6.7. Der Weierstraßsche Approximationssatz


Bereits im Abschnitt 4.5. haben wir die Lagrangeschen Interpolationspolynome eingesetzt, um vorgegebene Punkte der Zeichenebene durch ein Polynom zu verbinden. Allerdings lag der Hauptaspekt dort auf der Forderung, endlich viele Ausgangswerte exakt zu treffen. Sind diese Punkte etwa Bestandteil einer vorgegebenen Funktion, so ist ungewiss, wie gut das Interpolationspolynom auch die anderen Funktionswerte trifft.

In diesem Abschnitt wird sich nun zeigen, dass Polynome in der Lage sind, jede stetige Funktion auf einem abgeschlossenen Intervall beliebig genau nachzuzeichnen. Zwar bewies K. Weierstraß dieses Approximationsverhalten bereits 1886, der hier vorgestellte konstruktive Beweis von S. N. Bernstein jedoch stammt erst aus dem Jahr 1912.

Satz (Weierstraßscher Approximationssatz):  Ist  f C 0 ([a,b]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaaaaa@3FAA@ , so gibt es zu jedem ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3955@ ein Polynom p, so dass

|f(x)p(x)|<ε  für alle  x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGWbGaaiikaiaadIhacaGGPaGaaiiFaiabgYda8iabew7aLjaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@5078@
[6.7.1]

Wir betrachten zunächst nur das Intervall [0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGymaiaac2faaaa@39D1@ und führen in dieser Situation den eigentlichen Beweis. Dazu konstruieren wir eine Polynomfolge ( B n f ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkeadaWgaaWcbaGaamOBaaqabaGccaWGMbGaaiykaaaa@3A20@ , die auf [0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGymaiaac2faaaa@39D1@   gleichmäßig gegen  f konvergiert, eine Folge also, bei der es zu jedem ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3955@ ein n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3BDB@ gibt, so dass

|f(x) B n f (x)|<ε  für alle  n n 0   und alle  x[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGcbWaaSbaaSqaaiaad6gaaeqaaOGaamOzaiaacIcacaWG4bGaaiykaiaacYhacqGH8aapcqaH1oqzcaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGHLjYScaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaaeyDaiaab6gacaqGKbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWG4bGaeyicI4Saai4waiaaicdacaGGSaGaaGymaiaac2faaaa@5DBF@
[6.7.2]

Das Polynom B n 0 f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBaaaleaacaWGUbWaaSbaaWqaaiaaicdaaeqaaaWcbeaakiaadAgaaaa@39B9@ etwa erfüllt dann offensichtlich den Satz von Weierstraß.

Wir stellen zunächst die approximierenden Polynome vor. Bei ihrer Konstruktion benötigen wir die Binomialkoeffizienten  (T n k )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaam4AaaaacaGGPaaaaa@3932@ .

Definition:  Es sei  f:[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaGGBbGaaGimaiaacYcacaaIXaGaaiyxaiabgkziUkabl2riHcaa@3ED7@ irgendeine Funktion und n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ . Das Polynom

B n f k=0 n f( k n ) (T n k )T X k (1X) nk MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBaaaleaacaWGUbaabeaakiaadAgacqGH9aqpdaaeWbqaaiaadAgacaGGOaWaaSaaaeaacaWGRbaabaGaamOBaaaacaGGPaaaleaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIfadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIfacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4Aaaaaaaa@501B@
[6.7.3]

nennen wir das n-te Bernsteinpolynom von  f.

Die ersten Bernsteinpolynome für eine beliebige Funktion  f  sind leicht zu ermitteln:

  • B 1 f =f( 0 1 )(T 1 0 )T X 0 (1X) 1 +f( 1 1 )(T 1 1 )T X 1 (1X) 0 =(f(1)f(0))X+f(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadkeadaWgaaWcbaGaaGymaaqabaGccaWGMbaabaGaeyypa0JaamOzaiaacIcadaWcaaqaaiaaicdaaeaacaaIXaaaaiaacMcacaGGOaqbaeqabiqaaaqaaiaaigdaaeaacaaIWaaaaiaacMcacaWGybWaaWbaaSqabeaacaaIWaaaaOGaaiikaiaaigdacqGHsislcaWGybGaaiykamaaCaaaleqabaGaaGymaaaakiabgUcaRiaadAgacaGGOaWaaSaaaeaacaaIXaaabaGaaGymaaaacaGGPaGaaiikauaabeqaceaaaeaacaaIXaaabaGaaGymaaaacaGGPaGaamiwamaaCaaaleqabaGaaGymaaaakiaacIcacaaIXaGaeyOeI0IaamiwaiaacMcadaahaaWcbeqaaiaaicdaaaaakeaaaeaacqGH9aqpcaGGOaGaamOzaiaacIcacaaIXaGaaiykaiabgkHiTiaadAgacaGGOaGaaGimaiaacMcacaGGPaGaamiwaiabgUcaRiaadAgacaGGOaGaaGimaiaacMcaaaaaaa@630F@

