8.9. Generalised Exponential and Logarithm Functions


As e X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaaaaa@37E0@ is the invers of ln we see that, according to the laws of logarithms,

a n = e ln( a n ) = e nlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamOBaaaakiabg2da9iaadwgadaahaaWcbeqaaiGacYgacaGGUbGaaiikaiaadggadaahaaadbeqaaiaad6gaaaWccaGGPaaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamOBaiabgwSixlGacYgacaGGUbGaamyyaaaaaaa@4796@

for all a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ and n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablssiIcaa@39DB@ . This is an alternative way to calculate powers, a way however that we may well use as a guideline to introduce powers with arbitrary real exponents.

Definition:  Let a,x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWG4bGaeyicI4SaeSyhHekaaa@3B73@ be arbitrary with a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ . We set

a x e xlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaaaaa@4034@
[8.9.1]

As before we call a the base and x the exponent of the power   a x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaaaaa@37FC@ . Being a value of the exponential function each power is strictly positive: a x >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg6da+iaaicdaaaa@39C8@ .

Note that, due to [8.8.25], we are allowed to use the notation a x =exp(nlna) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iGacwgacaGG4bGaaiiCaiaacIcacaWGUbGaeyyXICTaciiBaiaac6gacaWGHbGaaiykaaaa@4347@ as well.

The new concept of powers is only applicable with a positive base. In this case, however we want to know if the new concept is a sequel to the common one. Thus we have to answer two questions:

  • Do new and old values coincide for all x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolablQriKcaa@39DD@ ?

  • Are the laws of exponents still valid?

We have a positive answer to both of them.

Proposition:  If a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ we have for each x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolablQriKcaa@39DD@ :

a x =exp(xlna) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iGacwgacaGG4bGaaiiCaiaacIcacaWG4bGaeyyXICTaciiBaiaac6gacaWGHbGaaiykaaaa@4351@
[8.9.2]

Proof:  Say x= n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9maalaaabaGaamOBaaqaaiaad2gaaaaaaa@39E4@ , m>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg6da+iaaicdaaaa@38A0@ . Due to [8.8.2] and [8.7.6;10] we then have for a x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaaaaa@37FC@ in its old meaning:

a x = a n m = a n m =exp(ln a n m )=exp( n m lna)=exp(xlna) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadggadaahaaWcbeqaamaaleaameaacaWGUbaabaGaamyBaaaaaaGccqGH9aqpdaGcbaqaaiaadggadaahaaWcbeqaaiaad6gaaaaabaGaamyBaaaakiabg2da9iGacwgacaGG4bGaaiiCaiaacIcaciGGSbGaaiOBamaakeaabaGaamyyamaaCaaaleqabaGaamOBaaaaaeaacaWGTbaaaOGaaiykaiabg2da9iGacwgacaGG4bGaaiiCaiaacIcadaWcaaqaaiaad6gaaeaacaWGTbaaaiabgwSixlGacYgacaGGUbGaamyyaiaacMcacqGH9aqpciGGLbGaaiiEaiaacchacaGGOaGaamiEaiabgwSixlGacYgacaGGUbGaamyyaiaacMcaaaa@6201@

We now turn to the laws of exponents. Besides the properties [8.8.2;3] we need the laws of logarithms [8.7.8;9] and the calculation rules for e X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaaaaa@37DD@  [8.8.15;16].

Proposition (laws of exponents):  If a,b>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyOpa4JaaGimaaaa@3A2B@ the following properties hold for every x,y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaeSyhHekaaa@3B8B@ :

1.    a x b x = (ab) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabgwSixlaadkgadaahaaWcbeqaaiaadIhaaaGccqGH9aqpcaGGOaGaamyyaiabgwSixlaadkgacaGGPaWaaWbaaSqabeaacaWG4baaaaaa@440B@

a x b x = ( a b ) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaWG4baaaaGcbaGaamOyamaaCaaaleqabaGaamiEaaaaaaGccqGH9aqpcaGGOaWaaSaaaeaacaWGHbaabaGaamOyaaaacaGGPaWaaWbaaSqabeaacaWG4baaaaaa@3F97@

1 b x = ( 1 b ) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOyamaaCaaaleqabaGaamiEaaaaaaGccqGH9aqpcaGGOaWaaSaaaeaacaaIXaaabaGaamOyaaaacaGGPaWaaWbaaSqabeaacaWG4baaaaaa@3E0D@

