7.8. Mehrfach differenzierbare Funktionen


Auf den ersten Blick scheint sich der Übergang vom lokalen zum globalen Aspekt der Differenzierbarkeit nur in einer kompakteren Schreibweise niederzuschlagen. Wenn man aber bedenkt, dass man eine Ableitungsfunktion - im Gegensatz zu einer Ableitungszahl - erneut auf Differenzierbarkeit überprüfen, also möglicherweise der Reihe nach die Funktionen  f , f , f , MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiilaiaaykW7ceWGMbGbauGbauaacaGGSaGaaGPaVlqadAgagaqbgaqbgaqbaiaacYcacaaMc8UaeSOjGSeaaa@40C5@ erzeugen kann, so wird deutlich, dass mit der neuen Sichtweise auch eine neue Plattform gewonnen wurde.

Die mehrfache Differenzierbarkeit begrifflich exakt zu fassen, ist technisch etwas aufwändig und nur rekursiv möglich.

Definition:  Es sei AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyybIySaeyiyIKRaamyqaiabgkOimlaadkeaaaa@3CB5@ und n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ . Eine Funktion  f:B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGcbGaeyOKH4QaeSyhHekaaa@3BB9@ heißt

  1. 1-mal differenzierbar auf A falls  f auf A differenzierbar ist. Die Funktion  f (1) f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaaigdacaGGPaaaaOGaeyypa0JabmOzayaafaaaaa@3B1F@ nennen wir die 1. Ableitung von  f.

  2. (n + 1)-mal differenzierbar auf A falls  f  n-mal und die n-te Ableitung f (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaa@3950@ 1-mal differenzierbar auf A ist. Die Funktion  f (n+1) ( f (n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaacIcacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGcceGGPaGbauaaaaa@40D0@ nennen wir die (n + 1)-te Ableitung von  f.

[7.8.1]

  f (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaa@3950@ lesen wir als "f n" oder als "f oben n" und sprechen gelegentlich von  f (0) f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaaicdacaGGPaaaaOGaeyypa0JaamOzaaaa@3B12@ als 0-ter Ableitung. Meist benutzen wir für kleine n die Schreibweise  f f (2) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafaGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaaikdacaGGPaaaaaaa@3B21@ ,   f f (3) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafyaafyaafaGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaaiodacaGGPaaaaaaa@3B2D@ usw.

D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaaaa@39FE@ bezeichne die Menge aller n-mal differenzierbaren Funktionen, kurz: D n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaaaaa@37D5@ -Funktionen, auf A.

Eine Funktion f D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcaaaa@3C6D@ heißt n-mal stetig differenzierbar auf A, bzw. eine C n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaaaaa@37D4@ -Funktion, falls die n-te Ableitung  f (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaa@3950@ stetig ist. Die Menge der C n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaaaaa@37D4@ -Funktionen bezeichnen wir mit dem Symbol C n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaaaa@39FD@ .

Die C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -Funktionen, also die Funktionen aus

C (A) n C n (A) = n D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaOGaaiikaiaadgeacaGGPaGaeyypa0ZaaqbuaeaacaWGdbWaaWbaaSqabeaacaWGUbaaaOGaaiikaiaadgeacaGGPaaaleaacaWGUbGaeyicI4SaeSyfHu6aaWbaaWqabeaacqGHxiIkaaaaleqaniablMIijbGccqGH9aqpdaafqbqaaiaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcaaSqaaiaad6gacqGHiiIZcqWIvesPdaahaaadbeqaaiabgEHiQaaaaSqab0GaeSykIKeaaaa@521A@ ,

liegen in jedem D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaaaa@39FE@ . Sie sind daher beliebig oft differenzierbar.

Beachte:

  • Noch einmal zur Physik und ihrer speziellen Schreibweise (vgl. [7.3]): Bei mehrfach differenzierbaren Funktionen der Form ts(t) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiablAAiHjaadohacaGGOaGaamiDaiaacMcaaaa@3BE5@ benutzt man für die Ableitungen natürlich ebenfalls die Punktnotation s ˙ , s ¨ , s , MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4CayaacaGaaiilaiqadohagaWaaiaacYcaceWGZbGbaqaacaGGSaGaeSOjGSeaaa@3C21@ , wobei die zweite Ableitung in der Regel durch das Symbol a

     i

    Der Buchstabe a stammt von acceleratio dem lateinischen Wort für Beschleunigung (engl. acceleration).

    ersetzt wird, a(t)= s ¨ (t) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacIcacaWG0bGaaiykaiabg2da9iqadohagaWaaiaacIcacaWG0bGaaiykaaaa@3D7B@ , und als Beschleunigung zum Zeitpunkt t aufgefasst wird.


     

Der rekursive Charakter macht es oft mühselig, die höhere Differenzierbarkeit einer Funktion nachzuweisen. Die 4-malige Differenzierbarkeit etwa, folgt ja erst aus der 3-maligen, die wiederum die 2-malige voraussetzt usw. Wir zeigen dies am Beispiel der Kubikfunktion X 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaG4maaaaaaa@37B3@ .

