8.12. Lineare Differentialgleichungen 2. Ordnung


Differentialgleichungen der Ordnung 2 enthalten neben der ersten auch noch die zweite Ableitung der Unbekannten f.

Während wir auch für Gleichungen 2. Ordnung eine Lösungsformel entwicklen können, ist dies bei Gleichungen höherer Ordnung i.A. nicht mehr möglich. Allerdings werden die dort eingesetzten Strategien bereits in diesem Abschnitt angesprochen.

Definition:  Ist g: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C60@ eine Funktion und p,q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaacYcacaWGXbGaeyicI4SaeSyhHekaaa@3B7B@ , so nennen wir die Gleichung

f ′′ +p f +qf=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0Jaam4zaaaa@3E71@
[8.12.1]

eine (normierte) lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten (über MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ ).

Unter einer Lösung dieser Gleichung verstehen wir eine auf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ zweimal differenzierbare Funktion f, also f D 2 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3CDD@ , die die Gleichung [8.12.1] erfüllt.

Ist speziell die rechte Seite g=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaaicdaaaa@3895@ , so nennt man die Gleichung [8.12.1] homogen.

Bei den Differentialgleichungen erster Ordnung haben wir auch mit Begriffen aus der linearen Algebra gearbeitet. Diese Notation nehmen wir hier wieder auf und erklären den zum Polynom

r X 2 +pX+q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGWbGaamiwaiabgUcaRiaadghaaaa@3E45@

gehörigen Differentialoperator D r : D 2 ()F() MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacQdacaWGebWaaWbaaSqabeaacaaIYaaaaOGaaiikaiabl2riHkaacMcacqGHsgIRcaWGgbGaaiikaiabl2riHkaacMcaaaa@42A6@ durch die Festsetzung

D r (f) f ′′ +p f +qf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iqadAgagaqbgaqbaiabgUcaRiaadchaceWGMbGbauaacqGHRaWkcaWGXbGaamOzaaaa@41BF@ .

D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaaaaa@37D8@ ein linearer Operator, d.h.

D r (f+g)= D r (f)+ D r (g) D r (αf)=α D r (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamOzaiabgUcaRiaadEgacaGGPaGaeyypa0JaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabgUcaRiaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaam4zaiaacMcaaeaacaWGebWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiabeg7aHjaadAgacaGGPaGaeyypa0JaeqySdeMaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaaaaaaa@5315@

 i

Auf Grund der Summenregel hat man

D r (f+g) =(f+g ) ′′ +p(f+g ) +q(f+g) = f ′′ + g ′′ +p( f + g )+q(f+g) = f ′′ +p f +qf+ g ′′ +p g +qg = D r (f)+ D r (g), MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaey4kaSIaam4zaiaacMcaaeaacqGH9aqpcaGGOaGaamOzaiabgUcaRiaadEgaceGGPaGbauGbauaacqGHRaWkcaWGWbGaaiikaiaadAgacqGHRaWkcaWGNbGabiykayaafaGaey4kaSIaamyCaiaacIcacaWGMbGaey4kaSIaam4zaiaacMcaaeaaaeaacqGH9aqpceWGMbGbauGbauaacqGHRaWkceWGNbGbauGbauaacqGHRaWkcaWGWbGaaiikaiqadAgagaqbaiabgUcaRiqadEgagaqbaiaacMcacqGHRaWkcaWGXbGaaiikaiaadAgacqGHRaWkcaWGNbGaaiykaaqaaaqaaiabg2da9iqadAgagaqbgaqbaiabgUcaRiaadchaceWGMbGbauaacqGHRaWkcaWGXbGaamOzaiabgUcaRiqadEgagaqbgaqbaiabgUcaRiaadchaceWGNbGbauaacqGHRaWkcaWGXbGaam4zaaqaaaqaaiabg2da9iaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamOzaiaacMcacqGHRaWkcaWGebWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadEgacaGGPaaaaaaa@765D@

und über die Faktorregel ergibt sich

D r (αf) =(αf ) ′′ +p(αf ) +q(αf) =α f ′′ +p(α f )+q(αf) =α( f ′′ +p f +qf) =α D r (f). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacqaHXoqycaWGMbGaaiykaaqaaiabg2da9iaacIcacqaHXoqycaWGMbGabiykayaafyaafaGaey4kaSIaamiCaiaacIcacqaHXoqycaWGMbGabiykayaafaGaey4kaSIaamyCaiaacIcacqaHXoqycaWGMbGaaiykaaqaaaqaaiabg2da9iabeg7aHjqadAgagaqbgaqbaiabgUcaRiaadchacaGGOaGaeqySdeMabmOzayaafaGaaiykaiabgUcaRiaadghacaGGOaGaeqySdeMaamOzaiaacMcaaeaaaeaacqGH9aqpcqaHXoqycaGGOaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaaiykaaqaaaqaaiabg2da9iabeg7aHjaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamOzaiaacMcaaaaaaa@6CF3@
[0]

und die Lösungsmenge der homogenen Gleichung D r (f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iaaicdaaaa@3BE6@ ist Ker D r (f) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaaGjcVlaadseadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamOzaiaacMcaaaa@3E68@ , der Kern des Operators D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaaaaa@37D8@ .

Der in [8.11] ermittelte Kern Ker D X+a =< e aX > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaaGjcVlaadseadaWgaaWcbaGaamiwaiabgUcaRiaadggaaeqaaOGaeyypa0JaeyipaWJaamyzamaaCaaaleqabaGaeyOeI0IaamyyaiaadIfaaaGccqGH+aGpaaa@44B5@ ist das Erzeugnis der Funktion e aX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaeyOeI0IaamyyaiaadIfaaaaaaa@39B3@ , die durch die Nullstelle des Polynoms X+a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgUcaRiaadggaaaa@3891@ charakterisiert ist. Interessanterweise setzt sich dieses Prinzip hier fort. Die Nullstellensuche führt bei unserem Polynom r allerdings auf die quadratische Gleichung x 2 +px+q=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadchacaWG4bGaey4kaSIaamyCaiabg2da9iaaicdaaaa@3E48@ , deren Lösungsverhaltung vom Vorzeichen ihrer Diskrimnante

D p 2 4 q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2da9maalaaabaGaamiCamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdaaaGaeyOeI0IaamyCaaaa@3C54@

abhängt. In diesem Abschnitt unterscheiden wir daher drei Fälle:

  1. D>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg6da+iaaicdaaaa@3877@ , d.h. r hat zwei verschiedene Nullstellen c 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIWaaabeaaaaa@37BA@ und c 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaaaaa@37BB@ . Sie erfüllen nach dem Satz von Viëta die Gleichungen

    ( c 0 + c 1 )=p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaiikaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaadchaaaa@3EC0@  und  c 0 c 1 =q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadogadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGXbaaaa@3DE3@ .

  2. D=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2da9iaaicdaaaa@3875@ , d.h. r hat eine doppelte Nullstelle c. Gemäß Viëta hat man hier

    2c=p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGOmaiaadogacqGH9aqpcaWGWbaaaa@3A78@   und  c 2 =q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadghaaaa@39C3@ .

  3. D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabgYda8iaaicdaaaa@3873@ . Zwar hat in diesem Fall r keine reelle Nullstelle, aber mit den Abkürzungen u p 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabg2da9iabgkHiTmaalaaabaGaamiCaaqaaiaaikdaaaaaaa@3A9A@ und v D MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9maakaaabaGaeyOeI0IaamiraaWcbeaaaaa@39BE@ hat man jetzt

    2u=p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGOmaiaadwhacqGH9aqpcaWGWbaaaa@3A8A@   und  u 2 + v 2 =q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadAhadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWGXbaaaa@3CA5@ .

Für die folgenden Überlegungen legen wir das oben eingeführte Polynom r und die gerade gesetzten Daten c 0 , c 1 ,c,u,v MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIWaaabeaakiaacYcacaaMc8Uaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8Uaam4yaiaacYcacaaMc8UaamyDaiaacYcacaaMc8UaamODaaaa@4566@ sowie D zu Grunde.

Wir beginnen mit der Untersuchung homogener Gleichungen. Die folgende Bemerkung gibt bereits eine vollständige Übersicht über ihr Lösungsverhalten.

Bemerkung:  Für jede D 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGOmaaaaaaa@379B@ -Funktion f gilt:

f ′′ +p f +qf=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaGimaaaa@3E3C@

{ f= f (0) c 1 f(0) c 0 c 1 e c 0 X + f (0) c 0 f(0) c 1 c 0 e c 1 X ,  falls  D>0 f=f(0) e cX +( f (0)cf(0))X e cX ,  falls  D=0 f= f (0)f(0) v sin(vX) e uX +f(0)cos(vX) e uX ,  falls  D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7daGabaqaauaabaqadeaaaeaacaWGMbGaeyypa0ZaaSaaaeaaceWGMbGbauaacaGGOaGaaGimaiaacMcacqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOzaiaacIcacaaIWaGaaiykaaqaaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaaaakiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGimaaqabaWccaWGybaaaOGaey4kaSYaaSaaaeaaceWGMbGbauaacaGGOaGaaGimaiaacMcacqGHsislcaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaamOzaiaacIcacaaIWaGaaiykaaqaaiaadogadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaicdaaeqaaaaakiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGymaaqabaWccaWGybaaaOGaaeilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiraiabg6da+iaaicdaaeaacaWGMbGaeyypa0JaamOzaiaacIcacaaIWaGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGaey4kaSIaaiikaiqadAgagaqbaiaacIcacaaIWaGaaiykaiabgkHiTiaadogacaWGMbGaaiikaiaaicdacaGGPaGaaiykaiaadIfacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiaabYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH9aqpcaaIWaaabaGaamOzaiabg2da9maalaaabaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyOeI0IaamOzaiaacIcacaaIWaGaaiykaaqaaiaadAhaaaGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaOGaey4kaSIaamOzaiaacIcacaaIWaGaaiykaiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiaabYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH8aapcaaIWaaaaaGaay5Eaaaaaa@AF0D@

[8.12.2]
[8.12.3]
[8.12.4]

Beweis:  In allen drei Fällen gelingt es, die Richtung " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ " mit einer Verfeinerung der Beweismethode aus [8.11.2] nachzuweisen. Sei also f eine D 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGOmaaaaaaa@379E@ -Funktion mit f ′′ +p f +qf=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaGimaaaa@3E3F@ .

1.   Wir berechnen zunächst die Ableitung der differenzierbaren Funktion f c 1 f e c 0 X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaceWGMbGbauaacqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOzaaqaaiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGimaaqabaWccaWGybaaaaaaaaa@3E6F@ :

 i

Man beachte dabei:  ( c 0 + c 1 )=p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaiikaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaadchaaaa@3EBD@ und c 0 c 1 =q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadogadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGXbaaaa@3DE0@ .

( f c 1 f e c 0 X ) = f ′′ c 1 f c 0 ( f c 1 f) e c 0 X = f ′′ ( c 0 + c 1 ) f + c 0 c 1 f e c 0 X =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGabmOzayaafaGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaadAgaaeaacaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaaicdaaeqaaSGaamiwaaaaaaGcceGGPaGbauaacqGH9aqpdaWcaaqaaiqadAgagaqbgaqbaiabgkHiTiaadogadaWgaaWcbaGaaGymaaqabaGcceWGMbGbauaacqGHsislcaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiqadAgagaqbaiabgkHiTiaadogadaWgaaWcbaGaaGymaaqabaGccaWGMbGaaiykaaqaaiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGimaaqabaWccaWGybaaaaaakiabg2da9maalaaabaGabmOzayaafyaafaGaeyOeI0IaaiikaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiqadAgagaqbaiabgUcaRiaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOzaaqaaiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGimaaqabaWccaWGybaaaaaakiabg2da9iaaicdaaaa@6999@

Gemäß Mittelwertsatz ist die abgeleitete Funktion also konstant. Man hat daher für ein geeignetes k 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBaaaleaacaaIWaaabeaaaaa@37BF@ :

f c 1 f= k 0 e c 0 X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaadAgacqGH9aqpcaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIWaaabeaaliaadIfaaaaaaa@4145@ .