[8.9.3]

2.    a x a y = a x+y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabgwSixlaadggadaahaaWcbeqaaiaadMhaaaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaWG4bGaey4kaSIaamyEaaaaaaa@4161@

a x a y = a xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaWG4baaaaGcbaGaamyyamaaCaaaleqabaGaamyEaaaaaaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaWG4bGaeyOeI0IaamyEaaaaaaa@3F32@

1 a y = a y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamyyamaaCaaaleqabaGaamyEaaaaaaGccqGH9aqpcaWGHbWaaWbaaSqabeaacqGHsislcaWG5baaaaaa@3CD6@

[8.9.4]

3.    ln( a x )=xlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaGGOaGaamyyamaaCaaaleqabaGaamiEaaaakiaacMcacqGH9aqpcaWG4bGaeyyXICTaciiBaiaac6gacaWGHbaaaa@425A@

(expa) x =exp(xa) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiGacwgacaGG4bGaaiiCaiaadggacaGGPaWaaWbaaSqabeaacaWG4baaaOGaeyypa0JaciyzaiaacIhacaGGWbGaaiikaiaadIhacqGHflY1caWGHbGaaiykaaaa@45A1@

[8.9.5]

4.    ( a x ) y = a xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIhaaaGccaGGPaWaaWbaaSqabeaacaWG5baaaOGaeyypa0JaamyyamaaCaaaleqabaGaamiEaiabgwSixlaadMhaaaaaaa@40F2@

[8.9.6]

Proof:  

1.    a x b x = e xlna e xlnb = e xlna+xlnb = e x(lna+lnb) = e xln(ab) = (ab) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabgwSixlaadkgadaahaaWcbeqaaiaadIhaaaGccqGH9aqpcaWGLbWaaWbaaSqabeaacaWG4bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaeyyXICTaamyzamaaCaaaleqabaGaamiEaiabgwSixlGacYgacaGGUbGaamOyaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGHRaWkcaWG4bGaeyyXICTaciiBaiaac6gacaWGIbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlaacIcaciGGSbGaaiOBaiaadggacqGHRaWkciGGSbGaaiOBaiaadkgacaGGPaaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlGacYgacaGGUbGaaiikaiaadggacqGHflY1caWGIbGaaiykaaaakiabg2da9iaacIcacaWGHbGaeyyXICTaamOyaiaacMcadaahaaWcbeqaaiaadIhaaaaaaa@7EEC@

a x b x = e xlna e xlnb = e xlnaxlnb = e x(lnalnb) = e xln a b = ( a b ) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaWG4baaaaGcbaGaamOyamaaCaaaleqabaGaamiEaaaaaaGccqGH9aqpdaWcaaqaaiaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaaakeaacaWGLbWaaWbaaSqabeaacaWG4bGaeyyXICTaciiBaiaac6gacaWGIbaaaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGHsislcaWG4bGaeyyXICTaciiBaiaac6gacaWGIbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlaacIcaciGGSbGaaiOBaiaadggacqGHsislciGGSbGaaiOBaiaadkgacaGGPaaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlGacYgacaGGUbWaaSqaaWqaaiaadggaaeaacaWGIbaaaaaakiabg2da9iaacIcadaWcaaqaaiaadggaaeaacaWGIbaaaiaacMcadaahaaWcbeqaaiaadIhaaaaaaa@74CE@

The third equation is a special case of the second one.

2.    a x a y = e xlna e ylna = e xlna+ylna = e (x+y)lna = a x+y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabgwSixlaadggadaahaaWcbeqaaiaadMhaaaGccqGH9aqpcaWGLbWaaWbaaSqabeaacaWG4bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaeyyXICTaamyzamaaCaaaleqabaGaamyEaiabgwSixlGacYgacaGGUbGaamyyaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGHRaWkcaWG5bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabgwSixlGacYgacaGGUbGaamyyaaaakiabg2da9iaadggadaahaaWcbeqaaiaadIhacqGHRaWkcaWG5baaaaaa@6DB3@

a x a y = e xlna e ylna = e xlnaylna = e (xy)lna = a xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaWG4baaaaGcbaGaamyyamaaCaaaleqabaGaamyEaaaaaaGccqGH9aqpdaWcaaqaaiaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaaakeaacaWGLbWaaWbaaSqabeaacaWG5bGaeyyXICTaciiBaiaac6gacaWGHbaaaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGHsislcaWG5bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaaiikaiaadIhacqGHsislcaWG5bGaaiykaiabgwSixlGacYgacaGGUbGaamyyaaaakiabg2da9iaadggadaahaaWcbeqaaiaadIhacqGHsislcaWG5baaaaaa@6960@

Again, the third equation follows from the one before.