Da X n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOBaaaaaaa@37E9@ differenzierbar ist ([7.3.3]), erhalten wir mit der Faktorregel [7.7.10] die folgenden Ergebnisse:

X 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaG4maaaaaaa@37B3@   ist 1-mal differenzierbar und ( X 3 ) =3 X 2 D 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaiodaaaGcceGGPaGbauaacqGH9aqpcaaIZaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaeSyhHeQaaiykaaaa@42BD@
X 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaGzbVlaadIfadaahaaWcbeqaaiaaiodaaaaaaa@3B9E@   ist 2-mal differenzierbar und ( X 3 ) =(3 X 2 ) =6X D 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaiodaaaGcceGGPaGbauGbauaacqGH9aqpcaGGOaGaaG4maiaadIfadaahaaWcbeqaaiaaikdaaaGcceGGPaGbauaacqGH9aqpcaaI2aGaamiwaiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaeSyhHeQaaiykaaaa@46D0@
X 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaGzbVlaadIfadaahaaWcbeqaaiaaiodaaaaaaa@3B9E@   ist 3-mal differenzierbar und ( X 3 ) =(6X ) =6 D 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaiodaaaGcceGGPaGbauGbauGbauaacqGH9aqpcaGGOaGaaGOnaiaadIfaceGGPaGbauaacqGH9aqpcaaI2aGaeyicI4SaamiramaaCaaaleqabaGaaGymaaaakiaacIcacqWIDesOcaGGPaaaaa@450E@
X 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaGzbVlaadIfadaahaaWcbeqaaiaaiodaaaaaaa@3B9E@   ist 4-mal differenzierbar und ( X 3 ) (4) =6 =0 D 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaaiodaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaaGinaiaacMcaaaGccqGH9aqpceaI2aGbauaacqGH9aqpcaaIWaGaeyicI4SaamiramaaCaaaleqabaGaaGymaaaakiaacIcacqWIDesOcaGGPaaaaa@44FE@

Die letzte Information macht deutlich, dass X 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaG4maaaaaaa@37B3@ sogar eine C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -Funktion ist, deren Ableitungen ab der 4. Ordnung konstant 0 sind.

Um eine vorliegende Funktion  f als z.B. 10-mal differenzierbar zu erkennen, hat man gemäß [7.8.1] zu zeigen, dass  f (9) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaaiMdacaGGPaaaaaaa@3920@ noch einmal differenzierbar ist. Vielleicht aber ist ist es bei dieser Funktion leichter, die 9-malige Differenzierbarkeit von  f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E3@ nachzurechnen, oder auch die 3-malige von  f (7) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaaiEdacaGGPaaaaaaa@391E@ . Interessanterweise führen alle diese Varianten zum gleichen Ergebnis.

Bemerkung:  Sei n,k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacYcacaWGRbGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGHxiIkaaaaaa@3C8B@ . Für 1k<n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadUgacqGH8aapcaWGUbaaaa@3B43@ gilt:

f D n (A)f D k (A)       f (k) D nk (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcacaaMf8Uaeyi1HSTaaGzbVlaadAgacqGHiiIZcaWGebWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaadgeacaGGPaGaaGjbVlabgEIizlaaysW7caWGMbWaaWbaaSqabeaacaGGOaGaam4AaiaacMcaaaGccqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaakiaacIcacaWGbbGaaiykaaaa@5809@
[7.8.2]

Ist  f  n-mal differenzierbar auf A, so ist  f (n) = ( f (k) ) (nk) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaaiikaiaadAgadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakiaacMcadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0Iaam4AaiaacMcaaaaaaa@437A@ .

Beweis per Induktion über n:

  1. Für n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ ist wegen der Bedingung k<n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgYda8iaad6gaaaa@38D3@ nichts zu zeigen.

  2. Sei nun die Äquivalenz [7.8.2] und die dort notierte Ableitungsformel bereits gültig. Wir müssen jetzt für 1k<n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadUgacqGH8aapcaWGUbGaey4kaSIaaGymaaaa@3CE0@ zeigen:

    f D n+1 (A)f D k (A)       f (k) D n+1k (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiaadgeacaGGPaGaaGzbVlabgsDiBlaaywW7caWGMbGaeyicI4SaamiramaaCaaaleqabaGaam4AaaaakiaacIcacaWGbbGaaiykaiaaysW7cqGHNis2caaMe8UaamOzamaaCaaaleqabaGaaiikaiaadUgacaGGPaaaaOGaeyicI4SaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaigdacqGHsislcaWGRbaaaOGaaiikaiaadgeacaGGPaaaaa@5B43@

    sowie  f (n+1) = ( f (k) ) (n+1k) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaacIcacaWGMbWaaWbaaSqabeaacaGGOaGaam4AaiaacMcaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacqGHsislcaWGRbGaaiykaaaaaaa@46B4@ . Für k=n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaad6gaaaa@38D5@ ist dies direkt durch die Definition [7.8.1] gegeben, so dass wir im weiteren k<n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgYda8iaad6gaaaa@38D3@ annehmen dürfen.

    " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3849@ "  Sei  f D n+1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiaadgeacaGGPaaaaa@3E0A@ , d.h.  f D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcaaaa@3C6D@ f (n) D 1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyicI4SaamiramaaCaaaleqabaGaaGymaaaakiaacIcacaWGbbGaaiykaaaa@3EB8@ mit  f (n+1) =( f (n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaacIcacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGcceGGPaGbauaaaaa@40D0@ .
    Nach Induktionsvoraussetzung ist  f D k (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaadUgaaaGccaGGOaGaamyqaiaacMcaaaa@3C6A@ und  f (k) D nk (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaadUgacaGGPaaaaOGaeyicI4SaamiramaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaGccaGGOaGaamyqaiaacMcaaaa@40CA@ mit

    ( f (k) ) (nk) = f (n) D 1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakiaacMcadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0Iaam4AaiaacMcaaaGccqGH9aqpcaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGHiiIZcaWGebWaaWbaaSqabeaacaaIXaaaaOGaaiikaiaadgeacaGGPaaaaa@48E2@ .

    Damit weiß man:  f (k) D nk+1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaadUgacaGGPaaaaOGaeyicI4SaamiramaaCaaaleqabaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaaaaOGaaiikaiaadgeacaGGPaaaaa@4267@ und  ( f (k) ) (nk+1) =( f (n) ) = f (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakiaacMcadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0Iaam4AaiabgUcaRiaaigdacaGGPaaaaOGaeyypa0JaaiikaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiqacMcagaqbaiabg2da9iaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaa@4C8D@ .

    " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3845@ "  Sei jetzt  f D k (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaadUgaaaGccaGGOaGaamyqaiaacMcaaaa@3C6A@ , so dass  f (k) D n+1k (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaadUgacaGGPaaaaOGaeyicI4SaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaigdacqGHsislcaWGRbaaaOGaaiikaiaadgeacaGGPaaaaa@4267@ .
    Nach Definition [7.8.1] bedeutet dies: f (k) D nk (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaadUgacaGGPaaaaOGaeyicI4SaamiramaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaGccaGGOaGaamyqaiaacMcaaaa@40CA@ und  ( f (k) ) (nk) D 1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakiaacMcadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0Iaam4AaiaacMcaaaGccqGHiiIZcaWGebWaaWbaaSqabeaacaaIXaaaaOGaaiikaiaadgeacaGGPaaaaa@446E@ . Gemäß Induktionsvoraussetzung ist damit  f D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcaaaa@3C6D@ und  f (n) = ( f (k) ) (nk) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaaiikaiaadAgadaahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakiaacMcadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0Iaam4AaiaacMcaaaaaaa@437A@ , also:  f (n) D 1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyicI4SaamiramaaCaaaleqabaGaaGymaaaakiaacIcacaWGbbGaaiykaaaa@3EB8@ . Dies sichert  f D n+1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiaadgeacaGGPaaaaa@3E0A@ .

[7.8.2] benutzt man meist im Spezialfall k=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaigdaaaa@389D@ :

f D n (A)f D 1 (A)       f D n1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcacaaMf8Uaeyi1HSTaaGzbVlaadAgacqGHiiIZcaWGebWaaWbaaSqabeaacaaIXaaaaOGaaiikaiaadgeacaGGPaGaaGjbVlabgEIizlaaysW7ceWGMbGbauaacqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiaacIcacaWGbbGaaiykaaaa@552B@

[7.8.3]

wobei im Ableitungsfall die Berechnung  f (n) = ( f ) (n1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaaiikaiqadAgagaqbaiaacMcadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcaaaaaaa@40D1@ zulässig ist.
 

Zwischen den einzelnen Differenzierbarkeitsklassen bestehen offensichtliche Teilmengenbeziehungen. So folgt etwa für 1k<n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadUgacqGH8aapcaWGUbaaaa@3B43@ unmittelbar aus [7.8.2]:

  1. D n (A) D k (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaiabgkOimlaadseadaahaaWcbeqaaiaadUgaaaGccaGGOaGaamyqaiaacMcaaaa@4009@

[7.8.4]
  1. C n (A) C k (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaiabgkOimlaadoeadaahaaWcbeqaaiaadUgaaaGccaGGOaGaamyqaiaacMcaaaa@4007@

[7.8.5]

Und trivialerweise gilt:

  1. C (A) C n (A) D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaOGaaiikaiaadgeacaGGPaGaeyOGIWSaam4qamaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaiabgkOimlaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcaaaa@4696@

[7.8.6]

Die folgende Bemerkung zeigt, dass es sich in allen Fällen um echte Teilmengen handelt.

Bemerkung:  Für n,k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacYcacaWGRbGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGHxiIkaaaaaa@3C8B@ , 1k<n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadUgacqGH8aapcaWGUbaaaa@3B43@ gilt:

  1. D n (A) D k (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaiabgcMi5kaadseadaahaaWcbeqaaiaadUgaaaGccaGGOaGaamyqaiaacMcaaaa@3FD4@

[7.8.7]
  1. C n (A) C k (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaiabgcMi5kaadoeadaahaaWcbeqaaiaadUgaaaGccaGGOaGaamyqaiaacMcaaaa@3FD2@

[7.8.8]
  1. C (A) C n (A) D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaOGaaiikaiaadgeacaGGPaGaeyiyIKRaam4qamaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaiabgcMi5kaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcaaaa@462C@

[7.8.9]

Beweis:  Wir betrachten o.E. nur den Fall A= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iabl2riHcaa@3928@ . Alle im folgenden konstruierten Funktionen arbeiten mit 0 als kritischer Stelle. Durch eine geeignete Verschiebung läßt sich solch eine kritische Stelle in einer beliebigen Menge A etablieren, so dass auch die allgemeine Situation erfasst werden kann.