Analog findet man ein k 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBaaaleaacaaIXaaabeaaaaa@37C0@ , so dass

f c 0 f= k 1 e c 1 X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaeyOeI0Iaam4yamaaBaaaleaacaaIWaaabeaakiaadAgacqGH9aqpcaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIXaaabeaaliaadIfaaaaaaa@4146@ .

Durch Subtrahieren dieser beiden Gleichungen erhält man die Darstellung

( c 0 c 1 )f= k 0 e c 0 X k 1 e c 1 X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadAgacqGH9aqpcaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIWaaabeaaliaadIfaaaGccqGHsislcaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIXaaabeaaliaadIfaaaaaaa@4A26@ [1]

und zusammen mit der Ableitung ( c 0 c 1 ) f = k 0 c 0 e c 0 X k 1 c 1 e c 1 X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiqadAgagaqbaiabg2da9iaadUgadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIWaaabeaaliaadIfaaaGccqGHsislcaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaam4yamaaBaaaleaacaaIXaaabeaakiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGymaaqabaWccaWGybaaaaaa@4DE3@ das lineare Gleichungssystem

( c 0 c 1 )f(0) = k 0 k 1 c 1 III ( c 0 c 1 )( c 1 f(0) f (0)) =( c 1 c 0 ) k 0 ( c 0 c 1 ) f (0) = c 0 k 0 c 1 k 1 ( c 0 c 1 )f(0) = k 0 k 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqbaaaabaGaaiikaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadAgacaGGOaGaaGimaiaacMcaaeaacqGH9aqpcaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4AamaaBaaaleaacaaIXaaabeaaaOqaamaaxababaGaeyi1HSnaleaacaWGJbWaaSbaaWqaaiaaigdaaeqaaSGaamysaiabgkHiTiaadMeacaWGjbaabeaaaOqaaiaacIcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcacaGGOaGaam4yamaaBaaaleaacaaIXaaabeaakiaadAgacaGGOaGaaGimaiaacMcacqGHsislceWGMbGbauaacaGGOaGaaGimaiaacMcacaGGPaaabaGaeyypa0JaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaadUgadaWgaaWcbaGaaGimaaqabaaakeaacaGGOaGaam4yamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGymaaqabaGccaGGPaGabmOzayaafaGaaiikaiaaicdacaGGPaaabaGaeyypa0Jaam4yamaaBaaaleaacaaIWaaabeaakiaadUgadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaam4AamaaBaaaleaacaaIXaaabeaaaOqaaaqaaiaacIcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaacMcacaWGMbGaaiikaiaaicdacaGGPaaabaGaeyypa0Jaam4AamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadUgadaWgaaWcbaGaaGymaaqabaaaaaaa@867C@ .

Mit seiner Lösung k 0 = f (0) c 1 f(0) k 1 = k 0 ( c 0 c 1 )f(0)= f (0) c 0 f(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiGaaaqaaiaadUgadaWgaaWcbaGaaGimaaqabaaakeaacqGH9aqpceWGMbGbauaacaGGOaGaaGimaiaacMcacqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOzaiaacIcacaaIWaGaaiykaaqaaiaadUgadaWgaaWcbaGaaGymaaqabaaakeaacqGH9aqpcaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaiikaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadAgacaGGOaGaaGimaiaacMcacqGH9aqpceWGMbGbauaacaGGOaGaaGimaiaacMcacqGHsislcaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaamOzaiaacIcacaaIWaGaaiykaaaaaaa@5A2C@ folgt nun [8.12.2] aus [1].

2.   Wie in 1. finden wir zunächst ein k, so dass

f cf=k e cX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaeyOeI0Iaam4yaiaadAgacqGH9aqpcaWGRbGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaaaaa@3E75@ .[2]

Die Ableitung der differenzierbaren Funktion f (c1)f e cX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaceWGMbGbauaacqGHsislcaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaamOzaaqaaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaaaaaaa@3F90@

 i

Man beachte hier:  2c=p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGOmaiaadogacqGH9aqpcaWGWbaaaa@3A78@ und c 2 =q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadghaaaa@39C3@ .

( f (c1)f e cX ) = f ′′ (c1) f c( f (c1)f) e cX = f ′′ 2cf+ c 2 f+ f cf e cX = 0+k e cX e cX =k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaacIcadaWcaaqaaiqadAgagaqbaiabgkHiTiaacIcacaWGJbGaeyOeI0IaaGymaiaacMcacaWGMbaabaGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaaaaOGabiykayaafaaabaGaeyypa0ZaaSaaaeaaceWGMbGbauGbauaacqGHsislcaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGabmOzayaafaGaeyOeI0Iaam4yaiaacIcaceWGMbGbauaacqGHsislcaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaamOzaiaacMcaaeaacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaaaaaakeaaaeaacqGH9aqpdaWcaaqaaiqadAgagaqbgaqbaiabgkHiTiaaikdacaWGJbGaamOzaiabgUcaRiaadogadaahaaWcbeqaaiaaikdaaaGccaWGMbGaey4kaSIabmOzayaafaGaeyOeI0Iaam4yaiaadAgaaeaacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaaaaaakeaaaeaacqGH9aqpdaWcaaqaaiaaicdacqGHRaWkcaWGRbGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaaakeaacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaaaaGccqGH9aqpcaWGRbaaaaaa@71E1@

ist konstant, die Funktion selbst somit linear. Für ein geeignetes l hat man daher

f (c1)f=(kX+l) e cX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaeyOeI0IaaiikaiaadogacqGHsislcaaIXaGaaiykaiaadAgacqGH9aqpcaGGOaGaam4AaiaadIfacqGHRaWkcaWGSbGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaaaa@457F@ .

Wir subtrahieren die Gleichung [2] und erhalten so direkt die Darstellung

f=(lk) e cX +kX e cX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaacIcacaWGSbGaeyOeI0Iaam4AaiaacMcacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiabgUcaRiaadUgacaWGybGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaaaaa@4475@ .[3]

Beachtet man auch noch die Ableitung f =c(lk) e cX +k(1+cX) e cX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaeyypa0Jaam4yaiaacIcacaWGSbGaeyOeI0Iaam4AaiaacMcacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiabgUcaRiaadUgacaGGOaGaaGymaiabgUcaRiaadogacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaaaa@4947@ , so gewinnt man jetzt das Gleichungssystem

f(0) =lk IIcI f (0)cf(0) =k f (0) =c(lk)+k f(0) =lk MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqbaaaabaGaamOzaiaacIcacaaIWaGaaiykaaqaaiabg2da9iaadYgacqGHsislcaWGRbaabaWaaCbeaeaacqGHuhY2aSqaaiaadMeacaWGjbGaeyOeI0Iaam4yaiaadMeaaeqaaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyOeI0Iaam4yaiaadAgacaGGOaGaaGimaiaacMcaaeaacqGH9aqpcaWGRbaabaGabmOzayaafaGaaiikaiaaicdacaGGPaaabaGaeyypa0Jaam4yaiaacIcacaWGSbGaeyOeI0Iaam4AaiaacMcacqGHRaWkcaWGRbaabaaabaGaamOzaiaacIcacaaIWaGaaiykaaqaaiabg2da9iaadYgacqGHsislcaWGRbaaaaaa@5F4B@

Dies aber sichert mit [3] die Gleichung [8.12.3].

3.   Wir betrachten jetzt die D 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGymaaaaaaa@379D@ -Funktion f cos(vX)f(ucos(vX)vsin(vX)) e uX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaceWGMbGbauaacqGHflY1ciGGJbGaai4BaiaacohacaGGOaGaamODaiaadIfacaGGPaGaeyOeI0IaamOzaiabgwSixlaacIcacaWG1bGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiabgkHiTiaadAhaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaaiykaaqaaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaaaaaaa@5699@ . Ihre Ableitung errechnen

 i

Zur Erinnerung:  2u=p MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGOmaiaadwhacqGH9aqpcaWGWbaaaa@3A8A@ und u 2 + v 2 =q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadAhadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWGXbaaaa@3CA5@ .

wir zu

1 e uX ( f ′′ cos(vX) f vsin(vX) f (ucos(vX)vsin(vX))+f(uvsin(vX)+ v 2 cos(vX)) u f cos(vX)+uf(ucos(vX)vsin(vX))) = 1 e uX ( f ′′ 2u f +( u 2 + v 2 )f)cos(vX)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqWaaaaabaaabaWaaSaaaeaacaaIXaaabaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaaaaaGcbaGaaiikaiqadAgagaqbgaqbaiabgwSixlGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacqGHsislceWGMbGbauaacqGHflY1caWG2bGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaaqaaaqaaaqaaiabgkHiTiqadAgagaqbaiabgwSixlaacIcacaWG1bGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiabgkHiTiaadAhaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaaiykaiabgUcaRiaadAgacqGHflY1caGGOaGaamyDaiaadAhaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaey4kaSIaamODamaaCaaaleqabaGaaGOmaaaakiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacaGGPaaabaaabaaabaGaeyOeI0IaamyDaiqadAgagaqbaiabgwSixlGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacqGHRaWkcaWG1bGaamOzaiabgwSixlaacIcacaWG1bGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiabgkHiTiaadAhaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaaiykaiaacMcaaeaacqGH9aqpaeaadaWcaaqaaiaaigdaaeaacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaaaaaakeaacaGGOaGabmOzayaafyaafaGaeyOeI0IaaGOmaiaadwhaceWGMbGbauaacqGHRaWkcaGGOaGaamyDamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadAhadaahaaWcbeqaaiaaikdaaaGccaGGPaGaamOzaiaacMcaciGGJbGaai4BaiaacohacaGGOaGaamODaiaadIfacaGGPaGaeyypa0JaaGimaaaaaaa@B546@

Es gibt daher ein k 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBaaaleaacaaIWaaabeaaaaa@37C2@ , so dass

f cos(vX)f(ucos(vX)vsin(vX))= k 0 e uX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaeyyXICTaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiabgkHiTiaadAgacqGHflY1caGGOaGaamyDaiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacqGHsislcaWG2bGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaacMcacqGH9aqpcaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaaaaa@596F@ .[4]

Eine analoge Rechnung führt zu

f sin(vX)f(usin(vX)+vcos(vX))= k 1 e uX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaeyyXICTaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiabgkHiTiaadAgacqGHflY1caGGOaGaamyDaiGacohacaGGPbGaaiOBaiaacIcacaWG2bGaamiwaiaacMcacqGHRaWkcaWG2bGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiaacMcacqGH9aqpcaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaaaaa@596A@ [5]

mit einem geeigneten k 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBaaaleaacaaIXaaabeaaaaa@37C3@ . Mit sin 2 + cos 2 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGymaaaa@4020@ (Satz des Pythagoras) ergibt sich nun aus der Differenz [4]sin(vX)[5]cos(vX) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaisdacaGGDbGaeyyXICTaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiabgkHiTiaacUfacaaI1aGaaiyxaiabgwSixlGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcaaaa@4C77@ die Darstellung

vf= k 0 sin(vX) e uX k 1 cos(vX) e uX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaadAgacqGH9aqpcaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaOGaeyOeI0Iaam4AamaaBaaaleaacaaIXaaabeaakiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaaaaa@4F79@ [6]

und damit die Ableitung v f = k 0 (vcos(vX)+usin(vX)) e uX k 1 (vsin(vX)+ucos(vX)) e uX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiqadAgagaqbaiabg2da9iaadUgadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamODaiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacqGHRaWkcaWG1bGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiabgkHiTiaadUgadaWgaaWcbaGaaGymaaqabaGccaGGOaGaeyOeI0IaamODaiGacohacaGGPbGaaiOBaiaacIcacaWG2bGaamiwaiaacMcacqGHRaWkcaWG1bGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaaaaa@64DF@ .

