaaiaaikdaaaGaaiykaaaa@5148@

Mit W (0) 1 ( 4 0 8 )=( 1+3i 13i 6 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaacIcacaaIWaGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcafaqabeWabaaabaGaaGinaaqaaiaaicdaaeaacaaI4aaaaiaacMcacqGH9aqpcaGGOaqbaeqabmqaaaqaaiabgkHiTiaaigdacqGHRaWkcaaIZaGaamyAaaqaaiabgkHiTiaaigdacqGHsislcaaIZaGaamyAaaqaaiaaiAdaaaGaaiykaaaa@49FF@ ergibt sich schließlich die folgende Lösung:

D r (f)=0       A 0 (f)=( 4 0 8 )f=(1+3i) e iZ (1+3i) e iZ +6 e Z MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdacaaMe8Uaey4jIKTaaGjbVlaadgeadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpcaGGOaqbaeqabmqaaaqaaiaaisdaaeaacaaIWaaabaGaaGioaaaacaGGPaGaaGzbVlabgsDiBlaaywW7caWGMbGaeyypa0JaaiikaiabgkHiTiaaigdacqGHRaWkcaaIZaGaamyAaiaacMcacaWGLbWaaWbaaSqabeaacaWGPbGaamOwaaaakiabgkHiTiaacIcacaaIXaGaey4kaSIaaG4maiaadMgacaGGPaGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiaadQfaaaGccqGHRaWkcaaI2aGaamyzamaaCaaaleqabaGaamOwaaaaaaa@6636@ .

 

To be continued


8.12.