3.    ln( a x )=ln( e xlna )=xlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaGGOaGaamyyamaaCaaaleqabaGaamiEaaaakiaacMcacqGH9aqpciGGSbGaaiOBaiaacIcacaWGLbWaaWbaaSqabeaacaWG4bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaaiykaiabg2da9iaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaa@4DCF@

(expa) x = e xln(expa) = e xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiGacwgacaGG4bGaaiiCaiaadggacaGGPaWaaWbaaSqabeaacaWG4baaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlGacYgacaGGUbGaaiikaiGacwgacaGG4bGaaiiCaiaadggacaGGPaaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlaadggaaaaaaa@4EF0@

4.    ( a x ) y = e yln( a x ) = 3. e yxlna = a xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIhaaaGccaGGPaWaaWbaaSqabeaacaWG5baaaOGaeyypa0JaamyzamaaCaaaleqabaGaamyEaiabgwSixlGacYgacaGGUbGaaiikaiaadggadaahaaadbeqaaiaadIhaaaWccaGGPaaaaOWaaCbeaeaacqGH9aqpaSqaaiaacUfacaaIZaGaaiyxaaqabaGccaWGLbWaaWbaaSqabeaacaWG5bGaeyyXICTaamiEaiabgwSixlGacYgacaGGUbGaamyyaaaakiabg2da9iaadggadaahaaWcbeqaaiaadIhacqGHflY1caWG5baaaaaa@59FA@

In a first application of the new power concept we study exopnential equations, i.e. equations of the type

a x =b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadkgaaaa@39F3@ .

If a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ we get their unique solution by taking the logarithm on both sides.

Proposition and Definition:  For a,b>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyOpa4JaaGimaaaa@3A2B@ , a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ the following equivalence holds

a x =bx= lnb lna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadkgacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpdaWcaaqaaiGacYgacaGGUbGaamOyaaqaaiGacYgacaGGUbGaamyyaaaaaaa@4713@
[8.9.7]

The number log a b lnb lna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaamOyaiabg2da9maalaaabaGaciiBaiaac6gacaWGIbaabaGaciiBaiaac6gacaWGHbaaaaaa@416A@ is called the logarithm to the base a of b. Apparently log a b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaamOyaaaa@3ABF@ is that certain number that yields b if we take a to its power:

a log a b =b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaciiBaiaac+gacaGGNbWaaSbaaWqaaiaadggaaeqaaSGaamOyaaaakiabg2da9iaadkgaaaa@3DCB@ .

Proof:  We use [8.9.5] to get:  a x =bln a x =lnbxlna=lnbx= lnb lna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadkgacaaMf8Uaeyi1HSTaaGzbVlGacYgacaGGUbGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iGacYgacaGGUbGaamOyaiaaywW7cqGHuhY2caaMf8UaamiEaiabgwSixlGacYgacaGGUbGaamyyaiabg2da9iGacYgacaGGUbGaamOyaiaaywW7cqGHuhY2caaMf8UaamiEaiabg2da9maalaaabaGaciiBaiaac6gacaWGIbaabaGaciiBaiaac6gacaWGHbaaaaaa@63B4@ .

The logarithms to a fixed base a allow to introduce generalised logarithm functions.

Definition:  For any a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ , a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ we call the function

log a : >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaaiOoaiabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaakiabgkziUkabl2riHcaa@415C@
[8.9.8]

the (generalised) logarithm function to the base a. Instead of log a (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaaiikaiaadIhacaGGPaaaaa@3C2E@ we often write log a x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaamiEaaaa@3AD5@ which is more common. Also, we note that every logarithm function is just a multiple of ln:  log a = 1 lna ln MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiabgwSixlGacYgacaGGUbaaaa@42A1@ .