Über das Gleichungssystem

vf(0) = k 1 k 1 =vf(0) v f (0) =v k 0 u k 1 k 0 =f'(0)+ u k 1 v = f (0)uf(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqbaaaabaGaamODaiaadAgacaGGOaGaaGimaiaacMcaaeaacqGH9aqpcqGHsislcaWGRbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyi1HSnabaGaeyOeI0Iaam4AamaaBaaaleaacaaIXaaabeaaaOqaaiabg2da9iaadAhacaWGMbGaaiikaiaaicdacaGGPaaabaGaamODaiqadAgagaqbaiaacIcacaaIWaGaaiykaaqaaiabg2da9iaadAhacaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaamyDaiaadUgadaWgaaWcbaGaaGymaaqabaaakeaaaeaacaWGRbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeyypa0JaamOzaiaacEcacaGGOaGaaGimaiaacMcacqGHRaWkdaWcaaqaaiaadwhacaWGRbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamODaaaacqGH9aqpceWGMbGbauaacaGGOaGaaGimaiaacMcacqGHsislcaWG1bGaamOzaiaacIcacaaIWaGaaiykaaaaaaa@67F4@

schließlich ergibt sich aus [6] die Darstellung [8.12.4].

Für die Richtung " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ " zeigen wir jetzt, dass die Funktionen in [8.12.2,3,4] die Differentialgleichung f ′′ +p f +qf=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaGimaaaa@3E3F@ erfüllen. Auf Grund der Linearität des Operators D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGYbaabeaaaaa@37D8@ (siehe [0]) genügt es dabei, dies für die vier "Erzeugerfunktionen" e cX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaaaaa@38C5@ , X e cX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaaaa@39A2@ , sin(vX) e uX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaaaa@3EE0@ und cos(vX) e uX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaaaa@3EDB@ zu zeigen.

1.   Ist c eine beliebige Lösung der Gleichung x 2 +px+q=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadchacaWG4bGaey4kaSIaamyCaiabg2da9iaaicdaaaa@3E48@ , also c 2 +pc+q=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadchacaWGJbGaey4kaSIaamyCaiabg2da9iaaicdaaaa@3E1E@ , so ist

( e cX ) ′′ +p( e cX ) +q e cX =( c 2 +pc+q) e cX =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGabiykayaafyaafaGaey4kaSIaamiCaiaacIcacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiqacMcagaqbaiabgUcaRiaadghacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiabg2da9iaacIcacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiCaiaadogacqGHRaWkcaWGXbGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGaeyypa0JaaGimaaaa@5299@

2.   Sei c jetzt eine doppelte Lösung. Neben c 2 +pc+q=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadchacaWGJbGaey4kaSIaamyCaiabg2da9iaaicdaaaa@3E1E@ beachten wir auch 2c+p=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadogacqGHRaWkcaWGWbGaeyypa0JaaGimaaaa@3B27@ . Mit

(X e cX ) = e cX +cX e cX =(1+cX) e cX (X e cX ) ′′ =c e cX +c(1+cX) e cX =(2c+ c 2 X) e cX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaacIcacaWGybGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaGcceGGPaGbauaaaeaacqGH9aqpcaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiabgUcaRiaadogacaWGybGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaGccqGH9aqpcaGGOaGaaGymaiabgUcaRiaadogacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaaGcbaGaaiikaiaadIfacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiqacMcagaqbgaqbaaqaaiabg2da9iaadogacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiabgUcaRiaadogacaGGOaGaaGymaiabgUcaRiaadogacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGaeyypa0JaaiikaiaaikdacaWGJbGaey4kaSIaam4yamaaCaaaleqabaGaaGOmaaaakiaadIfacaGGPaGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaaaaaaa@6B2E@

hat man daher:

(X e cX ) ′′ +p(X e cX ) +qX e cX =(2c+ c 2 X+p(1+cX)+qX) e cX =(2c+p+( c 2 +pc+q)X) e cX =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaacIcacaWGybGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaGcceGGPaGbauGbauaacqGHRaWkcaWGWbGaaiikaiaadIfacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiqacMcagaqbaiabgUcaRiaadghacaWGybGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaaakeaacqGH9aqpcaGGOaGaaGOmaiaadogacqGHRaWkcaWGJbWaaWbaaSqabeaacaaIYaaaaOGaamiwaiabgUcaRiaadchacaGGOaGaaGymaiabgUcaRiaadogacaWGybGaaiykaiabgUcaRiaadghacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaaGcbaaabaGaeyypa0JaaiikaiaaikdacaWGJbGaey4kaSIaamiCaiabgUcaRiaacIcacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiCaiaadogacqGHRaWkcaWGXbGaaiykaiaadIfacaGGPaGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaGccqGH9aqpcaaIWaaaaaaa@6F9C@

3.   Mit den Beziehungen p=2u MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iabgkHiTiaaikdacaWG1baaaa@3A8A@ , q= u 2 + v 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9iaadwhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYaaaaaaa@3C9B@ und den Ableitungen

(sin(vX) e uX ) =(vcos(vX)+usin(vX)) e uX (sin(vX) e uX ) ′′ =( v 2 sin(vX)+uvcos(vX)+uvcos(vX)+ u 2 sin(vX)) e uX =(2uvcos(vX)+( u 2 v 2 )sin(vX)) e uX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaacIcaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaGcceGGPaGbauaaaeaacqGH9aqpcaGGOaGaamODaiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacqGHRaWkcaWG1bGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaaaOqaaiaacIcaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaGcceGGPaGbauGbauaaaeaacqGH9aqpcaGGOaGaeyOeI0IaamODamaaCaaaleqabaGaaGOmaaaakiGacohacaGGPbGaaiOBaiaacIcacaWG2bGaamiwaiaacMcacqGHRaWkcaWG1bGaamODaiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacqGHRaWkcaWG1bGaamODaiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacqGHRaWkcaWG1bWaaWbaaSqabeaacaaIYaaaaOGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaaaOqaaaqaaiabg2da9iaacIcacaaIYaGaamyDaiaadAhaciGGJbGaai4BaiaacohacaGGOaGaamODaiaadIfacaGGPaGaey4kaSIaaiikaiaadwhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaiykaiGacohacaGGPbGaaiOBaiaacIcacaWG2bGaamiwaiaacMcacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaaaaaaa@A2E7@

errechnet man in diesem Fall:

(sin(vX) e uX ) ′′ +p(sin(vX) e uX ) +qsin(vX) e uX = (2uvcos(vX)+( u 2 v 2 )sin(vX)+pvcos(vX)+pusin(vX)+qsin(vX)) e uX = ((2u+p)vcos(vX)+( u 2 v 2 +pu+q =2 u 2 2 u 2 )sin(vX)) e uX =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiaacIcaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaGcceGGPaGbauGbauaacqGHRaWkcaWGWbGaaiikaiGacohacaGGPbGaaiOBaiaacIcacaWG2bGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiqacMcagaqbaiabgUcaRiaadghaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaaakeaacqGH9aqpaeaacaGGOaGaaGOmaiaadwhacaWG2bGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiabgUcaRiaacIcacaWG1bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamODamaaCaaaleqabaGaaGOmaaaakiaacMcaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaey4kaSIaamiCaiaadAhaciGGJbGaai4BaiaacohacaGGOaGaamODaiaadIfacaGGPaGaey4kaSIaamiCaiaadwhaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaey4kaSIaamyCaiGacohacaGGPbGaaiOBaiaacIcacaWG2bGaamiwaiaacMcacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaaakeaacqGH9aqpaeaacaGGOaGaaiikaiaaikdacaWG1bGaey4kaSIaamiCaiaacMcacaWG2bGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiabgUcaRiaacIcadaagaaqaaiaadwhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiCaiaadwhacqGHRaWkcaWGXbaaleaacqGH9aqpcaaIYaGaamyDamaaCaaameqabaGaaGOmaaaaliabgkHiTiaaikdacaWG1bWaaWbaaWqabeaacaaIYaaaaaGccaGL44pacaGGPaGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiabg2da9iaaicdaaaaaaa@BA1D@

4.   Der Nachweis für cos(vX) e uX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaaaa@3EDB@ ist eine direkte Analogie zu 3.

Beachte:

  • Nach [8.12.2-4] besteht die Lösungsmenge der Gleichung f ′′ +p f +qf=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaGimaaaa@3E3F@ aus allen Linearkombinationen der jeweiligen Erzeugerfunktionen:

    f ′′ +p f +qf=0fKer D r ={ < e c 0 X , e c 1 X >,  falls  D>0 < e cX ,X e cX >,  falls  D=0 <sin(vX) e uX ,cos(vX) e uX >,  falls  D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaGimaiaaywW7cqGHuhY2caaMf8UaamOzaiabgIGiolaadUeacaWGLbGaamOCaiaayIW7caWGebWaaSbaaSqaaiaadkhaaeqaaOGaeyypa0ZaaiqaaeaafaqaaeWabaaabaGaeyipaWJaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIWaaabeaaliaadIfaaaGccaGGSaGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIXaaabeaaliaadIfaaaGccqGH+aGpcaqGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGebGaeyOpa4JaaGimaaqaaiabgYda8iaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGaaiilaiaadIfacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiabg6da+iaabYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH9aqpcaaIWaaabaGaeyipaWJaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaOGaaiilaiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiabg6da+iaabYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH8aapcaaIWaaaaaGaay5Eaaaaaa@8EA2@

    Also ist die Lösungsmenge wieder ein Untervektorraum, diesmal von D 2 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGOmaaaakiaacIcacqWIDesOcaGGPaaaaa@3A71@ , und zwar ein Untervektorraum der Dimension 2.

     i

    Wir weisen in allen drei Fällen nach, dass die jeweilige Erzeugersequenz linear unabhängig ist:

    1.  Mit f=α e c 0 X +β e c 1 X =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iabeg7aHjaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGimaaqabaWccaWGybaaaOGaey4kaSIaeqOSdiMaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIXaaabeaaliaadIfaaaGccqGH9aqpcaaIWaaaaa@4570@ , ist auch f =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaeyypa0JaaGimaaaa@38A3@ und damit insbesondere:   f(0)= f (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iqadAgagaqbaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3EBA@ . Also hat man das Gleichungssystem

    α+β =0 c 0 α+ c 1 β =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiGaaaqaaiabeg7aHjabgUcaRiabek7aIbqaaiabg2da9iaaicdaaeaacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeqySdeMaey4kaSIaam4yamaaBaaaleaacaaIXaaabeaakiabek7aIbqaaiabg2da9iaaicdaaaaaaa@4572@ ,

    das wegen c 0 c 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIWaaabeaakiabgcMi5kaadogadaWgaaWcbaGaaGymaaqabaaaaa@3B5A@ nur die Lösung α=β=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaeqOSdiMaeyypa0JaaGimaaaa@3BF2@ zuläßt.

    2.  Ist f=α e cX +βX e cX =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iabeg7aHjaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGaey4kaSIaeqOSdiMaamiwaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGaeyypa0JaaGimaaaa@4468@ , so ergibt sich sofort α=f(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3D4F@ , und damit auch β e c =f(1)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaamyzamaaCaaaleqabaGaam4yaaaakiabg2da9iaadAgacaGGOaGaaGymaiaacMcacqGH9aqpcaaIWaaaaa@3F5B@ , also: β=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyypa0JaaGimaaaa@394D@ .

