(fg ) =f(0)g+ f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGabiykayaafaGaeyypa0JaamOzaiaacIcacaaIWaGaaiykaiabgwSixlaadEgacqGHRaWkceWGMbGbauaacqGHxiIkcaWGNbaaaa@4502@


Zunächst zeigen wir für ein beliebiges a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@39C3@ :

fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgaaaa@38AF@ ist in a differenzierbar und (fg ) (a)=f(0)g(a)+ f g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGabiykayaafaGaaiikaiaadggacaGGPaGaeyypa0JaamOzaiaacIcacaaIWaGaaiykaiabgwSixlaadEgacaGGOaGaamyyaiaacMcacqGHRaWkceWGMbGbauaacqGHxiIkcaWGNbGaaiikaiaadggacaGGPaaaaa@4BBF@ .

Dazu müssen wir nachweisen, dass die Differenzenquotientenfunktion m a = fgfg(a) Xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBaaaleaacaWGHbaabeaakiabg2da9maalaaabaGaamOzaiabgEHiQiaadEgacqGHsislcaWGMbGaey4fIOIaam4zaiaacIcacaWGHbGaaiykaaqaaiaadIfacqGHsislcaWGHbaaaaaa@4475@ in a den Grenzwert f(0)g(a)+ f g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabgwSixlaadEgacaGGOaGaamyyaiaacMcacqGHRaWkceWGMbGbauaacqGHxiIkcaWGNbGaaiikaiaadggacaGGPaaaaa@444F@ besitzt (siehe [7.3.1]). Für xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaadggaaaa@3993@ schreiben wir zunächst:

m a (x) = 0 x f(xX)g 0 a f(aX)g xa = a x f(xX)g + 0 a f(xX)g 0 a f(aX)g xa = a x f(xX)g xa + 0 a (f(xX)f(aX))g xa  . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaad2gadaWgaaWcbaGaamyyaaqabaGccaGGOaGaamiEaiaacMcaaeaacqGH9aqpdaWcaaqaamaapehabaGaamOzaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcacqGHflY1caWGNbaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeyOeI0Yaa8qCaeaacaWGMbGaaiikaiaadggacqGHsislcaWGybGaaiykaiabgwSixlaadEgaaSqaaiaaicdaaeaacaWGHbaaniabgUIiYdaakeaacaWG4bGaeyOeI0IaamyyaaaaaeaaaeaacqGH9aqpdaWcaaqaamaapehabaGaamOzaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcacqGHflY1caWGNbaaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOGaey4kaSYaa8qCaeaacaWGMbGaaiikaiaadIhacqGHsislcaWGybGaaiykaiabgwSixlaadEgaaSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGccqGHsisldaWdXbqaaiaadAgacaGGOaGaamyyaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipaaOqaaiaadIhacqGHsislcaWGHbaaaaqaaaqaaiabg2da9maalaaabaWaa8qCaeaacaWGMbGaaiikaiaadIhacqGHsislcaWGybGaaiykaiabgwSixlaadEgaaSqaaiaadggaaeaacaWG4baaniabgUIiYdaakeaacaWG4bGaeyOeI0IaamyyaaaacqGHRaWkdaWdXbqaamaalaaabaGaaiikaiaadAgacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaeyOeI0IaamiwaiaacMcacaGGPaGaeyyXICTaam4zaaqaaiaadIhacqGHsislcaWGHbaaaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipaaaaaaa@AA7A@

Ist jetzt ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ eine beliebige Folge mit a a n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadggadaWgaaWcbaGaamOBaaqabaGccqGHsgIRcaWGHbaaaa@3D78@ , so zeigen wir der Reihe nach

  1. a a n f( a n X)g a n a f(0)g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaadaWdXbqaaiaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaamyyaaqaaiaadggadaWgaaadbaGaamOBaaqabaaaniabgUIiYdaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyyaaaacqGHsgIRcaWGMbGaaiikaiaaicdacaGGPaGaeyyXICTaam4zaiaacIcacaWGHbGaaiykaaaa@52ED@