With lne=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWGLbGaeyypa0JaaGymaaaa@3A7B@ we have log e =ln MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadwgaaeqaaOGaeyypa0JaciiBaiaac6gaaaa@3CC6@ , thus the logarithm to the base e is the natural logarithm. Two further logarithm functions have names for their own:

  • the common logarithm  lg log 10 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacEgacqGH9aqpciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGymaiaaicdaaeqaaaaa@3D40@

  • the binary (or dual) logarithm  ld log 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaadsgacqGH9aqpciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaaaaa@3C84@

As the logarithms are multiples of ln they take over most of its properties. The laws of logarithms [8.7.6-10] for example analogously hold for log a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaaaa@39CE@ as well. Furthermore, log a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaaaa@39CE@ is integrable and arbitrary often differentiable. Its graph is the result of a perpendicular dilation of that of ln:

Now that the concept of power has been extended new functions could be introduced. Generalised power functions are our first example.

Definition:  For any real a the function

X a e aln : >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadggacqGHflY1ciGGSbGaaiOBaaaakiaacQdacqWIDesOdaahaaWcbeqaaiabg6da+iaaicdaaaGccqGHsgIRcqWIDesOaaa@46A5@
[8.9.9]

is called the (generalised) power function with exponent a. Obviously X a (x)= e alnx = x a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaakiaacIcacaWG4bGaaiykaiabg2da9iaadwgadaahaaWcbeqaaiaadggacqGHflY1ciGGSbGaaiOBaiaadIhaaaGccqGH9aqpcaWG4bWaaWbaaSqabeaacaWGHbaaaaaa@458A@ .

Power functions are differentiable and integrable. Derivatives and primitives follow the "common scheme":

Proposition:  Each power function X a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaaaaa@37DC@ is

1.   differentiable with ( X a ) =a X a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGcceGGPaGbauaacqGH9aqpcaWGHbGaamiwamaaCaaaleqabaGaamyyaiabgkHiTiaaigdaaaaaaa@3ECF@

[8.9.10]

2.   arbitrary differentiable and ( X a ) (n) = i=0 n1 (ai) X an MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaqeWbqaaiaacIcacaWGHbGaeyOeI0IaamyAaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaey4dIunakiabgwSixlaadIfadaahaaWcbeqaaiaadggacqGHsislcaWGUbaaaaaa@4E80@   for all n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaicdaaaa@38A1@

[8.9.11]

3.   integrable and 1 a+1 X a+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamyyaiabgUcaRiaaigdaaaGaamiwamaaCaaaleqabaGaamyyaiabgUcaRiaaigdaaaaaaa@3CC7@ is a primitive of X a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaaaaa@37DC@ if a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kabgkHiTiaaigdaaaa@3A41@ .

[8.9.12]

Proof:  

1.   Differentiability is due to the chain rule [7.7.8] which also provides the derivative:

( X a ) =( e X aln ) =(( e X ) aln)aln=( e X aln)a X 1 = X a a X 1 =a X a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGcceGGPaGbauaacqGH9aqpcaGGOaGaamyzamaaCaaaleqabaGaamiwaaaakiablIHiVjaadggacqGHflY1ciGGSbGaaiOBaiqacMcagaqbaiabg2da9iaacIcacaGGOaGaamyzamaaCaaaleqabaGaamiwaaaakiqacMcagaqbaiablIHiVjaadggacqGHflY1ciGGSbGaaiOBaiaacMcacqGHflY1caWGHbGaeyyXICTaciiBaiaac6gacaGGNaGaeyypa0JaaiikaiaadwgadaahaaWcbeqaaiaadIfaaaGccqWIyiYBcaWGHbGaeyyXICTaciiBaiaac6gacaGGPaGaeyyXICTaamyyaiabgwSixlaadIfadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaWGybWaaWbaaSqabeaacaWGHbaaaOGaeyyXICTaamyyaiabgwSixlaadIfadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaWGHbGaamiwamaaCaaaleqabaGaamyyaiabgkHiTiaaigdaaaaaaa@7BB6@

2.   The proof is by induction with the base step already done in 1. Thus assume X a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaaaaa@37DC@ is n-times differentiable and the derivative formula [8.9.11] is valid. Note that the nth derivative ( X a ) (n) = i=0 n1 (ai) X an MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaqeWbqaaiaacIcacaWGHbGaeyOeI0IaamyAaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaey4dIunakiabgwSixlaadIfadaahaaWcbeqaaiaadggacqGHsislcaWGUbaaaaaa@4E80@ is a multiple of a power function and thus differentiable as well with