    3.  Sei schließlich f=αsin(vX) e uX +βcos(vX) e uX =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iabeg7aHjGacohacaGGPbGaaiOBaiaacIcacaWG2bGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiabgUcaRiabek7aIjGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiabg2da9iaaicdaaaa@4FBC@ . Man errechnet sofort: β=f(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyypa0JaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3D51@ und α e πu/2v =f( π 2v )=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaamyzamaaCaaaleqabaGaeqiWdaNaamyDaiaac+cacaaIYaGaamODaaaakiabg2da9iaadAgacaGGOaWaaSaaaeaacqaHapaCaeaacaaIYaGaamODaaaacaGGPaGaeyypa0JaaGimaaaa@465B@ , also auch α=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaaGimaaaa@394B@ .


     

[8.12.2-4] macht auch deutlich, dass wir eine eindeutige Lösung nur dann erhalten können, wenn wir für f(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaaaa@38EA@ und für f (0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaaaaa@38F6@ eine Anfangsbedingung setzen.

Bemerkung:  Für je zwei Zahlen w 0 , w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaaIWaaabeaakiaacYcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyicI4SaeSyhHekaaa@3D69@ hat die homogene Gleichung f ′′ +p f +qf=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaGimaaaa@3E3F@ unter der Anfangsbedingung f(0)= w 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGimaaqabaaaaa@3BD2@ und f (0)= w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0Jaam4DamaaBaaaleaacaaIXaaabeaaaaa@3BDF@ genau eine Lösung:

f ′′ +p f +qf=0f(0)= w 0 f (0)= w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaGimaiaaywW7cqGHNis2caaMf8UaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGimaaqabaGccaaMf8Uaey4jIKTaaGzbVlqadAgagaqbaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGymaaqabaaaaa@53B6@

{ f= w 1 w 0 c 1 c 0 c 1 e c 0 X + w 1 w 0 c 0 c 1 c 0 e c 1 X ,  falls  D>0 f= w 0 e cX +( w 1 c w 0 )X e cX ,  falls  D=0 f= w 1 w 0 u v sin(vX) e uX + w 0 cos(vX) e uX ,  falls  D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7daGabaqaauaabaqadeaaaeaacaWGMbGaeyypa0ZaaSaaaeaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaaIWaaabeaakiaadogadaWgaaWcbaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaaaaGccaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaaicdaaeqaaSGaamiwaaaakiabgUcaRmaalaaabaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadEhadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGimaaqabaaaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIXaaabeaaliaadIfaaaGccaGGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGebGaeyOpa4JaaGimaaqaaiaadAgacqGH9aqpcaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaGccqGHRaWkcaGGOaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadogacaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaadIfacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiaacYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH9aqpcaaIWaaabaGaamOzaiabg2da9maalaaabaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadEhadaWgaaWcbaGaaGimaaqabaGccaWG1baabaGaamODaaaaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaGccqGHRaWkcaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaOGaaiilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiraiabgYda8iaaicdaaaaacaGL7baaaaa@A52D@

[8.12.5]
[8.12.6]
[8.12.7]

Beweis:  In allen drei Fällen folgt die Richtung " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3849@ " direkt aus [8.12.2-4]. " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3845@ " folgt ebenfalls mit [8.12.2-4], weil:

1.    f(0)= w 1 w 0 c 1 w 1 + w 0 c 0 c 0 c 1 = w 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9maalaaabaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadEhadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadEhadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGymaaqabaaaaOGaeyypa0Jaam4DamaaBaaaleaacaaIWaaabeaaaaa@4FA5@ ,
1.    f (0)= ( w 1 w 0 c 1 ) c 0 +( w 1 + w 0 c 0 ) c 1 c 0 c 1 = w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0ZaaSaaaeaacaGGOaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadEhadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaGGOaGaeyOeI0Iaam4DamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadEhadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaadogadaWgaaWcbaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaaaaGccqGH9aqpcaWG3bWaaSbaaSqaaiaaigdaaeqaaaaa@56F7@ .

2.    f(0)= w 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGimaaqabaaaaa@3BD2@ und f (0)= w 0 c+ w 1 c w 0 = w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0Jaam4DamaaBaaaleaacaaIWaaabeaakiaadogacqGHRaWkcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4yaiaadEhadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaWG3bWaaSbaaSqaaiaaigdaaeqaaaaa@4649@ .

3.    f(0)= w 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGimaaqabaaaaa@3BD2@ und f (0)= w 1 w 0 u+ w 0 u= w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0Jaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadEhadaWgaaWcbaGaaGimaaqabaGccaWG1bGaey4kaSIaam4DamaaBaaaleaacaaIWaaabeaakiaadwhacqGH9aqpcaWG3bWaaSbaaSqaaiaaigdaaeqaaaaa@466D@ .

Bei der Formulierung der Anfangsbedingung ist man nicht an die Stelle 0 gebunden, denn für alle b, w 0 , w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaacYcacaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaadEhadaWgaaWcbaGaaGymaaqabaGccqGHiiIZcqWIDesOaaa@3F00@ gilt:

f ′′ +p f +qf=0f(b)= w 0 f (b)= w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaGimaiaaywW7cqGHNis2caaMf8UaamOzaiaacIcacaWGIbGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGimaaqabaGccaaMf8Uaey4jIKTaaGzbVlqadAgagaqbaiaacIcacaWGIbGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGymaaqabaaaaa@5410@

{ f= w 1 w 0 c 1 c 0 c 1 e c 0 (Xb) + w 1 w 0 c 0 c 1 c 0 e c 1 (Xb) ,  falls  D>0 f=( w 0 b( w 1 c w 0 )) e c(Xb) +( w 1 c w 0 )X e c(Xb) ,  falls  D=0 f= w 1 w 0 u v sin(v(Xb)) e u(Xb) + w 0 cos(v(Xb)) e u(Xb) ,  falls  D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7daGabaqaauaabaqadeaaaeaacaWGMbGaeyypa0ZaaSaaaeaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaaIWaaabeaakiaadogadaWgaaWcbaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaaaaGccaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaaicdaaeqaaSGaaiikaiaadIfacqGHsislcaWGIbGaaiykaaaakiabgUcaRmaalaaabaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadEhadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGimaaqabaaaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIXaaabeaaliaacIcacaWGybGaeyOeI0IaamOyaiaacMcaaaGccaGGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGebGaeyOpa4JaaGimaaqaaiaadAgacqGH9aqpcaGGOaGaam4DamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadkgacaGGOaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadogacaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaacMcacaWGLbWaaWbaaSqabeaacaWGJbGaaiikaiaadIfacqGHsislcaWGIbGaaiykaaaakiabgUcaRiaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4yaiaadEhadaWgaaWcbaGaaGimaaqabaGccaGGPaGaamiwaiaadwgadaahaaWcbeqaaiaadogacaGGOaGaamiwaiabgkHiTiaadkgacaGGPaaaaOGaaiilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiraiabg2da9iaaicdaaeaacaWGMbGaeyypa0ZaaSaaaeaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaaIWaaabeaakiaadwhaaeaacaWG2baaaiGacohacaGGPbGaaiOBaiaacIcacaWG2bGaaiikaiaadIfacqGHsislcaWGIbGaaiykaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaaiikaiaadIfacqGHsislcaWGIbGaaiykaaaakiabgUcaRiaadEhadaWgaaWcbaGaaGimaaqabaGcciGGJbGaai4BaiaacohacaGGOaGaamODaiaacIcacaWGybGaeyOeI0IaamOyaiaacMcacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaacIcacaWGybGaeyOeI0IaamOyaiaacMcaaaGccaGGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGebGaeyipaWJaaGimaaaaaiaawUhaaaaa@C8C9@
[8.12.8]
[8.12.9]
[8.12.10]

Beweis:  Wir orientieren uns am Beweis von [8.11.4]. Da

f ′′ +p f +qf=0f(b)= w 0 f (b)= w 1 (f(X+b) ) ′′ +p(f(X+b) ) +qf(X+b)=0 f(X+b)(0)= w 0 (f(X+b) ) (0)= w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiqadAgagaqbgaqbaiabgUcaRiaadchaceWGMbGbauaacqGHRaWkcaWGXbGaamOzaiabg2da9iaaicdacaaMf8Uaey4jIKTaaGzbVlaadAgacaGGOaGaamOyaiaacMcacqGH9aqpcaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaaGzbVlabgEIizlaaywW7ceWGMbGbauaacaGGOaGaamOyaiaacMcacqGH9aqpcaWG3bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyi1HSTaaGzbVdqaaiaacIcacaWGMbGaeSigI8MaaiikaiaadIfacqGHRaWkcaWGIbGaaiykaiqacMcagaqbgaqbaiabgUcaRiaadchacaGGOaGaamOzaiablIHiVjaacIcacaWGybGaey4kaSIaamOyaiaacMcaceGGPaGbauaacqGHRaWkcaWGXbGaamOzaiablIHiVjaacIcacaWGybGaey4kaSIaamOyaiaacMcacqGH9aqpcaaIWaaabaaabaGaaGzbVlabgEIizlaaywW7caWGMbGaeSigI8MaaiikaiaadIfacqGHRaWkcaWGIbGaaiykaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGimaaqabaGccaaMf8Uaey4jIKTaaGzbVlaacIcacaWGMbGaeSigI8MaaiikaiaadIfacqGHRaWkcaWGIbGaaiykaiqacMcagaqbaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGymaaqabaaaaaaa@9408@

ist f(X+b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaacIcacaWGybGaey4kaSIaamOyaiaacMcaaaa@3C10@ die Lösungsfunktion aus [8.12.5-7]:

f(X+b)={ w 1 w 0 c 1 c 0 c 1 e c 0 X + w 1 w 0 c 0 c 1 c 0 e c 1 X ,  falls  D>0 w 0 e cX +( w 1 c w 0 )X e cX ,  falls  D=0 w 1 w 0 u v sin(vX) e uX + w 0 cos(vX) e uX ,  falls  D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaadAgacqWIyiYBcaGGOaGaamiwaiabgUcaRiaadkgacaGGPaGaeyypa0ZaaiqaaeaafaqaaeWabaaabaWaaSaaaeaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaaIWaaabeaakiaadogadaWgaaWcbaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaaaaGccaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaaicdaaeqaaSGaamiwaaaakiabgUcaRmaalaaabaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadEhadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGimaaqabaaaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIXaaabeaaliaadIfaaaGccaGGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGebGaeyOpa4JaaGimaaqaaiaadEhadaWgaaWcbaGaaGimaaqabaGccaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiabgUcaRiaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4yaiaadEhadaWgaaWcbaGaaGimaaqabaGccaGGPaGaamiwaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGaaiilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiraiabg2da9iaaicdaaeaadaWcaaqaaiaadEhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaamyDaaqaaiaadAhaaaGaci4CaiaacMgacaGGUbGaaiikaiaadAhacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaOGaey4kaSIaam4DamaaBaaaleaacaaIWaaabeaakiGacogacaGGVbGaai4CaiaacIcacaWG2bGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiaacYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH8aapcaaIWaaaaaGaay5Eaaaaaa@A29A@

Das ist aber bereits die Behauptung, wenn man die Identität f=f(X+b)(Xb) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadAgacqWIyiYBcaGGOaGaamiwaiabgUcaRiaadkgacaGGPaGaeSigI8MaaiikaiaadIfacqGHsislcaWGIbGaaiykaaaa@4345@ berücksichtigt.