  • B 2 f =f( 0 2 )(T 2 0 )T X 0 (1X) 2 +f( 1 2 )(T 2 1 )T X 1 (1X) 1 +f( 2 2 )(T 2 2 )T X 2 (1X) 0 =(f(0)2f( 1 2 )+f(1)) X 2 +2(f(0)+f( 1 2 ))X+f(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadkeadaWgaaWcbaGaaGOmaaqabaGccaWGMbaabaGaeyypa0JaamOzaiaacIcadaWcaaqaaiaaicdaaeaacaaIYaaaaiaacMcacaGGOaqbaeqabiqaaaqaaiaaikdaaeaacaaIWaaaaiaacMcacaWGybWaaWbaaSqabeaacaaIWaaaaOGaaiikaiaaigdacqGHsislcaWGybGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadAgacaGGOaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGPaGaaiikauaabeqaceaaaeaacaaIYaaabaGaaGymaaaacaGGPaGaamiwamaaCaaaleqabaGaaGymaaaakiaacIcacaaIXaGaeyOeI0IaamiwaiaacMcadaahaaWcbeqaaiaaigdaaaGccqGHRaWkcaWGMbGaaiikamaalaaabaGaaGOmaaqaaiaaikdaaaGaaiykaiaacIcafaqabeGabaaabaGaaGOmaaqaaiaaikdaaaGaaiykaiaadIfadaahaaWcbeqaaiaaikdaaaGccaGGOaGaaGymaiabgkHiTiaadIfacaGGPaWaaWbaaSqabeaacaaIWaaaaaGcbaaabaGaeyypa0JaaiikaiaadAgacaGGOaGaaGimaiaacMcacqGHsislcaaIYaGaamOzaiaacIcadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacMcacqGHRaWkcaWGMbGaaiikaiaaigdacaGGPaGaaiykaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaiikaiabgkHiTiaadAgacaGGOaGaaGimaiaacMcacqGHRaWkcaWGMbGaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiaacMcacaWGybGaey4kaSIaamOzaiaacIcacaaIWaGaaiykaaaaaaa@840C@
     

Für die Funktion |X 1 2 | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIfacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYhaaaa@3B3D@ etwa errechnet man  B 1 |X 1 2 |= 1 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBaaaleaacaaIXaaabeaakiaacYhacaWGybGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaGG8bGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaaaaa@3F82@ und B 2 |X 1 2 |= X 2 X+ 1 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBaaaleaacaaIYaaabeaakiaacYhacaWGybGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaGG8bGaeyypa0JaamiwamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIfacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@43FF@ .
 

Den Beweis zu [6.7.2] bereiten wir mit einigen Hilfsaussagen vor. Dabei spielt das allgemeine Binomialtheorem

(a+b) n = k=0 n (T n k )T a nk b k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacqGHRaWkcaWGIbGaaiykamaaCaaaleqabaGaamOBaaaakiabg2da9maaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaam4AaaaacaGGPaGaamyyamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaGccaWGIbWaaWbaaSqabeaacaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaaa@4B35@

eine wichtige Rolle.

Bemerkung:  Für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AEB@ und x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39DD@ gilt

  1. k=0 n (T n k )T x k (1x) nk =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpcaaIXaaaaa@49F9@

[6.7.4]
  1. k=0 n k(T n k )T x k (1x) nk =nx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGRbGaaiikauaabeqaceaaaeaacaWGUbaabaGaam4AaaaacaGGPaGaamiEamaaCaaaleqabaGaam4AaaaakiaacIcacaaIXaGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gacqGHsislcaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaamOBaiaadIhaaaa@4C1E@

[6.7.5]
  1. k=0 n k(k1)(T n k )T x k (1x) nk =n(n1) x 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGRbGaaiikaiaadUgacqGHsislcaaIXaGaaiykaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabg2da9iaad6gacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaamiEamaaCaaaleqabaGaaGOmaaaaaaa@54EC@