  2. 0 a (f( a n X)f(aX))g a n a f g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaadaWcaaqaaiaacIcacaWGMbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGybGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiabgkHiTiaadIfacaGGPaGaaiykaiabgwSixlaadEgaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyyaaaaaSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGccqGHsgIRceWGMbGbauaacqGHxiIkcaWGNbGaaiikaiaadggacaGGPaaaaa@5579@

und haben so die Konvergenz m a ( a n )f(0)g(a)+ f g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBaaaleaacaWGHbaabeaakiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgkziUkaadAgacaGGOaGaaGimaiaacMcacqGHflY1caWGNbGaaiikaiaadggacaGGPaGaey4kaSIabmOzayaafaGaey4fIOIaam4zaiaacIcacaWGHbGaaiykaaaa@4BB2@ nachgewiesen.

1.   Gemäß Mittelwertsatz [8.2.8] gibt es zunächst zu jedem n ein x ˜ n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaaaa@3814@ zwischen a und a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaaaaa@37EE@ , also | x ˜ n a|<| a n a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadIhagaacamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggacaGG8bGaeyipaWJaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaaaa@42D7@ , so dass

a a n f( a n X)g =( a n a)f( a n x ˜ n )g( x ˜ n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaWGMbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGybGaaiykaiabgwSixlaadEgaaSqaaiaadggaaeaacaWGHbWaaSbaaWqaaiaad6gaaeqaaaqdcqGHRiI8aOGaeyypa0JaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiykaiabgwSixlaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiqadIhagaacamaaBaaaleaacaWGUbaabeaakiaacMcacqGHflY1caWGNbGaaiikaiqadIhagaacamaaBaaaleaacaWGUbaabeaakiaacMcaaaa@5B5F@ .

Da | x ˜ n a|<| a n a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadIhagaacamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggacaGG8bGaeyipaWJaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaaaa@42D7@ , folgt aus a n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaadggaaaa@3ACB@ auch x ˜ n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaeyOKH4Qaamyyaaaa@3AF1@ , und damit auch a n x ˜ n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiqadIhagaacamaaBaaaleaacaWGUbaabeaakiabgkziUkaaicdaaaa@3DC1@ . Weil f und g stetig sind ( f in 0 und g in a), erhält man daher:

a a n f( a n X)g a n a = ( a n a)f( a n x ˜ n )g( x ˜ n ) a n a =f( a n x ˜ n )g( x ˜ n )f(0)g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaadaWdXbqaaiaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaamyyaaqaaiaadggadaWgaaadbaGaamOBaaqabaaaniabgUIiYdaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyyaaaacqGH9aqpdaWcaaqaaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyyaiaacMcacqGHflY1caWGMbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislceWG4bGbaGaadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyyXICTaam4zaiaacIcaceWG4bGbaGaadaWgaaWcbaGaamOBaaqabaGccaGGPaaabaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggaaaGaeyypa0JaamOzaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgwSixlaadEgacaGGOaGabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgkziUkaadAgacaGGOaGaaGimaiaacMcacqGHflY1caWGNbGaaiikaiaadggacaGGPaaaaa@7CE2@ .

2.   Für a=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaaicdaaaa@388F@ ist nicht zu zeigen, denn hier liegt der Fall 00 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgkziUkaaicdaaaa@394A@ vor. Für a0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaicdaaaa@3950@ reicht es nach [8.2.14], die gleichmäßige Konvergenz

f( a n X)f(aX) a n a g gm f (aX)g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGybGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiabgkHiTiaadIfacaGGPaaabaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggaaaGaeyyXICTaam4zamaaxababaGaeyOKH4kaleaacaWGNbGaamyBaaqabaGcceWGMbGbauaacaGGOaGaamyyaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaaa@5553@

auf dem Intervall [|a|,|a|] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTiaacYhacaWGHbGaaiiFaiaacYcacaGG8bGaamyyaiaacYhacaGGDbaaaa@3F12@ nachzuweisen. Wir beginnen mit einigen Vorbereitungen:

Da g als stetige Funktion auf dem auf dem von a und a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaamyyaaaa@37BC@ begrenzten abgeschlossenen Intervall beschränkt ist, gibt es ein c >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiolabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaaaaa@3BB4@ , so dass

|g(x)|c MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadEgacaGGOaGaamiEaiaacMcacaGG8bGaeyizImQaam4yaaaa@3DC8@   für alle x mit  |x||a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacaGG8bGaeyizImQaaiiFaiaadggacaGG8baaaa@3D81@ .