Beispiel:  

  • Die Lösungsmenge der Gleichung f ′′ + f 6f=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIabmOzayaafaGaeyOeI0IaaGOnaiaadAgacqGH9aqpcaaIWaaaaa@3D1F@ ist das Erzeugnis < e 2X , e 3X > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamyzamaaCaaaleqabaGaaGOmaiaadIfaaaGccaGGSaGaamyzamaaCaaaleqabaGaeyOeI0IaaG4maiaadIfaaaGccqGH+aGpaaa@3F0A@ , denn das Polynom X 2 +X6 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadIfacqGHsislcaaI2aaaaa@3B28@ hat die beiden verschiedenen Nullstellen 2 und −3 (Fall D>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg6da+iaaicdaaaa@3877@ ). Daher hat man z.B.:

    f ′′ + f 6f=0f(0)=2 f (0)=3 f= 9 5 e 2X + 1 5 e 3X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaaqaaiqadAgagaqbgaqbaiabgUcaRiqadAgagaqbaiabgkHiTiaaiAdacaWGMbGaeyypa0JaaGimaiaaywW7cqGHNis2caaMf8UaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaikdacaaMf8Uaey4jIKTaaGzbVlqadAgagaqbaiaacIcacaaIWaGaaiykaiabg2da9iaaiodaaeaacqGHuhY2caaMf8oabaGaamOzaiabg2da9maalaaabaGaaGyoaaqaaiaaiwdaaaGaamyzamaaCaaaleqabaGaaGOmaiaadIfaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaI1aaaaiaadwgadaahaaWcbeqaaiabgkHiTiaaiodacaWGybaaaaaaaaa@6080@

     
  • Das Polynom X 2 8X+16 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiIdacaWGybGaey4kaSIaaGymaiaaiAdaaaa@3CA5@ hat die doppelte Lösung 4 (Fall D=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2da9iaaicdaaaa@3875@ ). Der Kern des Operators D X 2 8X+16 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGybWaaWbaaWqabeaacaaIYaaaaSGaeyOeI0IaaGioaiaadIfacqGHRaWkcaaIXaGaaGOnaaqabaaaaa@3D9C@ ist also das Erzeugnis < e 4X ,X e 4X > MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamyzamaaCaaaleqabaGaaGinaiaadIfaaaGccaGGSaGaamiwaiaadwgadaahaaWcbeqaaiaaisdacaWGybaaaOGaeyOpa4daaa@3EFD@ . Somit hat man etwa:

    f ′′ 8 f +16=0f(0)=2 f (0)=1 f=2 e 4X +9X e 4X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaaqaaiqadAgagaqbgaqbaiabgkHiTiaaiIdaceWGMbGbauaacqGHRaWkcaaIXaGaaGOnaiabg2da9iaaicdacaaMf8Uaey4jIKTaaGzbVlaadAgacaGGOaGaaGimaiaacMcacqGH9aqpcqGHsislcaaIYaGaaGzbVlabgEIizlaaywW7ceWGMbGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcaaIXaaabaGaeyi1HSTaaGzbVdqaaiaadAgacqGH9aqpcqGHsislcaaIYaGaamyzamaaCaaaleqabaGaaGinaiaadIfaaaGccqGHRaWkcaaI5aGaamiwaiaadwgadaahaaWcbeqaaiaaisdacaWGybaaaaaaaaa@6140@

     
  • Das Polynom X 2 +4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdaaaa@395C@ hat keine reelle Lösung (Fall D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabgYda8iaaicdaaaa@3873@ ), so dass jetzt die Daten u= p 2 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabg2da9iabgkHiTmaalaaabaGaamiCaaqaaiaaikdaaaGaeyypa0JaaGimaaaa@3C5A@ und v= D =2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9maakaaabaGaeyOeI0IaamiraaWcbeaakiabg2da9iaaikdaaaa@3B8A@ ermittelt werden müssen. Mit ihnen erhält man die Erzeugerfunktionen sin(2X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiaaikdacaWGybGaaiykaaaa@3BB6@ und cos(2X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaaikdacaWGybGaaiykaaaa@3BB1@ und damit z.B.:

    f ′′ +4f=0f(0)=0 f (0)=6 f=3sin(2X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaaqaaiqadAgagaqbgaqbaiabgUcaRiaaisdacaWGMbGaeyypa0JaaGimaiaaywW7cqGHNis2caaMf8UaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaicdacaaMf8Uaey4jIKTaaGzbVlqadAgagaqbaiaacIcacaaIWaGaaiykaiabg2da9iaaiAdaaeaacqGHuhY2caaMf8oabaGaamOzaiabg2da9iaaiodaciGGZbGaaiyAaiaac6gacaGGOaGaaGOmaiaadIfacaGGPaaaaaaa@5ACC@

     
  • Das Lösen homogener Gleichungen 2. Grades ist leicht zu automatisieren. Man kann also eine Fülle weiterer Beispiele selbst herstellen. Dazu trägt man zunächst in der nachstehenden Tabelle die Parameter p und q ein und legt die Anfangswerte f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGIbGaaiykaaaa@3917@ und f (b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadkgacaGGPaaaaa@3923@ für die Stelle b fest:

    p= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9aaa@37E7@ q= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9aaa@37E8@
    f(b)= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGIbGaaiykaiabg2da9aaa@3A1D@ f (b)= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadkgacaGGPaGaeyypa0daaa@3A29@ b= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2da9aaa@37D9@

    Per Klick erhält man nun die Lösung: solve . Um die Darstellung übersichtlich zu halten, werden dabei die Koeffizienten auf 3 Stellen gerundet.

    f ′′ =0f(0)=0 f (0)=0 f=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaaqaaiqadAgagaqbgaqbaiabgUcaRiaadchaceWGMbGbauaacqGHRaWkcaWGXbGaeyypa0JaaGimaiaaywW7cqGHNis2caaMf8UaamOzaiaacIcacqGHRaWkcaaIWaGaaiykaiabg2da9iabgUcaRiaadEhacaaIWaGaaGzbVlabgEIizlaaywW7ceWGMbGbauaacaGGOaGaey4kaSIaaGimaiaacMcacqGH9aqpcqGHRaWkcaWG3bGaaGymaaqaaiabgsDiBlaaywW7aeaacaWGMbGaeyypa0Jaey4kaSIaaGimaiGacohacaGGPbGaaiOBaiaacIcacaaIWaGaaiikaiaadIfacqGHsislcaaIWaGaaiykaiaacMcacaWGLbWaaWbaaSqabeaacqGHRaWkcaaIWaGaaiikaiaadIfacqGHsislcaaIWaGaaiykaaaakiabgUcaRiaaicdacaWGybGaci4yaiaac+gacaGGZbGaaiikaiaaicdacaGGOaGaamiwaiabgkHiTiaaicdacaGGPaGaaiykaiaadwgadaahaaWcbeqaaiabgUcaRiaaicdacaGGOaGaamiwaiabgkHiTiaaicdacaGGPaaaaaaaaaa@7EA5@
     

  • In einem Anwendungsbeispiel zur Physik leiten wir verschiedene Schwingungsgleichungen her.

Wir wenden uns nun den inhomogenen Gleichungen zu. Wie bereits im letzten Abschnitt ist auch hier das Faltungsprodukt der eigentliche Schlüssel, der die Lösbarkeit bei stetiger rechter Seite g garantiert.

Im Folgenden bezeichne f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaaaa@383D@ die Lösung der homogenen Gleichung f ′′ +p f +qf=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaGimaaaa@3E3F@ unter der speziellen Anfangsbedingung f(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3AAA@ und f (0)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaGymaaaa@3AB7@ . Wir setzen also gemäß [8.12.5-7] fest:

f { 1 c 0 c 1 e c 0 X + 1 c 1 c 0 e c 1 X ,  falls  D>0 X e cX ,  falls  D=0 1 v sin(vX) e uX ,  falls  D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaeyypa0ZaaiqaaeaafaqaaeWabaaabaWaaSaaaeaacaaIXaaabaGaam4yamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGymaaqabaaaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIWaaabeaaliaadIfaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIWaaabeaaaaGccaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaaigdaaeqaaSGaamiwaaaakiaabYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH+aGpcaaIWaaabaGaamiwaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGaaeilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiraiabg2da9iaaicdaaeaadaWcaaqaaiaaigdaaeaacaWG2baaaiGacohacaGGPbGaaiOBaiaacIcacaWG2bGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiaabYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH8aapcaaIWaaaaaGaay5Eaaaaaa@73EF@
[8.12.11]

und haben damit: f ′′ +p f +q f =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaai4jaiaacEcacqGHRaWkcaWGWbGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaai4jaiabgUcaRiaadghacaWGMbWaaSbaaSqaaiablIHiVbqabaGccqGH9aqpcaaIWaaaaa@446D@ mit f (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaaiikaiaaicdacaGGPaGaeyypa0JaaGimaaaa@3C1A@ und f (0)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaai4jaiaacIcacaaIWaGaaiykaiabg2da9iaaigdaaaa@3CC6@ . Über das Faltungsprodukt gewinnen wir nun aus der C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -Funktion f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaaaa@383D@ eine spezielle Lösung der inhomogenen Gleichung.

Bemerkung:  Ist g: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C63@ eine stetige Funktion, so löst das Faltungsprodukt f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaaaa@3A22@ die Gleichung f ′′ +p f +qf=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0Jaam4zaaaa@3E71@ unter der Anfangsbedingung f(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3AAA@ und f (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaGimaaaa@3AB6@ :

( f g ) ′′ +p( f g ) +q( f g)=g f g(0)=0( f g ) (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgaceGGPaGbauGbauaacqGHRaWkcaWGWbGaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgaceGGPaGbauaacqGHRaWkcaWGXbGaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgacaGGPaGaeyypa0Jaam4zaiaaywW7cqGHNis2caaMf8UaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaiaacIcacaaIWaGaaiykaiabg2da9iaaicdacaaMf8Uaey4jIKTaaGzbVlaacIcacaWGMbWaaSbaaSqaaiablIHiVbqabaGccqGHxiIkcaWGNbGabiykayaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaGimaaaa@6768@
[8.12.12]

Beweis:  Man beachte zunächst, dass f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaaaa@383D@ stetig, das Faltungsprodukt also wohldefiniert ist. Nun ist gemäß [8.10.10] die Funktion f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaaaa@3A22@ zweimal differenzierbar und

( f g ) = f (0)g+ f g= f g ( f g ) ′′ = f '(0)g+ f ′′ g=g+ f ′′ g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaacIcacaWGMbWaaSbaaSqaaiablIHiVbqabaGccqGHxiIkcaWGNbGabiykayaafaaabaGaeyypa0JaamOzamaaBaaaleaacqWIyiYBaeqaaOGaaiikaiaaicdacaGGPaGaeyyXICTaam4zaiabgUcaRiaadAgadaWgaaWcbaGaeSigI8gabeaakiaacEcacqGHxiIkcaWGNbGaeyypa0JaamOzamaaBaaaleaacqWIyiYBaeqaaOGaai4jaiabgEHiQiaadEgaaeaacaGGOaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaiqacMcagaqbgaqbaaqaaiabg2da9iaadAgadaWgaaWcbaGaeSigI8gabeaakiaacEcacaGGOaGaaGimaiaacMcacqGHflY1caWGNbGaey4kaSIaamOzamaaBaaaleaacqWIyiYBaeqaaOGaai4jaiaacEcacqGHxiIkcaWGNbGaeyypa0Jaam4zaiabgUcaRiaadAgadaWgaaWcbaGaeSigI8gabeaakiaacEcacaGGNaGaey4fIOIaam4zaaaaaaa@6DB3@

Mit den Rechenregeln [8.10.5,6,3] erhalten wir also:

( f g ) ′′ +p( f g ) +q( f g) =g+ f ′′ g+p( f g)+q( f g) =g+( f ′′ +p f +q f )g =g+0g=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaacIcacaWGMbWaaSbaaSqaaiablIHiVbqabaGccqGHxiIkcaWGNbGabiykayaafyaafaGaey4kaSIaamiCaiaacIcacaWGMbWaaSbaaSqaaiablIHiVbqabaGccqGHxiIkcaWGNbGabiykayaafaGaey4kaSIaamyCaiaacIcacaWGMbWaaSbaaSqaaiablIHiVbqabaGccqGHxiIkcaWGNbGaaiykaaqaaiabg2da9iaadEgacqGHRaWkcaWGMbWaaSbaaSqaaiablIHiVbqabaGccaGGNaGaai4jaiabgEHiQiaadEgacqGHRaWkcaWGWbGaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiaacEcacqGHxiIkcaWGNbGaaiykaiabgUcaRiaadghacaGGOaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaiaacMcaaeaaaeaacqGH9aqpcaWGNbGaey4kaSIaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiaacEcacaGGNaGaey4kaSIaamiCaiaadAgadaWgaaWcbaGaeSigI8gabeaakiaacEcacqGHRaWkcaWGXbGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaaiykaiabgEHiQiaadEgaaeaaaeaacqGH9aqpcaWGNbGaey4kaSIaaGimaiabgEHiQiaadEgacqGH9aqpcaWGNbaaaaaa@7C79@

Schließlich hat man auf Grund von [8.10.2] f g(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3DF5@ und ( f g ) (0)= f g(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgaceGGPaGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcaWGMbWaaSbaaSqaaiablIHiVbqabaGccaGGNaGaey4fIOIaam4zaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@4754@ .