Ferner beachte man, dass die in 2. konstruierte Funktion auch ein Gegenbeispiel zu 1. ist.

2.  Zunächst betrachten wir für n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ die Funktion

f n X n |X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaakiabg2da9iaadIfadaahaaWcbeqaaiaad6gaaaGccqGHflY1caGG8bGaamiwaiaacYhaaaa@4034@

Nach Produktregel ([7.6.3], siehe auch [7.4.3] zur Ableitung der Betragsfunktion) ist  f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaaaaa@37F6@ in jedem x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@396A@ differenzierbar mit

f n (x)=n x n1 |x|+ x n |x| x =(n+1) x n1 |x| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaakiaacEcacaGGOaGaamiEaiaacMcacqGH9aqpcaWGUbGaeyyXICTaamiEamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccqGHflY1caGG8bGaamiEaiaacYhacqGHRaWkcaWG4bWaaWbaaSqabeaacaWGUbaaaOGaeyyXIC9aaSaaaeaacaGG8bGaamiEaiaacYhaaeaacaWG4baaaiabg2da9iaacIcacaWGUbGaey4kaSIaaGymaiaacMcacqGHflY1caWG4bWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgwSixlaacYhacaWG4bGaaiiFaaaa@6206@

Die Differenzierbarkeit in 0 folgt aus

lim x0 x n |x| x = lim x0 x n1 |x|=0=(n+1) 0 n1 |0| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakmaalaaabaGaamiEamaaCaaaleqabaGaamOBaaaakiabgwSixlaacYhacaWG4bGaaiiFaaqaaiaadIhaaaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakiaadIhadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaeyyXICTaaiiFaiaadIhacaGG8bGaeyypa0JaaGimaiabg2da9iaacIcacaWGUbGaey4kaSIaaGymaiaacMcacqGHflY1caaIWaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgwSixlaacYhacaaIWaGaaiiFaaaa@677A@

Also hat man:  f n C 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaakiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3E07@ und  f n =(n+1) X n1 |X| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaakiaacEcacqGH9aqpcaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaeyyXICTaamiwamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccqGHflY1caGG8bGaamiwaiaacYhaaaa@48BA@ .

Wir kommen nun zum eigentlichen Beweis. Dabei dürfen uns auf den Fall k=n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaad6gacqGHsislcaaIXaaaaa@3A7D@ beschänken und zeigen für n2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaaikdaaaa@3961@ per Induktion:  f n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaaaa@399E@ gehört zu C n1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3C4F@ , aber nicht zu D n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaakiaacIcacqWIDesOcaGGPaaaaa@3AA8@ , also auch nicht zu C n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaakiaacIcacqWIDesOcaGGPaaaaa@3AA7@ .

  • Sei n=2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaikdaaaa@38A1@ . Nach unserer Vorüberlegung ist  f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaaIXaaabeaaaaa@37BE@ eine C 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGymaaaaaaa@379C@ -Funktion, die mit f 1 =2|X| D 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaaIXaaabeaakiaacEcacqGH9aqpcaaIYaGaeyyXICTaaiiFaiaadIfacaGG8bGaeyycI8SaamiramaaCaaaleqabaGaaGymaaaakiaacIcacqWIDesOcaGGPaaaaa@4566@ keine D 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGOmaaaaaaa@379E@ -Funktion ist.

  • Nach Induktionvoraussetzung ist  f n =(n+1) f n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaakiaacEcacqGH9aqpcaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaeyyXICTaamOzamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaaaa@4396@ eine C n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaaaaa@397C@ -, aber keine D n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaaaaa@37D5@ -Funktion. Das bedeutet nach [7.8.3] f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaaaaa@37F6@ ist eine C n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaaaaa@37D4@ -Funktion, die in D n+1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3C45@ fehlt.

3.  Die Behauptung C n () D n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaakiaacIcacqWIDesOcaGGPaGaeyiyIKRaamiramaaCaaaleqabaGaamOBaaaakiaacIcacqWIDesOcaGGPaaaaa@412A@ beweisen wir per Induktion: Zu jedem n gibt es eine Funktion  f n D n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaakiabgIGiolaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaeSyhHeQaaiykaaaa@3E40@ , deren n-te Ableitung unstetig ist.

  • Die durch  f 1 (x)={ x 2 sin 1 x  , falls  x0 0 , falls  x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHflY1ciGGZbGaaiyAaiaac6gadaWcaaqaaiaaigdaaeaacaWG4baaaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWG4bGaeyiyIKRaaGimaaqaaiaaicdacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamiEaiabg2da9iaaicdaaaaacaGL7baaaaa@57FF@ gegebene Funktion  f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaaIXaaabeaaaaa@37BE@ ist nach einem Beispiel in Teil 8 differenzierbar mit unstetiger Ableitung.