Ferner ist die Nullfolge ( a n a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiykaaaa@3B24@ beschränkt. Es gibt also eine weitere Konstante k>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg6da+iaaicdaaaa@389B@ , so dass

| a n a|k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaiabgsMiJkaadUgaaaa@3E70@   für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ .

Wir setzen nun wieder den Mittelwertsatz ein, hier in der Version [7.9.5]: Nach Kettenregel ist für jedes x die Funktion f(Xx) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGybGaeyOeI0IaamiEaiaacMcaaaa@3AF4@ differenzierbar. Insbesondere gibt es daher zu jedem x zwischen a und a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaamyyaaaa@37BC@ und zu jedem n ein x ˜ x,n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaWaaSbaaSqaaiaadIhacaGGSaGaamOBaaqabaaaaa@39C1@ zwischen a und a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaaaaa@37EE@ , d.h. | x ˜ x,n a|<| a n a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadIhagaacamaaBaaaleaacaWG4bGaaiilaiaad6gaaeqaaOGaeyOeI0IaamyyaiaacYhacqGH8aapcaGG8bGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggacaGG8baaaa@4484@ , so dass

f( a n x)f(ax) a n a = f ( x ˜ x,n x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGMbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiabgkHiTiaadIhacaGGPaaabaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggaaaGaeyypa0JabmOzayaafaGaaiikaiqadIhagaacamaaBaaaleaacaWG4bGaaiilaiaad6gaaeqaaOGaeyOeI0IaamiEaiaacMcaaaa@4F3B@ .

Sei nun ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ vorgegeben. Auf dem abgeschlossenen Intervall [k2|a|,k+2|a|] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTiaadUgacqGHsislcaaIYaGaaiiFaiaadggacaGG8bGaaiilaiaadUgacqGHRaWkcaaIYaGaaiiFaiaadggacaGG8bGaaiyxaaaa@4439@ ist die stetige Funktion f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ auch gleichmäßig stetig (siehe [6.5.5]). Also gibt es zu ε c MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaH1oqzaeaacaWGJbaaaaaa@3888@ ein δ>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaeyOpa4JaaGimaaaa@3950@ , so dass der Schluss

|rs|<δ| f (r) f (s)|< ε c MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadkhacqGHsislcaWGZbGaaiiFaiabgYda8iabes7aKjaaywW7cqGHshI3caaMf8UaaiiFaiqadAgagaqbaiaacIcacaWGYbGaaiykaiabgkHiTiqadAgagaqbaiaacIcacaWGZbGaaiykaiaacYhacqGH8aapdaWcaaqaaiabew7aLbqaaiaadogaaaaaaa@5006@

für alle r,s mit |r|,|s|k+2|a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadkhacaGG8bGaaiilaiaacYhacaWGZbGaaiiFaiabgsMiJkaadUgacqGHRaWkcaaIYaGaaiiFaiaadggacaGG8baaaa@43B1@ gültig ist. Wir stellen zunächst fest, dass für jedes x mit |x||a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacaGG8bGaeyizImQaaiiFaiaadggacaGG8baaaa@3D81@ die Zahlen ax MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgkHiTiaadIhaaaa@38B9@ und x ˜ x,n x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaWaaSbaaSqaaiaadIhacaGGSaGaamOBaaqabaGccqGHsislcaWG4baaaa@3BB5@ diese Bedingung erfüllen, denn:

|ax||a|+|x|2|a|k+2|a| | x ˜ x,n x|| x ˜ x,n a|+|ax|| a n a|+|ax|k+2|a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaacYhacaWGHbGaeyOeI0IaamiEaiaacYhacqGHKjYOcaGG8bGaamyyaiaacYhacqGHRaWkcaGG8bGaamiEaiaacYhacqGHKjYOcaaIYaGaaiiFaiaadggacaGG8bGaeyizImQaam4AaiabgUcaRiaaikdacaGG8bGaamyyaiaacYhaaeaacaGG8bGabmiEayaaiaWaaSbaaSqaaiaadIhacaGGSaGaamOBaaqabaGccqGHsislcaWG4bGaaiiFaiabgsMiJkaacYhaceWG4bGbaGaadaWgaaWcbaGaamiEaiaacYcacaWGUbaabeaakiabgkHiTiaadggacaGG8bGaey4kaSIaaiiFaiaadggacqGHsislcaWG4bGaaiiFaiabgsMiJkaacYhacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyyaiaacYhacqGHRaWkcaGG8bGaamyyaiabgkHiTiaadIhacaGG8bGaeyizImQaam4AaiabgUcaRiaaikdacaGG8bGaamyyaiaacYhaaaaaaa@7B19@

Man wähle nun ein n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3BD8@ , so dass | a n a|<δ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaiabgYda8iabes7aKbaa@3E74@ für alle n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@3A7B@ . Für diese n und alle x gilt also:

|( x ˜ x,n x)(ax)|=| x ˜ x,n a|<| a n a|<δ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaacIcaceWG4bGbaGaadaWgaaWcbaGaamiEaiaacYcacaWGUbaabeaakiabgkHiTiaadIhacaGGPaGaeyOeI0IaaiikaiaadggacqGHsislcaWG4bGaaiykaiaacYhacqGH9aqpcaGG8bGabmiEayaaiaWaaSbaaSqaaiaadIhacaGGSaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaiabgYda8iaacYhacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyyaiaacYhacqGH8aapcqaH0oazaaa@566E@ .

Damit hat man für alle n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@3A7B@ und alle x[|a|,|a|] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaGG8bGaamyyaiaacYhacaGGSaGaaiiFaiaadggacaGG8bGaaiyxaaaa@4193@ :

| f( a n x)f(ax) a n a g(x) f (ax)g(x)| = | f ( x ˜ x,n x) f (ax)||g(x)| < ε c c=ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiaacYhadaWcaaqaaiaadAgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaWGHbGaeyOeI0IaamiEaiaacMcaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyyaaaacqGHflY1caWGNbGaaiikaiaadIhacaGGPaGaeyOeI0IabmOzayaafaGaaiikaiaadggacqGHsislcaWG4bGaaiykaiabgwSixlaadEgacaGGOaGaamiEaiaacMcacaGG8baabaGaeyypa0dabaGaaiiFaiqadAgagaqbaiaacIcaceWG4bGbaGaadaWgaaWcbaGaamiEaiaacYcacaWGUbaabeaakiabgkHiTiaadIhacaGGPaGaeyOeI0IabmOzayaafaGaaiikaiaadggacqGHsislcaWG4bGaaiykaiaacYhacqGHflY1caGG8bGaam4zaiaacIcacaWG4bGaaiykaiaacYhaaeaacqGH8aapaeaadaWcaaqaaiabew7aLbqaaiaadogaaaGaeyyXICTaam4yaiabg2da9iabew7aLbaaaaa@7B8D@

Die benötigte gleichmäßige Konvergenz ist also nachgewiesen.

Wir zeigen nun abschließend, dass fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgaaaa@38AF@ auch stetig differenzierbar ist, dass also die Ableitung (fg ) =f(0)g+ f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGabiykayaafaGaeyypa0JaamOzaiaacIcacaaIWaGaaiykaiabgwSixlaadEgacqGHRaWkceWGMbGbauaacqGHxiIkcaWGNbaaaa@4502@ in jedem a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@39C3@ stetig ist. Sei dazu ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ eine beliebige gegen a konvergierende Folge. Um nun die Konvergenz (fg ) ( a n )(fg ) (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGabiykayaafaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyOKH4QaaiikaiaadAgacqGHxiIkcaWGNbGabiykayaafaGaaiikaiaadggacaGGPaaaaa@45D3@ nachzuweisen, zerlegen wir (fg ) ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGabiykayaafaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3D7C@ in drei Summanden:

(fg ) ( a n ) =f(0)g( a n )+ 0 a n f ( a n X)g =f(0)g( a n )+ 0 a f ( a n X)g + a a n f ( a n X)g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaacIcacaWGMbGaey4fIOIaam4zaiqacMcagaqbaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaqaaiabg2da9iaadAgacaGGOaGaaGimaiaacMcacqGHflY1caWGNbGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaey4kaSYaa8qCaeaaceWGMbGbauaacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadggadaWgaaadbaGaamOBaaqabaaaniabgUIiYdaakeaaaeaacqGH9aqpcaWGMbGaaiikaiaaicdacaGGPaGaeyyXICTaam4zaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgUcaRmaapehabaGabmOzayaafaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGybGaaiykaiabgwSixlaadEgaaSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGccqGHRaWkdaWdXbqaaiqadAgagaqbaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamiwaiaacMcacqGHflY1caWGNbaaleaacaWGHbaabaGaamyyamaaBaaameaacaWGUbaabeaaa0Gaey4kIipaaaaaaa@802D@
  • Da g stetig ist, hat man sofort f(0)g( a n )f(0)g(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabgwSixlaadEgacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacqGHsgIRcaWGMbGaaiikaiaaicdacaGGPaGaeyyXICTaam4zaiaacIcacaWGHbGaaiykaaaa@49E5@ .

  • Mit dem dritten Summanden verfahren wir genauso wie in 1.: Gemäß Mittelwertsatz [8.2.8] gibt es zunächst zu jedem n ein x ˜ n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaaaa@3814@ zwischen a und a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaaaaa@37EE@ , d.h. | x ˜ n a|<| a n a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadIhagaacamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggacaGG8bGaeyipaWJaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaaaa@42D7@ , und damit auch a n x ˜ n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiqadIhagaacamaaBaaaleaacaWGUbaabeaakiabgkziUkaaicdaaaa@3DC1@ , so dass

    a a n f ( a n X)g =( a n a) f ( a n x ˜ )g( x ˜ )0 f (0)g(a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaceWGMbGbauaacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaamyyaaqaaiaadggadaWgaaadbaGaamOBaaqabaaaniabgUIiYdGccqGH9aqpcaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggacaGGPaGaeyyXICTabmOzayaafaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislceWG4bGbaGaacaGGPaGaeyyXICTaam4zaiaacIcaceWG4bGbaGaacaGGPaGaeyOKH4QaaGimaiabgwSixlqadAgagaqbaiaacIcacaaIWaGaaiykaiabgwSixlaadEgacaGGOaGaamyyaiaacMcacqGH9aqpcaaIWaaaaa@6855@ ,

    wobei die notierte Konvergenz durch die Stetigkeit von f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaaaaa@36E0@ und g gewährleistet ist.

  • Nach den vorstehenden Ergebnissen reicht es nun, für den zweiten Summanden die Konvergenz

    0 a f ( a n X)g 0 a f (aX)g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaceWGMbGbauaacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiabgkziUoaapehabaGabmOzayaafaGaaiikaiaadggacqGHsislcaWGybGaaiykaiabgwSixlaadEgaaSqaaiaaicdaaeaacaWGHbaaniabgUIiYdaaaa@5187@ ,

    nach [8.2.14] also die gleichmäßige Konvergenz f ( a n X)g gm f (aX)g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGybGaaiykaiabgwSixlaadEgadaWfqaqaaiabgkziUcWcbaGaam4zaiaad2gaaeqaaOGabmOzayaafaGaaiikaiaadggacqGHsislcaWGybGaaiykaiabgwSixlaadEgaaaa@4B8C@ auf dem Intervall [|a|,|a|] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTiaacYhacaWGHbGaaiiFaiaacYcacaGG8bGaamyyaiaacYhacaGGDbaaaa@3F12@ nachzuweisen (für a0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaicdaaaa@3950@ , der Fall a=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaaicdaaaa@388F@ ist trivial). Wir orientieren uns jetzt an den Nachweis von 2. und finden wieder k,c>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaacYcacaWGJbGaeyOpa4JaaGimaaaa@3A33@ , so dass für alle x mit |x||a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacaGG8bGaeyizImQaaiiFaiaadggacaGG8baaaa@3D81@ und alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ Abschätzungen