Mit [8.12.12] gelingt es nun, die Lösungsmenge einer inhomogenen Gleichung (mit einer stetigen rechten Seite) zu beschreiben.

Bemerkung:  Sei g C 0 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3CDE@ . Dann gilt für jede D 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGOmaaaaaaa@379E@ -Funktion f:

f ′′ +p f +qf=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0Jaam4zaaaa@3E71@

f= f g+{ f (0) c 1 f(0) c 0 c 1 e c 0 X + f (0) c 0 f(0) c 1 c 0 e c 1 X ,  falls  D>0 f(0) e cX +( f (0)cf(0))X e cX ,  falls  D=0 f (0)f(0) v sin(vX) e uX +f(0)cos(vX) e uX ,  falls  D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caWGMbGaeyypa0JaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaiabgUcaRmaaceaabaqbaeaabmqaaaqaamaalaaabaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaakiaadAgacaGGOaGaaGimaiaacMcaaeaacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaabeaaaaGccaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaaicdaaeqaaSGaamiwaaaakiabgUcaRmaalaaabaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyOeI0Iaam4yamaaBaaaleaacaaIWaaabeaakiaadAgacaGGOaGaaGimaiaacMcaaeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIWaaabeaaaaGccaWGLbWaaWbaaSqabeaacaWGJbWaaSbaaWqaaiaaigdaaeqaaSGaamiwaaaakiaabYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH+aGpcaaIWaaabaGaamOzaiaacIcacaaIWaGaaiykaiaadwgadaahaaWcbeqaaiaadogacaWGybaaaOGaey4kaSIaaiikaiqadAgagaqbaiaacIcacaaIWaGaaiykaiabgkHiTiaadogacaWGMbGaaiikaiaaicdacaGGPaGaaiykaiaadIfacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiaabYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH9aqpcaaIWaaabaWaaSaaaeaaceWGMbGbauaacaGGOaGaaGimaiaacMcacqGHsislcaWGMbGaaiikaiaaicdacaGGPaaabaGaamODaaaaciGGZbGaaiyAaiaac6gacaGGOaGaamODaiaadIfacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaGccqGHRaWkcaWGMbGaaiikaiaaicdacaGGPaGaci4yaiaac+gacaGGZbGaaiikaiaadAhacaWGybGaaiykaiaadwgadaahaaWcbeqaaiaadwhacaWGybaaaOGaaeilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiraiabgYda8iaaicdaaaaacaGL7baaaaa@B043@
[8.12.13]
[8.12.14]
[8.12.15]

Beweis:  Beachtet man, dass f f g(0)=f(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgkHiTiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgacaGGOaGaaGimaiaacMcacqGH9aqpcaWGMbGaaiikaiaaicdacaGGPaaaaa@420E@ und (f f g ) (0)= f (0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHsislcaWGMbWaaSbaaSqaaiablIHiVbqabaGccqGHxiIkcaWGNbGabiykayaafaGaaiikaiaaicdacaGGPaGaeyypa0JabmOzayaafaGaaiikaiaaicdacaGGPaaaaa@437F@ , so ergibt sich die Behauptung direkt aus [8.12.2-4], denn mit [8.12.12] hat man:

f ′′ +p f +qf=g f ′′ +p f +qf=( f g ) ′′ +p( f g ) +q( f g) (f f g ) ′′ +p(f f g ) +q(f f g)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiqadAgagaqbgaqbaiabgUcaRiaadchaceWGMbGbauaacqGHRaWkcaWGXbGaamOzaiabg2da9iaadEgaaeaacqGHuhY2caaMf8oabaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0JaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgaceGGPaGbauGbauaacqGHRaWkcaWGWbGaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgaceGGPaGbauaacqGHRaWkcaWGXbGaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgacaGGPaaabaGaeyi1HSTaaGzbVdqaaiaacIcacaWGMbGaeyOeI0IaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaiqacMcagaqbgaqbaiabgUcaRiaadchacaGGOaGaamOzaiabgkHiTiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgaceGGPaGbauaacqGHRaWkcaWGXbGaaiikaiaadAgacqGHsislcaWGMbWaaSbaaSqaaiablIHiVbqabaGccqGHxiIkcaWGNbGaaiykaiabg2da9iaaicdaaaaaaa@7E33@

Beachte:

  • Wie bereits im letzten Abschnitt gewinnen wir auch jetzt alle Lösungen der inhomogenen Gleichung indem wir zu einer speziellen Lösung alle Lösungen der zugehörigen homogenen Gleichung addieren. Die Lösungsmenge ist somit der 2-dimensionale affine Unterraum

    f g+Ker D r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaiabgUcaRiaadUeacaWGLbGaamOCaiaaykW7caWGebWaaSbaaSqaaiaadkhaaeqaaaaa@412C@

    von D 2 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGOmaaaakiaacIcacqWIDesOcaGGPaaaaa@3A71@ .

Erwartungsgemäß garantiert [8.12.13-15] nun die eindeutige Lösbarkeit einer inhomogenen Gleichung mit Anfangsbedingung.

Bemerkung:  Es sei g C 0 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3CDE@ , w 0 , w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaaIWaaabeaakiaacYcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyicI4SaeSyhHekaaa@3D69@ . Dann hat die inhomogene Gleichung f ′′ +p f +qf=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0Jaam4zaaaa@3E71@ unter der Anfangsbedingung f(0)= w 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGimaaqabaaaaa@3BD2@ und f (0)= w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0Jaam4DamaaBaaaleaacaaIXaaabeaaaaa@3BDF@ genau eine Lösung:

f ′′ +p f +qf=gf(0)= w 0 f (0)= w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0Jaam4zaiaaywW7cqGHNis2caaMf8UaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGimaaqabaGccaaMf8Uaey4jIKTaaGzbVlqadAgagaqbaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGymaaqabaaaaa@53E8@

f= f g+{ w 1 w 0 c 1 c 0 c 1 e c 0 X + w 1 w 0 c 0 c 1 c 0 e c 1 X ,  falls  D>0 w 0 e cX +( w 1 c w 0 )X e cX ,  falls  D=0 w 1 w 0 u v sin(vX) e uX + w 0 cos(vX) e uX ,  falls  D<0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caWGMbGaeyypa0JaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaiabgUcaRmaaceaabaqbaeaabmqaaaqaamaalaaabaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadEhadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGymaaqabaaaaOGaamyzamaaCaaaleqabaGaam4yamaaBaaameaacaaIWaaabeaaliaadIfaaaGccqGHRaWkdaWcaaqaaiaadEhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaam4yamaaBaaaleaacaaIWaaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaicdaaeqaaaaakiaadwgadaahaaWcbeqaaiaadogadaWgaaadbaGaaGymaaqabaWccaWGybaaaOGaaiilaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiraiabg6da+iaaicdaaeaacaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGaam4yaiaadIfaaaGccqGHRaWkcaGGOaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadogacaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaadIfacaWGLbWaaWbaaSqabeaacaWGJbGaamiwaaaakiaacYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadseacqGH9aqpcaaIWaaabaWaaSaaaeaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaaIWaaabeaakiaadwhaaeaacaWG2baaaiGacohacaGGPbGaaiOBaiaacIcacaWG2bGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacaWG1bGaamiwaaaakiabgUcaRiaadEhadaWgaaWcbaGaaGimaaqabaGcciGGJbGaai4BaiaacohacaGGOaGaamODaiaadIfacaGGPaGaamyzamaaCaaaleqabaGaamyDaiaadIfaaaGccaGGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGebGaeyipaWJaaGimaaaaaiaawUhaaaaa@A663@
[8.12.16]
[8.12.17]
[8.12.18]

Beweis:  Der Nachweis wiederholt nur noch einmal die Argumente im Beweis von [8.12.5-7]. Man beachte dabei, dass f g(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3DF5@ und ( f g ) (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadEgaceGGPaGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcaaIWaaaaa@3F5A@ .

Nach [8.12.16-18] konstruieren wir die Lösung einer inhomogenen Gleichung in drei Schritten (wobei die oben notierte Lösungshilfe

 i

für homogene Gleichungen sehr nützlich sein kann!):

  1. Finde die Lösung f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaaaa@383D@ der homogenen Gleichung unter der Anfangsbedingung f(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3AAA@ und f (0)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaGymaaaa@3AB7@ .

  2. Berechne das Faltungsprodukt f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaam4zaaaa@3A22@ .

  3. Addiere dazu die Lösung der homogenen Gleichung unter der Anfangsbedingung f(0)= w 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadEhadaWgaaWcbaGaaGimaaqabaaaaa@3BD2@ und f (0)= w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0Jaam4DamaaBaaaleaacaaIXaaabeaaaaa@3BDF@ .
     

Um nun auch bei inhomogenen Gleichungen die Anfangsbedingung auf einen beliebigen Punkt b legen zu können, gehen wir analog zum Beweis von [8.12.8-10] vor: Zunächst finden wir eine Lösung f der Gleichung

f ′′ +p f +qf=g(X+b)f(0)= w 0 f (0)= w 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0Jaam4zaiablIHiVjaacIcacaWGybGaey4kaSIaamOyaiaacMcacaaMf8Uaey4jIKTaaGzbVlaadAgacaGGOaGaaGimaiaacMcacqGH9aqpcaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaaGzbVlabgEIizlaaywW7ceWGMbGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcaWG3bWaaSbaaSqaaiaaigdaaeqaaaaa@5921@

und haben dann mit f(Xb) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaacIcacaWGybGaeyOeI0IaamOyaiaacMcaaaa@3C1B@ die ursprüngliche Aufgabe gelöst. Wir zeigen dieses Verfahren in den Beispielen und verzichten hier auf eine explizite Darstellung.