( X a ) (n+1) = i=0 n1 (ai) ( X an ) = i=0 n1 (ai) (an) X an1 = i=0 n (ai) X a(n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyypa0ZaaebCaeaacaGGOaGaamyyaiabgkHiTiaadMgacaGGPaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabg+GivdGccqGHflY1caGGOaGaamiwamaaCaaaleqabaGaamyyaiabgkHiTiaad6gaaaGcceGGPaGbauaacqGH9aqpdaqeWbqaaiaacIcacaWGHbGaeyOeI0IaamyAaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaey4dIunakiabgwSixlaacIcacaWGHbGaeyOeI0IaamOBaiaacMcacqGHflY1caWGybWaaWbaaSqabeaacaWGHbGaeyOeI0IaamOBaiabgkHiTiaaigdaaaGccqGH9aqpdaqeWbqaaiaacIcacaWGHbGaeyOeI0IaamyAaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHpis1aOGaeyyXICTaamiwamaaCaaaleqabaGaamyyaiabgkHiTiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaa@8071@

3.   The case a=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iabgkHiTiaaigdaaaa@3980@ is well-known. If a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kabgkHiTiaaigdaaaa@3A41@ we may differentiate the function 1 a+1 X a+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamyyaiabgUcaRiaaigdaaaGaamiwamaaCaaaleqabaGaamyyaiabgUcaRiaaigdaaaaaaa@3CC7@ according to 1. and get X a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaaaaa@37DC@ as its derivative.

The generalised exponential functions are another application of the extended power concept.

Definition:  For each a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ the function

a X e Xlna : >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIfacqGHflY1ciGGSbGaaiOBaiaadggaaaGccaGG6aGaeSyhHeQaeyOKH4QaeSyhHe6aaWbaaSqabeaacqGH+aGpcaaIWaaaaaaa@4778@
[8.9.13]

is called the (generalised) exponential function with base a. Its values are a X (x)= e xlna = a x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaakiaacIcacaWG4bGaaiykaiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaWG4baaaaaa@458A@ .

Two of the exponential functions are not new for us:

  • The exponential function with base 1 is the constant function 1, actually because ln1=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaaIXaGaeyypa0JaaGimaaaa@3A4B@ :

    1 X = e Xln1 = e 0 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaaCaaaleqabaGaamiwaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIfacqGHflY1ciGGSbGaaiOBaiaaigdaaaGccqGH9aqpcaWGLbWaaWbaaSqabeaacaaIWaaaaOGaeyypa0JaaGymaaaa@444A@
     
  • The exponential function with base e is the natural exponential function e X =exp MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaakiabg2da9iGacwgacaGG4bGaaiiCaaaa@3BCB@ . This is due to lne=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWGLbGaeyypa0JaaGymaaaa@3A7B@ :

    e X =exp(Xlne)=expX=exp MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaakiabg2da9iGacwgacaGG4bGaaiiCaiablIHiVjaacIcacaWGybGaeyyXICTaciiBaiaac6gacaWGLbGaaiykaiabg2da9iGacwgacaGG4bGaaiiCaiablIHiVjaadIfacqGH9aqpciGGLbGaaiiEaiaacchaaaa@4E2C@

    This identity now justifies the power notation for the exponential function in terms of content: The natural exponential function is a special exponential function, namely that with base e. Thus the notation introduced in 8.8 is more than a symbolic one.

As the values of exponential functions are powers the laws of exponents [8.9.4-6] apply and thus provide respective rules for these functions. As an example we we note

a X (x+1)= a X (x) a X (1)=a a X (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaakiaacIcacaWG4bGaey4kaSIaaGymaiaacMcacqGH9aqpcaWGHbWaaWbaaSqabeaacaWGybaaaOGaaiikaiaadIhacaGGPaGaeyyXICTaamyyamaaCaaaleqabaGaamiwaaaakiaacIcacaaIXaGaaiykaiabg2da9iaadggacqGHflY1caWGHbWaaWbaaSqabeaacaWGybaaaOGaaiikaiaadIhacaGGPaaaaa@500D@

as a special case of [8.9.4], which means: If we increment x by one unit the value turns to the a-fold one.

The inner function of the decomposition a X = e X Xlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIfaaaGccqWIyiYBcaWGybGaeyyXICTaciiBaiaac6gacaWGHbaaaa@4215@ is a multiple of X. The graph of an exponential function thus is the result of a horizontal dilation of that of e X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaaaaa@37E0@ :

Exponential functions are differentiable and integrable. Calculating their derivatives and primitives is an easy task.