    |g(x)| c |ax| k+2|a| | a n a| k+2|a| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaacYhacaWGNbGaaiikaiaadIhacaGGPaGaaiiFaaqaaiabgsMiJkaadogaaeaacaGG8bGaamyyaiabgkHiTiaadIhacaGG8baabaGaeyizImQaam4AaiabgUcaRiaaikdacaGG8bGaamyyaiaacYhaaeaacaGG8bGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggacaGG8baabaGaeyizImQaam4AaiabgUcaRiaaikdacaGG8bGaamyyaiaacYhaaaaaaa@56DE@ [1]

    gültig sind. Und ebenso finden wir zu einem beliebigen ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ ein δ>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaeyOpa4JaaGimaaaa@3950@ , so dass

    | f (r) f (s)|< ε c MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadAgagaqbaiaacIcacaWGYbGaaiykaiabgkHiTiqadAgagaqbaiaacIcacaWGZbGaaiykaiaacYhacqGH8aapdaWcaaqaaiabew7aLbqaaiaadogaaaaaaa@4308@ [2]

    für alle r,s[k|a|,k+|a|] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacYcacaWGZbGaeyicI4Saai4waiabgkHiTiaadUgacqGHsislcaGG8bGaamyyaiaacYhacaGGSaGaam4AaiabgUcaRiaacYhacaWGHbGaaiiFaiaac2faaaa@46E4@ mit |rs|<δ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadkhacqGHsislcaWGZbGaaiiFaiabgYda8iabes7aKbaa@3D6E@ . Man wähle jetzt ein n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3BD8@ , so dass | a n a|<δ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbGaaiiFaiabgYda8iabes7aKbaa@3E74@ für alle n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@3A7B@ . Dann gilt für diese n und alle x:

    | a n x(ax)|=| a n a|<δ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWG4bGaeyOeI0IaaiikaiaadggacqGHsislcaWG4bGaaiykaiaacYhacqGH9aqpcaGG8bGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggacaGG8bGaeyipaWJaeqiTdqgaaa@4A89@ .

    Mit [1] und [2] hat man daher für alle n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@3A7B@ und alle x[|a|,|a|] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaGG8bGaamyyaiaacYhacaGGSaGaaiiFaiaadggacaGG8bGaaiyxaaaa@4193@

    | f ( a n x)g(x) f (ax)g(x)|| f ( a n x) f (ax)|c< ε c c=ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadAgagaqbaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamiEaiaacMcacqGHflY1caWGNbGaaiikaiaadIhacaGGPaGaeyOeI0IabmOzayaafaGaaiikaiaadggacqGHsislcaWG4bGaaiykaiabgwSixlaadEgacaGGOaGaamiEaiaacMcacaGG8bGaeyizImQaaiiFaiqadAgagaqbaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamiEaiaacMcacqGHsislceWGMbGbauaacaGGOaGaamyyaiabgkHiTiaadIhacaGGPaGaaiiFaiabgwSixlaadogacqGH8aapdaWcaaqaaiabew7aLbqaaiaadogaaaGaeyyXICTaam4yaiabg2da9iabew7aLbaa@6C16@ .

    Damit ist die gleichmäßige Konvergenz f ( a n X)g gm f (aX)g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGybGaaiykaiabgwSixlaadEgadaWfqaqaaiabgkziUcWcbaGaam4zaiaad2gaaeqaaOGabmOzayaafaGaaiikaiaadggacqGHsislcaWGybGaaiykaiabgwSixlaadEgaaaa@4B8C@ auf [|a|,|a|] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTiaacYhacaWGHbGaaiiFaiaacYcacaGG8bGaamyyaiaacYhacaGGDbaaaa@3F12@ gesichert.