Beispiel:  

  • f ′′ +2 f 3f= e X f(0)=2 f (0)=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaaGOmaiqadAgagaqbaiabgkHiTiaaiodacaWGMbGaeyypa0JaamyzamaaCaaaleqabaGaamiwaaaakiaaywW7cqGHNis2caaMf8UaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaikdacaaMf8Uaey4jIKTaaGzbVlqadAgagaqbaiaacIcacaaIWaGaaiykaiabg2da9iabgkHiTiaaigdaaaa@5328@

    Das Polynom X 2 +2X3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWGybGaeyOeI0IaaG4maaaa@3BE1@ hat zwei verschiedene Nullstellen, nämlich 1 und −3. Wir ermitteln die Lösung f in drei Schritten:

    1. f = 1 4 e X 1 4 e 3X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGinaaaacaWGLbWaaWbaaSqabeaacaWGybaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaacaWGLbWaaWbaaSqabeaacqGHsislcaaIZaGaamiwaaaaaaa@42E8@   nach [8.12.11]

    2. f e X = 1 4 X e X 1 16 e X + 1 16 e 3X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaamyzamaaCaaaleqabaGaamiwaaaakiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaGaamiwaiaadwgadaahaaWcbeqaaiaadIfaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaaIXaGaaGOnaaaacaWGLbWaaWbaaSqabeaacaWGybaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGymaiaaiAdaaaGaamyzamaaCaaaleqabaGaeyOeI0IaaG4maiaadIfaaaaaaa@4C95@   Berechnung anzeigen 

       i

      f e X (x) = 1 4 0 x ( e xX e 3(xX) ) e X = 1 4 ( e x 0 x 1 e 3x 0 x e 4X ) = 1 4 (x e x e 3x 1 4 ( e 4x 1)) = 1 4 x e x 1 16 e x + 1 16 e 3x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaamyzamaaCaaaleqabaGaamiwaaaakiaacIcacaWG4bGaaiykaaqaaiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaWaa8qCaeaacaGGOaGaamyzamaaCaaaleqabaGaamiEaiabgkHiTiaadIfaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaaIZaGaaiikaiaadIhacqGHsislcaWGybGaaiykaaaakiaacMcacaWGLbWaaWbaaSqabeaacaWGybaaaaqaaiaaicdaaeaacaWG4baaniabgUIiYdaakeaaaeaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI0aaaaiaacIcacaWGLbWaaWbaaSqabeaacaWG4baaaOWaa8qCaeaacaaIXaaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeyOeI0IaamyzamaaCaaaleqabaGaeyOeI0IaaG4maiaadIhaaaGcdaWdXbqaaiaadwgadaahaaWcbeqaaiaaisdacaWGybaaaaqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaGGPaaabaaabaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGinaaaacaGGOaGaamiEaiaadwgadaahaaWcbeqaaiaadIhaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaaIZaGaamiEaaaakmaalaaabaGaaGymaaqaaiaaisdaaaGaaiikaiaadwgadaahaaWcbeqaaiaaisdacaWG4baaaOGaeyOeI0IaaGymaiaacMcacaGGPaaabaaabaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGinaaaacaWG4bGaamyzamaaCaaaleqabaGaamiEaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaaigdacaaI2aaaaiaadwgadaahaaWcbeqaaiaadIhaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaGaaGOnaaaacaWGLbWaaWbaaSqabeaacqGHsislcaaIZaGaamiEaaaaaaaaaa@8ECA@

    3. f= f e X + 5 4 e X + 3 4 e 3X nach [8.12.16] = 1 4 X e X + 19 16 e X + 13 16 e 3X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaadwgadaahaaWcbeqaaiaadIfaaaGccqGHRaWkdaagaaqaamaalaaabaGaaGynaaqaaiaaisdaaaGaamyzamaaCaaaleqabaGaamiwaaaakiabgUcaRmaalaaabaGaaG4maaqaaiaaisdaaaGaamyzamaaCaaaleqabaGaeyOeI0IaaG4maiaadIfaaaaabaGaae4zaiaabwgacaqGTbGaaei5aiaab+nacaqGGaGaai4waiaaiIdacaGGUaGaaGymaiaaikdacaGGUaGaaGymaiaaiAdacaGGDbaakiaawIJ=aiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaGaamiwaiaadwgadaahaaWcbeqaaiaadIfaaaGccqGHRaWkdaWcaaqaaiaaigdacaaI5aaabaGaaGymaiaaiAdaaaGaamyzamaaCaaaleqabaGaamiwaaaakiabgUcaRmaalaaabaGaaGymaiaaiodaaeaacaaIXaGaaGOnaaaacaWGLbWaaWbaaSqabeaacqGHsislcaaIZaGaamiwaaaaaaa@696E@

  • f ′′ +16f=cos(4X)f(0)= 1 2 f (0)=2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaaGymaiaaiAdacaWGMbGaeyypa0Jaci4yaiaac+gacaGGZbGaaiikaiaaisdacaWGybGaaiykaiaaywW7cqGHNis2caaMf8UaamOzaiaacIcacaaIWaGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaGzbVlabgEIizlaaywW7ceWGMbGbauaacaGGOaGaaGimaiaacMcacqGH9aqpcqGHsislcaaIYaaaaa@55DB@

    X 2 +16 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaI2aaaaa@3A19@ hat keine reelle Nullstelle, so dass wir auf die Daten u=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabg2da9iaaicdaaaa@38A6@ und v=4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9iaaisdaaaa@38AB@ zurückgreifen müssen. Wir errechnen die Lösung f wieder in drei Schritten:

    1. f = 1 4 sin(4X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGinaaaaciGGZbGaaiyAaiaac6gacaGGOaGaaGinaiaadIfacaGGPaaaaa@40A2@

    2. f cos(4X)= 1 32 sin(4X)4X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaci4yaiaac+gacaGGZbGaaiikaiaaisdacaWGybGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaiodacaaIYaaaaiGacohacaGGPbGaaiOBaiaacIcacaaI0aGaamiwaiaacMcacqGHflY1caaI0aGaamiwaaaa@4BF8@   Berechnung anzeigen 

       i

      Wir benötigen das Additionstheorem für die Sinusfunktion:

      sin(xy)=sinxcosycosxsiny MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiikaiaadIhacqGHsislcaWG5bGaaiykaiabg2da9iGacohacaGGPbGaaiOBaiaadIhacqGHflY1ciGGJbGaai4BaiaacohacaWG5bGaeyOeI0Iaci4yaiaac+gacaGGZbGaamiEaiabgwSixlGacohacaGGPbGaaiOBaiaadMhaaaa@52D8@

      und die Stammfunktionen 1 2 (sincos+X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaci4CaiaacMgacaGGUbGaeyyXICTaci4yaiaac+gacaGGZbGaey4kaSIaamiwaiaacMcaaaa@4280@ zu cos 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaaaa@39A8@ (siehe [8.3]) bzw. 1 2 sin 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaaaaa@3B34@ zu sincos MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaeyyXICTaci4yaiaac+gacaGGZbaaaa@3DE1@ (Typ f f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgwSixlqadAgagaqbaaaa@3A18@ !). Damit errechnen wir:

      f cos(4X)(x) = 1 4 0 x sin(4x4X)cos(4X) = 1 4 0 x (sin(4x)cos(4X)cos(4x)sin(4X))cos(4X) = sin(4x) 4 0 x cos 2 (4X) cos(4x) 4 0 x sin(4X)cos(4X) = sin(4x) 4 1 8 (sin(4X)cos(4X)+4X) | 0 x cos(4x) 4 1 8 sin 2 (4X) | 0 x = 1 32 sin(4x)(sin(4x)cos(4x)+4xcos(4x)sin(4x)) = 1 32 sin(4x)4x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaaaabaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaci4yaiaac+gacaGGZbGaaiikaiaaisdacaWGybGaaiykaiaacIcacaWG4bGaaiykaaqaaiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaWaa8qCaeaaciGGZbGaaiyAaiaac6gacaGGOaGaaGinaiaadIhacqGHsislcaaI0aGaamiwaiaacMcacqGHflY1ciGGJbGaai4BaiaacohacaGGOaGaaGinaiaadIfacaGGPaaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aaGcbaaabaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGinaaaadaWdXbqaaiaacIcaciGGZbGaaiyAaiaac6gacaGGOaGaaGinaiaadIhacaGGPaGaeyyXICTaci4yaiaac+gacaGGZbGaaiikaiaaisdacaWGybGaaiykaiabgkHiTiGacogacaGGVbGaai4CaiaacIcacaaI0aGaamiEaiaacMcacqGHflY1ciGGZbGaaiyAaiaac6gacaGGOaGaaGinaiaadIfacaGGPaGaaiykaiabgwSixlGacogacaGGVbGaai4CaiaacIcacaaI0aGaamiwaiaacMcaaSqaaiaaicdaaeaacaWG4baaniabgUIiYdaakeaaaeaacqGH9aqpdaWcaaqaaiGacohacaGGPbGaaiOBaiaacIcacaaI0aGaamiEaiaacMcaaeaacaaI0aaaamaapehabaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaaisdacaWGybGaaiykaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabgkHiTmaalaaabaGaci4yaiaac+gacaGGZbGaaiikaiaaisdacaWG4bGaaiykaaqaaiaaisdaaaWaa8qCaeaaciGGZbGaaiyAaiaac6gacaGGOaGaaGinaiaadIfacaGGPaGaeyyXICTaci4yaiaac+gacaGGZbGaaiikaiaaisdacaWGybGaaiykaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipaaOqaaaqaaiabg2da9maalaaabaGaci4CaiaacMgacaGGUbGaaiikaiaaisdacaWG4bGaaiykaaqaaiaaisdaaaGaeyyXIC9aaSaaaeaacaaIXaaabaGaaGioaaaacaGGOaGaci4CaiaacMgacaGGUbGaaiikaiaaisdacaWGybGaaiykaiabgwSixlGacogacaGGVbGaai4CaiaacIcacaaI0aGaamiwaiaacMcacqGHRaWkcaaI0aGaamiwaiaacMcacaGG8bWaa0baaSqaaiaaicdaaeaacaWG4baaaOGaeyOeI0YaaSaaaeaaciGGJbGaai4BaiaacohacaGGOaGaaGinaiaadIhacaGGPaaabaGaaGinaaaacqGHflY1daWcaaqaaiaaigdaaeaacaaI4aaaaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaacIcacaaI0aGaamiwaiaacMcacaGG8bWaa0baaSqaaiaaicdaaeaacaWG4baaaaGcbaaabaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4maiaaikdaaaGaci4CaiaacMgacaGGUbGaaiikaiaaisdacaWG4bGaaiykaiaacIcaciGGZbGaaiyAaiaac6gacaGGOaGaaGinaiaadIhacaGGPaGaeyyXICTaci4yaiaac+gacaGGZbGaaiikaiaaisdacaWG4bGaaiykaiabgUcaRiaaisdacaWG4bGaeyOeI0Iaci4yaiaac+gacaGGZbGaaiikaiaaisdacaWG4bGaaiykaiabgwSixlGacohacaGGPbGaaiOBaiaacIcacaaI0aGaamiEaiaacMcacaGGPaaabaaabaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4maiaaikdaaaGaci4CaiaacMgacaGGUbGaaiikaiaaisdacaWG4bGaaiykaiabgwSixlaaisdacaWG4baaaaaa@1EEF@

    3. f= f cos(4X) 1 2 sin(4X)+ 1 2 cos(4X) gemäß [8.12.18] = 1 2 (sin(4X)( 1 4 X1)+cos(4X)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiGacogacaGGVbGaai4CaiaacIcacaaI0aGaamiwaiaacMcadaagaaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaci4CaiaacMgacaGGUbGaaiikaiaaisdacaWGybGaaiykaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaci4yaiaac+gacaGGZbGaaiikaiaaisdacaWGybGaaiykaaWcbaGaae4zaiaabwgacaqGTbGaaei5aiaab+nacaGGBbGaaGioaiaac6cacaaIXaGaaGOmaiaac6cacaaIXaGaaGioaiaac2faaOGaayjo+dGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaci4CaiaacMgacaGGUbGaaiikaiaaisdacaWGybGaaiykaiabgwSixlaacIcadaWcaaqaaiaaigdaaeaacaaI0aaaaiaadIfacqGHsislcaaIXaGaaiykaiabgUcaRiGacogacaGGVbGaai4CaiaacIcacaaI0aGaamiwaiaacMcacaGGPaaaaa@77CF@