  • Sei  f n D n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaakiabgIGiolaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaeSyhHeQaaiykaaaa@3E40@ mit unstetiger Ableitung  f n (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaakiaaykW7daahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaa@3C04@ . Da  f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbaabeaaaaa@37F6@ selbst stetig ist ([7.5.2]), gibt es nach [8.1.5] eine differenzierbare Funktion  f n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3993@ mit  f n+1 = f n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGNaGaeyypa0JaamOzamaaBaaaleaacaWGUbaabeaaaaa@3D58@ . Nach [7.8.3] ist dann   f n+1 D n+1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacIcacqWIDesOcaGGPaaaaa@417A@ mit unstetiger Ableitung  f n+1 (n+1) = f n (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaaMc8+aaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyypa0JaamOzamaaBaaaleaacaWGUbaabeaakiaaykW7daahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaa@4666@ .

Die Behauptung C () C n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaOGaaiikaiabl2riHkaacMcacqGHGjsUcaWGdbWaaWbaaSqabeaacaWGUbaaaOGaaiikaiabl2riHkaacMcaaaa@41A7@ folgt direkt aus [7.8.8].

Obwohl nach den bisherigen Überlegungen C (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaOGaaiikaiaadgeacaGGPaaaaa@3A7B@ die kleinste Gruppe unter den differenzierbaren Funktionen darstellt, ist sie dennoch recht umfangreich. Interessant sind dabei die Grenzfunktionen konvergenter Potenzreihen: Wie nämlich Abschnitt 7.7. zeigt, sind ihre Ableitungsfunktionen wieder Grenzfunktionen konvergenter Potenzreihen. Dies bedeutet aber mit einem induktiven Argument: Solche Grenzfunktionen sind beliebig oft differenzierbar.

Da eine analytische Funktion lokal mit der Grenzfunktion einer konvergenten Potenzreihe übereinstimmt, können wir [7.8.9] ergänzen durch:

C (A) C (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaey4fIOcaaOGaaiikaiaadgeacaGGPaGaeyOGIWSaam4qamaaCaaaleqabaGaeyOhIukaaOGaaiikaiaadgeacaGGPaaaaa@4084@ , 
[7.8.10]

wobei auch diese Inklusion echt ist, denn in 9.12. konstruierten sog. C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -Hüte sind spezielle, von 0 verschiedene C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -Funktionen, die außerhalb eines abgeschlossenen Intervalls nur den Wert 0 annehmen, also nach dem Identitätssatz [5.12.13] nicht analytisch sein können.

Für die analytischen Funktionen exp, sin und cos etwa sind die Ableitungen leicht zu berechnen:

exp (n) =exp MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacIhacaGGWbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpciGGLbGaaiiEaiaacchaaaa@3F2B@
sin (n) ={ cos ,  falls  n=4k+1 sin ,  falls  n=4k+2 cos ,  falls  n=4k+3 sin ,  falls  n=4k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaGabaqaauaabaqaeiaaaaqaaiGacogacaGGVbGaai4CaaqaaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaeyypa0JaaGinaiaadUgacqGHRaWkcaaIXaaabaGaeyOeI0Iaci4CaiaacMgacaGGUbaabaGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGH9aqpcaaI0aGaam4AaiabgUcaRiaaikdaaeaacqGHsislciGGJbGaai4BaiaacohaaeaacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaisdacaWGRbGaey4kaSIaaG4maaqaaiGacohacaGGPbGaaiOBaaqaaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaeyypa0JaaGinaiaadUgaaaaacaGL7baaaaa@75EE@
cos (n) ={ sin ,  falls  n=4k+1 cos ,  falls  n=4k+2 sin ,  falls  n=4k+3 cos ,  falls  n=4k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaGabaqaauaabaqaeiaaaaqaaiabgkHiTiGacohacaGGPbGaaiOBaaqaaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaeyypa0JaaGinaiaadUgacqGHRaWkcaaIXaaabaGaeyOeI0Iaci4yaiaac+gacaGGZbaabaGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGH9aqpcaaI0aGaam4AaiabgUcaRiaaikdaaeaaciGGZbGaaiyAaiaac6gaaeaacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaisdacaWGRbGaey4kaSIaaG4maaqaaiGacogacaGGVbGaai4CaaqaaiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaeyypa0JaaGinaiaadUgaaaaacaGL7baaaaa@75E9@

[7.8.11]

[7.8.12]

[7.8.13]

Polynome, ebenfalls analytische Funktionen, haben ein interessantes Ableitungsverhalten: Bei jeder Ableitung eines Polynoms p verringert sich der Grad um eine Einheit, so dass zwangsweise p (gradp+1) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCaaaleqabaGaaiikaiaadEgacaWGYbGaamyyaiaadsgacaaMc8UaamiCaiabgUcaRiaaigdacaGGPaaaaOGaeyypa0JaaGimaaaa@4200@ ist. Es reicht, dies für Monome zu beweisen:

Bemerkung:  Für alle n,k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacYcacaWGRbGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGHxiIkaaaaaa@3C8B@ ist

( X k ) (n) ={ k! (kn)! X kn ,  falls  nk 0,  falls  n>k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadUgaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaGabaqaauaabaqaceaaaeaadaWcaaqaaiaadUgacaGGHaaabaGaaiikaiaadUgacqGHsislcaWGUbGaaiykaiaacgcaaaGaamiwamaaCaaaleqabaGaam4AaiabgkHiTiaad6gaaaGccaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabgsMiJkaadUgaaeaacaaIWaGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGH+aGpcaWGRbaaaaGaay5Eaaaaaa@5B72@
[7.8.14]

Beweis:   Für n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ kann man [7.8.14] sofort nachrechnen:

( X k ) =k X k1 = k! (k1)! X k1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadUgaaaGcceGGPaGbauaacqGH9aqpcaWGRbGaamiwamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccqGH9aqpdaWcaaqaaiaadUgacaGGHaaabaGaaiikaiaadUgacqGHsislcaaIXaGaaiykaiaacgcaaaGaamiwamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaaaaa@49DA@ .