Proposition:  Every exponential function a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@ is

1.   differentiable with ( a X ) =lna a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGcceGGPaGbauaacqGH9aqpciGGSbGaaiOBaiaadggacqGHflY1caWGHbWaaWbaaSqabeaacaWGybaaaaaa@4155@

[8.9.14]

2.   arbitrary often differentiable and ( a X ) (n) = (lna) n a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpcaGGOaGaciiBaiaac6gacaWGHbGaaiykamaaCaaaleqabaGaamOBaaaakiabgwSixlaadggadaahaaWcbeqaaiaadIfaaaaaaa@464F@ for all n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaicdaaaa@38A1@

[8.9.15]

2.   integrable and 1 lna a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiaadggadaahaaWcbeqaaiaadIfaaaaaaa@3B71@ is a primitive of a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@ if a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@

[8.9.16]

Proof:  

1.   Again, differentiability and derivative formula are due to the chain rule [7.7.8]:

( a X ) =( e X Xlna ) =(( e X ) Xlna)(Xlna ) =( e X Xlna)lna=lna a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGcceGGPaGbauaacqGH9aqpcaGGOaGaamyzamaaCaaaleqabaGaamiwaaaakiablIHiVjaadIfacqGHflY1ciGGSbGaaiOBaiaadggaceGGPaGbauaacqGH9aqpcaGGOaGaaiikaiaadwgadaahaaWcbeqaaiaadIfaaaGcceGGPaGbauaacqWIyiYBcaWGybGaeyyXICTaciiBaiaac6gacaWGHbGaaiykaiabgwSixlaacIcacaWGybGaeyyXICTaciiBaiaac6gacaWGHbGabiykayaafaGaeyypa0JaaiikaiaadwgadaahaaWcbeqaaiaadIfaaaGccqWIyiYBcaWGybGaeyyXICTaciiBaiaac6gacaWGHbGaaiykaiabgwSixlGacYgacaGGUbGaamyyaiabg2da9iGacYgacaGGUbGaamyyaiabgwSixlaadggadaahaaWcbeqaaiaadIfaaaaaaa@7412@

2.   This is a straightforward proof by induction with the base step already shown by 1. For the induction step we just note that the nth derivative of a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@ is a multiple of a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@ and therefor differentiable. Its derivative ( a X ) (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaaaaa@3BB8@ just adds the factor lna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWGHbaaaa@38B6@ another time so that the derivative formula is valid for ( a X ) (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@3D55@ as well.

3.   The case 1 X =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaaCaaaleqabaGaamiwaaaakiabg2da9iaaigdaaaa@397C@ is trivial and if a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ we just need to differentiate the function 1 lna a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiaadggadaahaaWcbeqaaiaadIfaaaaaaa@3B71@ which is easily done using 1.

e X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaaaaa@37E0@ and ln are inverse functions to each other. This is also true for generalised exponential and logarithm functions.

Proposition:  If a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ , a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ then a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@ and log a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaaaa@39CE@ are invers to each other:

a X log a =X| >0 log a a X =X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadggadaahaaWcbeqaaiaadIfaaaGccqWIyiYBciGGSbGaai4BaiaacEgadaWgaaWcbaGaamyyaaqabaGccqGH9aqpcaWGybGaaiiFaiabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaaaOqaaiGacYgacaGGVbGaai4zamaaBaaaleaacaWGHbaabeaakiablIHiVjaadggadaahaaWcbeqaaiaadIfaaaGccqGH9aqpcaWGybaaaaaa@4C67@
[8.9.17]

Proof:  We only need to show that both functions cancel out each other:

  1. The identity a log a x =x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaciiBaiaac+gacaGGNbWaaSbaaWqaaiaadggaaeqaaSGaamiEaaaakiabg2da9iaadIhaaaa@3DF7@ is valid for all x>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6da+iaaicdaaaa@38AB@ according to [8.9.7].

  2. log a ( a x )= 1 lna ln( a x )= 1 lna xlna=x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaaiikaiaadggadaahaaWcbeqaaiaadIhaaaGccaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiabgwSixlGacYgacaGGUbGaaiikaiaadggadaahaaWcbeqaaiaadIhaaaGccaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiabgwSixlaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGH9aqpcaWG4baaaa@5880@ holds for all x due to [8.9.8] and [8.9.5].


8.8.