  • f ′′ +2 f +f=Xf(4)=2 f (4)=3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaaGOmaiqadAgagaqbaiabgUcaRiaadAgacqGH9aqpcaWGybGaaGzbVlabgEIizlaaywW7caWGMbGaaiikaiaaisdacaGGPaGaeyypa0JaeyOeI0IaaGOmaiaaywW7cqGHNis2caaMf8UabmOzayaafaGaaiikaiaaisdacaGGPaGaeyypa0JaaG4maaaa@5149@

    Da die Anfangsbedingung für die Stelle 4 formuliert ist, lösen wir zunächst die Gleichung

    f ′′ +2 f +f=X(X+4)=X+4f(0)=2 f (0)=3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaaGOmaiqadAgagaqbaiabgUcaRiaadAgacqGH9aqpcaWGybGaeSigI8MaaiikaiaadIfacqGHRaWkcaaI0aGaaiykaiabg2da9iaadIfacqGHRaWkcaaI0aGaaGzbVlabgEIizlaaywW7caWGMbGaaiikaiaaicdacaGGPaGaeyypa0JaeyOeI0IaaGOmaiaaywW7cqGHNis2caaMf8UabmOzayaafaGaaiikaiaaicdacaGGPaGaeyypa0JaaG4maaaa@59D4@

    Dazu berechnen wir wieder der Reihe nach (−1 ist doppelte Nullstelle von X 2 +2X+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWGybGaey4kaSIaaGymaaaa@3BD4@ ):

    1. f =X e X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaeyypa0JaamiwaiaadwgadaahaaWcbeqaaiabgkHiTiaadIfaaaaaaa@3D0B@

    2. f (X+4)=(2+3X) e X +X+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaaiikaiaadIfacqGHRaWkcaaI0aGaaiykaiabg2da9iabgkHiTiaacIcacaaIYaGaey4kaSIaaG4maiaadIfacaGGPaGaamyzamaaCaaaleqabaGaeyOeI0IaamiwaaaakiabgUcaRiaadIfacqGHRaWkcaaIYaaaaa@49D8@   Berechnung anzeigen 

       i

      Wir integrieren zweimal partiell:

      f (X+4)(x) = 0 x (xX) e (xX) (X+4) = e x 0 x ( X 2 +(x4)X+4x) e X = e x (( X 2 +(x4)X+4x) e X | 0 x + 0 x (2Xx+4) e X ) = e x (4x+(2Xx+4) e X | 0 x 2 0 x e X ) = e x (4x+(x+4) e x +x42 e x +2) = e x (23x)+(x+2) e x ) =(2+3x) e x +x+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabCGaaaaabaGaamOzamaaBaaaleaacqWIyiYBaeqaaOGaey4fIOIaaiikaiaadIfacqGHRaWkcaaI0aGaaiykaiaacIcacaWG4bGaaiykaaqaaiabg2da9maapehabaGaaiikaiaadIhacqGHsislcaWGybGaaiykaiaadwgadaahaaWcbeqaaiabgkHiTiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcaaaGccqGHflY1caGGOaGaamiwaiabgUcaRiaaisdacaGGPaaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aaGcbaaabaGaeyypa0JaamyzamaaCaaaleqabaGaeyOeI0IaamiEaaaakmaapehabaGaaiikaiabgkHiTiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaGaamiEaiabgkHiTiaaisdacaGGPaGaamiwaiabgUcaRiaaisdacaWG4bGaaiykaiaadwgadaahaaWcbeqaaiaadIfaaaaabaGaaGimaaqaaiaadIhaa0Gaey4kIipaaOqaaaqaaiabg2da9iaadwgadaahaaWcbeqaaiabgkHiTiaadIhaaaGccaGGOaGaaiikaiabgkHiTiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaGaamiEaiabgkHiTiaaisdacaGGPaGaamiwaiabgUcaRiaaisdacaWG4bGaaiykaiaadwgadaahaaWcbeqaaiaadIfaaaGccaGG8bWaa0baaSqaaiaaicdaaeaacaWG4baaaOGaey4kaSYaa8qCaeaacaGGOaGaaGOmaiaadIfacqGHsislcaWG4bGaey4kaSIaaGinaiaacMcacaWGLbWaaWbaaSqabeaacaWGybaaaaqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaGGPaaabaaabaGaeyypa0JaamyzamaaCaaaleqabaGaeyOeI0IaamiEaaaakiaacIcacqGHsislcaaI0aGaamiEaiabgUcaRiaacIcacaaIYaGaamiwaiabgkHiTiaadIhacqGHRaWkcaaI0aGaaiykaiaadwgadaahaaWcbeqaaiaadIfaaaGccaGG8bWaa0baaSqaaiaaicdaaeaacaWG4baaaOGaeyOeI0IaaGOmamaapehabaGaamyzamaaCaaaleqabaGaamiwaaaaaeaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaaiykaaqaaaqaaiabg2da9iaadwgadaahaaWcbeqaaiabgkHiTiaadIhaaaGccaGGOaGaeyOeI0IaaGinaiaadIhacqGHRaWkcaGGOaGaamiEaiabgUcaRiaaisdacaGGPaGaamyzamaaCaaaleqabaGaamiEaaaakiabgUcaRiaadIhacqGHsislcaaI0aGaeyOeI0IaaGOmaiaadwgadaahaaWcbeqaaiaadIhaaaGccqGHRaWkcaaIYaGaaiykaaqaaaqaaiabg2da9iaadwgadaahaaWcbeqaaiabgkHiTiaadIhaaaGccaGGOaGaeyOeI0IaaGOmaiabgkHiTiaaiodacaWG4bGaaiykaiabgUcaRiaacIcacaWG4bGaey4kaSIaaGOmaiaacMcacaWGLbWaaWbaaSqabeaacaWG4baaaOGaaiykaaqaaaqaaiabg2da9iabgkHiTiaacIcacaaIYaGaey4kaSIaaG4maiaadIhacaGGPaGaamyzamaaCaaaleqabaGaeyOeI0IaamiEaaaakiabgUcaRiaadIhacqGHRaWkcaaIYaaaaaaa@E285@

    3. f= f (X+4) 2 e X +X e X siehe [8.12.17] =(4+2X) e X +X+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadAgadaWgaaWcbaGaeSigI8gabeaakiabgEHiQiaacIcacaWGybGaey4kaSIaaGinaiaacMcadaagaaqaaiabgkHiTiaaikdacaWGLbWaaWbaaSqabeaacqGHsislcaWGybaaaOGaey4kaSIaamiwaiaadwgadaahaaWcbeqaaiabgkHiTiaadIfaaaaabaGaae4CaiaabMgacaqGLbGaaeiAaiaabwgacaGGBbGaaGioaiaac6cacaaIXaGaaGOmaiaac6cacaaIXaGaaG4naiaac2faaOGaayjo+dGaeyypa0JaeyOeI0IaaiikaiaaisdacqGHRaWkcaaIYaGaamiwaiaacMcacaWGLbWaaWbaaSqabeaacqGHsislcaWGybaaaOGaey4kaSIaamiwaiabgUcaRiaaikdaaaa@6269@

    Schließlich erhält mit f(X4)=(42X) e X+4 +X2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaacIcacaWGybGaeyOeI0IaaGinaiaacMcacqGH9aqpcaGGOaGaaGinaiabgkHiTiaaikdacaWGybGaaiykaiaadwgadaahaaWcbeqaaiabgkHiTiaadIfacqGHRaWkcaaI0aaaaOGaey4kaSIaamiwaiabgkHiTiaaikdaaaa@4988@ die gesuchte Lösung.

Analog zum Regularitätsverhalten der Gleichungen 1. Ordnung, erweisen sich die Lösungen f unserer Gleichungen jetzt um zwei Differenzierbarkeitsklassen besser als die rechte Seite g.

Bemerkung:  Ist f eine Lösung der Gleichung f ′′ +p f +qf=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0Jaam4zaaaa@3E6E@ , so gilt für jedes n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ :

  1. g D n ()f D n+2 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaeSyhHeQaaiykaiaaywW7cqGHshI3caaMf8UaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gacqGHRaWkcaaIYaaaaOGaaiikaiabl2riHkaacMcaaaa@4B57@
[8.12.19]
  1. g C n ()f C n+2 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolaadoeadaahaaWcbeqaaiaad6gaaaGccaGGOaGaeSyhHeQaaiykaiaaywW7cqGHshI3caaMf8UaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gacqGHRaWkcaaIYaaaaOGaaiikaiabl2riHkaacMcaaaa@4B55@
[8.12.20]
  1. g C ()f C () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolaadoeadaahaaWcbeqaaiabg6HiLcaakiaacIcacqWIDesOcaGGPaGaaGzbVlabgkDiElaaywW7caWGMbGaeyicI4Saam4qamaaCaaaleqabaGaeyOhIukaaOGaaiikaiabl2riHkaacMcaaaa@4AB3@
[8.12.21]

Beweis:  3. ist eine direkte Folgerung aus 1. Die Aussagen 1. und 2. beweisen wir simultan per Induktion und beachten dabei die Gleichung

f ′′ =gp f qf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaeyypa0Jaam4zaiabgkHiTiaadchaceWGMbGbauaacqGHsislcaWGXbGaamOzaaaa@3E84@ [+]
  • " n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@389D@ ":  Als Lösung der Gleichung f ′′ +p f +qf=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaey4kaSIaamiCaiqadAgagaqbaiabgUcaRiaadghacaWGMbGaeyypa0Jaam4zaaaa@3E6E@ ist f zweimal differenzierbar. Ist nun g eine D 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGymaaaaaaa@379A@ -Funktion, so trifft dies nach [+] auch auf f ′′ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaaaaa@36EB@ zu. f ist damit eine D 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaG4maaaaaaa@379C@ -Funktion mit

    f ′′′ = g p f ′′ q f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafyaafaGaeyypa0Jabm4zayaafaGaeyOeI0IaamiCaiqadAgagaqbgaqbaiabgkHiTiaadghaceWGMbGbauaaaaa@3EB2@ ,

    also auch eine C 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaG4maaaaaaa@379B@ -Funktion falls g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafaaaaa@36E1@ stetig ist.

  • " n      n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaysW7cqGHshI3caaMe8UaamOBaiabgUcaRiaaigdaaaa@3EE3@ ": Sei jetzt g eine D n+1 / C n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGGVaGaam4qamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@3DB1@ -Funktion, also erst recht eine D n / C n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaakiaac+cacaWGdbWaaWbaaSqabeaacaWGUbaaaaaa@3A77@ -Funktion. Nach Induktionsvoraussetzung ist f dann (n+2) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad6gacqGHRaWkcaaIYaGaaiykaaaa@39D3@ -mal (stetig) differenzierbar, wobei nach [+]

    f (n+2) = g (n) p f (n+1) q f (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIYaGaaiykaaaakiabg2da9iaadEgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiabgkHiTiaadchacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyOeI0IaamyCaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaa@4B9E@ .

    Da g (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaa@394E@ eine D 1 / C 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGymaaaakiaac+cacaWGdbWaaWbaaSqabeaacaaIXaaaaaaa@3A07@ -Funktion ist, folgt somit: f ist (n+3) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad6gacqGHRaWkcaaIZaGaaiykaaaa@39D4@ -mal (stetig) differenzierbar.


8.11. 8.13.