Für n>1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaigdaaaa@38A2@ führen wir einen Induktionsbeweis über k:

  • Der Fall k=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaigdaaaa@389D@ ist durch  X (n) = ( X ) (n1) = 1 (n1) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaaiikaiqadIfagaqbaiaacMcadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcaaaGccqGH9aqpcaaIXaWaaWbaaSqabeaacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaaaaOGaeyypa0JaaGimaaaa@486B@   bewiesen.

  • Ist jetzt die Gleichung [7.8.14] für ein festes k bereits gültig, so hat man:

    ( X k+1 ) (n) = (( X k+1 ) ) (n1) =(k+1) ( X k ) (n1) ={ (k+1) k! (k(n1))! X k(n1) ,  falls  n1k 0,  falls  n1>k ={ (k+1)! (k+1n)! X k+1n ,  falls  nk+1 0,  falls  n>k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaaiikaiaadIfadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaGcbaGaeyypa0JaaiikaiaacIcacaWGybWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiqacMcagaqbaiaacMcadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcaaaaakeaaaeaacqGH9aqpcaGGOaGaam4AaiabgUcaRiaaigdacaGGPaGaaiikaiaadIfadaahaaWcbeqaaiaadUgaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaaaaaGcbaaabaGaeyypa0ZaaiqaaeaafaqaaeGabaaabaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykamaalaaabaGaam4AaiaacgcaaeaacaGGOaGaam4AaiabgkHiTiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaGGPaGaaiyiaaaacaWGybWaaWbaaSqabeaacaWGRbGaeyOeI0Iaaiikaiaad6gacqGHsislcaaIXaGaaiykaaaakiaabYcacaqGGaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaeyOeI0IaaGymaiabgsMiJkaadUgaaeaacaaIWaGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGHsislcaaIXaGaeyOpa4Jaam4AaaaaaiaawUhaaaqaaaqaaiabg2da9maaceaabaqbaeaabiqaaaqaamaalaaabaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiaacgcaaeaacaGGOaGaam4AaiabgUcaRiaaigdacqGHsislcaWGUbGaaiykaiaacgcaaaGaamiwamaaCaaaleqabaGaam4AaiabgUcaRiaaigdacqGHsislcaWGUbaaaOGaaeilaiaabccacaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGHKjYOcaWGRbGaey4kaSIaaGymaaqaaiaaicdacaqGSaGaaeiiaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg6da+iaadUgacqGHRaWkcaaIXaaaaaGaay5Eaaaaaaaa@AB70@

Wir untersuchen nun die algebraischen Eigenschaften der verschiedenen Differenzierbarkeitsklassen. Entscheidend ist dabei die Frage, ob sich die Ableitungsregeln übertragen lassen. Für die Summen- und Differenzregel ist dies einfach.

Bemerkung:  Für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ gilt:   f,g D n (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4SaamiramaaCaaaleqabaGaamOBaaaakiaacIcacaWGHbGaaiykaiaaywW7cqGHshI3aaa@4214@

  1. f+g D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgUcaRiaadEgacqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbaaaOGaaiikaiaadgeacaGGPaaaaa@3E3B@   und   (f+g) (n) = f (n) + g (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHRaWkcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaey4kaSIaam4zamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaa@453C@

[7.8.15]
  1. fg D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgkHiTiaadEgacqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbaaaOGaaiikaiaadgeacaGGPaaaaa@3E46@   und   (fg) (n) = f (n) g (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHsislcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyOeI0Iaam4zamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaa@4552@

[7.8.16]
  1. cf D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgwSixlaadAgacqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbaaaOGaaiikaiaadgeacaGGPaaaaa@3F9F@   und   (cf) (n) =c f (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogacqGHflY1caWGMbGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0Jaam4yaiabgwSixlaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaa@4581@

[7.8.17]

Beweis:  Es ist jeweils ein Induktionsbeweis erforderlich. Der Induktionsanfang ( n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ ) ist dabei durch [7.7.4-6] bereits gesichert. Den Induktionsschluss führen wir nur für die erste Aussage durch.

Seien dazu  f,g D n+1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4SaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGGOaGaamyqaiaacMcaaaa@3FA6@ gegeben, d.h. wir haben:  f,g D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4SaamiramaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaaaa@3E09@ und  f (n) , g (n) D 1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaaiilaiaadEgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaamyqaiaacMcaaaa@42D7@ . Nach Induktionsvoraussetzung ist damit  f+g D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgUcaRiaadEgacqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbaaaOGaaiikaiaadgeacaGGPaaaaa@3E3B@ und

(f+g) (n) = f (n) + g (n) D 1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHRaWkcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaey4kaSIaam4zamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyicI4SaamiramaaCaaaleqabaGaaGymaaaakiaacIcacaWGbbGaaiykaaaa@4AA4@   nach Summenregel [7.7.4]

Folgt:  f+g D n+1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgUcaRiaadEgacqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacIcacaWGbbGaaiykaaaa@3FD8@   mit

(f+g) (n+1) =( f (n) + g (n) ) =( f (n) ) +( g (n) ) = f (n+1) + g (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHRaWkcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaacIcacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGHRaWkcaWGNbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGcceGGPaGbauaacqGH9aqpcaGGOaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGabiykayaafaGaey4kaSIaaiikaiaadEgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiqacMcagaqbaiabg2da9iaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGHRaWkcaWGNbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@5FCC@ .

Während sich die Quotienten- und die Kettenregel als zu sperrig für unsere Überlegungen erweisen, ist die Produktregel recht gut für höhere Ableitungsordnungen zu formulieren. Verblüffenderweise läßt sich diese naturgemäß etwas komplexere Regel, die sog. Leibnizregel, leicht merken, wenn man das allgemeine Binomialtheorem kennt.

Bemerkung (Leibnizregel):  Für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ gilt:   f,g D n (A)fg D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4SaamiramaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaiaaywW7cqGHshI3caaMf8UaamOzaiabgwSixlaadEgacqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbaaaOGaaiikaiaadgeacaGGPaaaaa@4D39@   und

(fg) (n) = i=0 n (T n i )T f (ni) g (i) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHflY1caWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0ZaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaiaacMcacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgkHiTiaadMgacaGGPaaaaOGaeyyXICTaam4zamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaaa@5301@
[7.8.18]

Beweis:  Wir führen einen Induktionsbeweis.

  • Der Induktionsanfang ist die Produktregel, denn nach [7.7.6] ist mit  f,g D 1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4SaamiramaaCaaaleqabaGaaGymaaaakiaacIcacaWGbbGaaiykaaaa@3DD1@ auch  fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgwSixlaadEgaaaa@3A0D@ eine D 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGymaaaaaaa@379D@ -Funktion und (man beachte, dass die beiden Binomialkoeffizienten den Wert 1 haben):
     

    (fg ) = f g+f g = i=0 1 (T 1 i )T f (1i) g (i) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHflY1caWGNbGabiykayaafaGaeyypa0JabmOzayaafaGaeyyXICTaam4zaiabgUcaRiaadAgacqGHflY1ceWGNbGbauaacqGH9aqpdaaeWbqaaiaacIcafaqabeGabaaabaGaaGymaaqaaiaadMgaaaGaaiykaiaadAgadaahaaWcbeqaaiaacIcacaaIXaGaeyOeI0IaamyAaiaacMcaaaGccqGHflY1caWGNbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaabaGaamyAaiabg2da9iaaicdaaeaacaaIXaaaniabggHiLdaaaa@5A24@

  • Sei die Leibnizregel für ein festes n bereits gültig. Sind nun  f und g zwei D n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@3972@ -Funktionen, also

    f,g D n (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4SaamiramaaCaaaleqabaGaamOBaaaakiaacIcacaWGbbGaaiykaaaa@3E09@   und  f (i) , g (i) D 1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiilaiaadEgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaakiabgIGiolaadseadaahaaWcbeqaaiaaigdaaaGccaGGOaGaamyqaiaacMcaaaa@42CD@   für alle in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJkaad6gaaaa@3982@ ,

    so ist nach Induktionsvoraussetzung  fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgwSixlaadEgaaaa@3A0D@ eine D n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaaaaa@37D5@ -Funktion deren n-te Ableitung

    (fg) (n) = i=0 n (T n i )T f (ni) D 1 (A) g (i) D 1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHflY1caWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0ZaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaiaacMcadaagaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0IaamyAaiaacMcaaaaabaGaeyicI4SaamiramaaCaaameqabaGaaGymaaaaliaacIcacaWGbbGaaiykaaGccaGL44pacqGHflY1daagaaqaaiaadEgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaaeaacqGHiiIZcaWGebWaaWbaaWqabeaacaaIXaaaaSGaaiikaiaadgeacaGGPaaakiaawIJ=aaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@61AC@

    nach Produkt- und Summenregel wieder differenzierbar ist. Also weiß man:  fg D n+1 (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgwSixlaadEgacqGHiiIZcaWGebWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacIcacaWGbbGaaiykaaaa@4140@ . Bei der Berechnung der letzten Ableitung benutzen wir die Induktionsvoraussetzung, den Trick "Indexverschiebung" und eine Additionseigenschaft der Binomialkoeffizienten:

    (f+g) (n+1) =( (f+g) (n) ) =( i=0 n (T n i )T f (ni) g (i) ) = i=0 n (T n i )T ( f (n+1i) g (i) + f (ni) g (i+1) ) = i=0 n (T n i )T f (n+1i) g (i) + i=1 n+1 (T n i1 )T f (n(i1)) g (i) =(T n 0 )T f (n+1) g (0) + i=1 n ((T n i )T +(T n i1 )T ) f (n+1i) g (i) +(T n n )T f (0) g (n+1) =(T n+1 0 )T f (n+1) g (0) + i=1 n (T n+1 i )T f (n+1i) g (i) +(T n+1 n+1 )T f (0) g (n+1) = i=0 n+1 (T n+1 i )T f (n+1i) g (i) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabCGaaaaabaGaaiikaiaadAgacqGHRaWkcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaOqaaiabg2da9iaacIcacaGGOaGaamOzaiabgUcaRiaadEgacaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGcceGGPaGbauaaaeaaaeaacqGH9aqpcaGGOaWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaiaacMcacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgkHiTiaadMgacaGGPaaaaOGaeyyXICTaam4zamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGabiykayaafaaabaaabaGaeyypa0ZaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaiaacMcacaGGOaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaeyOeI0IaamyAaiaacMcaaaGccqGHflY1caWGNbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccqGHRaWkcaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgkHiTiaadMgacaGGPaaaaOGaeyyXICTaam4zamaaCaaaleqabaGaaiikaiaadMgacqGHRaWkcaaIXaGaaiykaaaakiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaGcbaaabaGaeyypa0ZaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaiaacMcacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacqGHsislcaWGPbGaaiykaaaakiabgwSixlaadEgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRmaaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaiabgkHiTiaaigdaaaGaaiykaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0IaaiikaiaadMgacqGHsislcaaIXaGaaiykaiaacMcaaaGccqGHflY1caWGNbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbGaey4kaSIaaGymaaqdcqGHris5aaGcbaaabaGaeyypa0JaaiikauaabeqaceaaaeaacaWGUbaabaGaaGimaaaacaGGPaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabgwSixlaadEgadaahaaWcbeqaaiaacIcacaaIWaGaaiykaaaakiabgUcaRmaaqahabaGaaiikaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadMgaaaGaaiykaiabgUcaRiaacIcafaqabeGabaaabaGaamOBaaqaaiaadMgacqGHsislcaaIXaaaaiaacMcacaGGPaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaeyOeI0IaamyAaiaacMcaaaGccqGHflY1caWGNbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccqGHRaWkcaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGUbaaaiaacMcacaWGMbWaaWbaaSqabeaacaGGOaGaaGimaiaacMcaaaGccqGHflY1caWGNbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaGcbaaabaGaeyypa0JaaiikauaabeqaceaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaaicdaaaGaaiykaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGHflY1caWGNbWaaWbaaSqabeaacaGGOaGaaGimaiaacMcaaaGccqGHRaWkdaaeWbqaaiaacIcafaqabeGabaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGPbaaaiaacMcacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacqGHsislcaWGPbGaaiykaaaakiabgwSixlaadEgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRiaacIcafaqabeGabaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaGGPaGaamOzamaaCaaaleqabaGaaiikaiaaicdacaGGPaaaaOGaeyyXICTaam4zamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaOqaaaqaaiabg2da9maaqahabaGaaiikauaabeqaceaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaadMgaaaGaaiykaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiabgkHiTiaadMgacaGGPaaaaOGaeyyXICTaam4zamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgUcaRiaaigdaa0GaeyyeIuoaaaaaaa@44EF@

Mit diesen Ergebnissen können wir also die am Schluss von 7.7. notierten Gruppen und Ringe als Spezialfälle einer allgemeineren Situation auffassen:

  • ( D n (A),+) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcacaGGSaGaey4kaSIaaiykaaaa@3CE9@ ( C n (A),+) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadoeadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcacaGGSaGaey4kaSIaaiykaaaa@3CE8@   und  ( C (A),+) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadoeadaahaaWcbeqaaiabg6HiLcaakiaacIcacaWGbbGaaiykaiaacYcacqGHRaWkcaGGPaaaaa@3D66@ sind ablesche Gruppen

     i

    • Die Addition + ist assoziativ und kommutativ.

    • 0 ist das neutrale Element, d.h.  f+0=f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgUcaRiaaicdacqGH9aqpcaWGMbaaaa@3A61@   für alle  f.

    • Jedes f besitzt genau ein inverses Element, hier f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamOzaaaa@37C1@ , so dass  f+(f)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgUcaRiaacIcacqGHsislcaWGMbGaaiykaiabg2da9iaaicdaaaa@3CA7@ ist.

    .

  • ( D n (A),+,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadseadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcacaGGSaGaey4kaSIaaiilaiabgwSixlaacMcaaaa@3FE3@ ( C n (A),+,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadoeadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyqaiaacMcacaGGSaGaey4kaSIaaiilaiabgwSixlaacMcaaaa@3FE2@   und  ( C (A),+,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadoeadaahaaWcbeqaaiabg6HiLcaakiaacIcacaWGbbGaaiykaiaacYcacqGHRaWkcaGGSaGaeyyXICTaaiykaaaa@4060@   sind kommutative Ringe mit Einselement

     i

    • Es gelten die Axiome einer abelschen Gruppe.

    • Die Multiplikation · ist assoziativ und kommutativ.

    • · ist distributiv bzgl. +.

    • 1 ist das neutrale Element der Multiplikation, d.h.  1·f=f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgwSixlaadAgacqGH9aqpcaWGMbaaaa@3BCA@ für alle f.

    .


7.7. 7.9.