[6.7.6]
  1. k=0 n k 2 (T n k )T x k (1x) nk =nxn x 2 + n 2 x 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaaiikauaabeqaceaaaeaacaWGUbaabaGaam4AaaaacaGGPaGaamiEamaaCaaaleqabaGaam4AaaaakiaacIcacaaIXaGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gacqGHsislcaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaamOBaiaadIhacqGHsislcaWGUbGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad6gadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacaaIYaaaaaaa@558F@

[6.7.7]
  1. k=0 n (knx) 2 (T n k )T x k (1x) nk n 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaGaam4AaiabgkHiTiaad6gacaWG4bGaaiykamaaCaaaleqabaGaaGOmaaaakiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgsMiJoaalaaabaGaamOBaaqaaiaaisdaaaaaaa@51C7@

[6.7.8]

Beweis:  
1.  Die Behauptung ergibt sich direkt aus dem allgemeinen Binomialtheorem:

k=0 n (T n k )T x k (1x) nk = (x+1x) n =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGH9aqpcaGGOaGaamiEaiabgUcaRiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaaaakiabg2da9iaaigdaaaa@5206@

2.  Für n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ ist i.w. nichts zu zeigen. Ist n>1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaigdaaaa@38A2@ , so können wir [6.7.4] für n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgkHiTiaaigdaaaa@3887@ formulieren und damit folgendermaßen rechnen (man beachte die dabei durchgeführte Indexverschiebung):

nx =nx k=0 n1 (T n1 k )T x k (1x) n1k = k=0 n1 n! k!(n1k)! x k+1 (1x) nk1 = k=1 n n! (k1)!(nk)! x k (1x) nk = k=1 n k n! k!(nk)! x k (1x) nk = k=0 n k(T n k )T x k (1x) nk MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaamOBaiaadIhaaeaacqGH9aqpcaWGUbGaamiEamaaqahabaGaaiikauaabeqaceaaaeaacaWGUbGaeyOeI0IaaGymaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aaGcbaaabaGaeyypa0ZaaabCaeaadaWcaaqaaiaad6gacaGGHaaabaGaam4AaiaacgcacaGGOaGaamOBaiabgkHiTiaaigdacqGHsislcaWGRbGaaiykaiaacgcaaaGaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaiabgkHiTiaaigdaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aaGcbaaabaGaeyypa0ZaaabCaeaadaWcaaqaaiaad6gacaGGHaaabaGaaiikaiaadUgacqGHsislcaaIXaGaaiykaiaacgcacaGGOaGaamOBaiabgkHiTiaadUgacaGGPaGaaiyiaaaacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaakeaaaeaacqGH9aqpdaaeWbqaaiaadUgadaWcaaqaaiaad6gacaGGHaaabaGaam4AaiaacgcacaGGOaGaamOBaiabgkHiTiaadUgacaGGPaGaaiyiaaaacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaakeaaaeaacqGH9aqpdaaeWbqaaiaadUgacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaaaa@B92A@

3.  Wir gehen ähnlich wie gerade vor, wobei nur der Fall n>2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaikdaaaa@38A3@ nicht trivial ist:

n(n1) x 2 =n(n1) x 2 k=0 n2 (T n2 k )T x k (1x) n2k = k=0 n2 n! k!(n2k)! x k+2 (1x) n2k = k=2 n n! (k2)!(nk)! x k (1x) nk = k=2 n k(k1) n! k!(nk)! x k (1x) nk = k=0 n k(k1)(T n k )T x k (1x) nk MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaamOBaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaeyypa0JaamOBaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaWG4bWaaWbaaSqabeaacaaIYaaaaOWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gacqGHsislcaaIYaaabaGaam4AaaaacaGGPaGaamiEamaaCaaaleqabaGaam4AaaaakiaacIcacaaIXaGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gacqGHsislcaaIYaGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gacqGHsislcaaIYaaaniabggHiLdaakeaaaeaacqGH9aqpdaaeWbqaamaalaaabaGaamOBaiaacgcaaeaacaWGRbGaaiyiaiaacIcacaWGUbGaeyOeI0IaaGOmaiabgkHiTiaadUgacaGGPaGaaiyiaaaacaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGOmaaaakiaacIcacaaIXaGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gacqGHsislcaaIYaGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gacqGHsislcaaIYaaaniabggHiLdaakeaaaeaacqGH9aqpdaaeWbqaamaalaaabaGaamOBaiaacgcaaeaacaGGOaGaam4AaiabgkHiTiaaikdacaGGPaGaaiyiaiaacIcacaWGUbGaeyOeI0Iaam4AaiaacMcacaGGHaaaaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGOmaaqaaiaad6gaa0GaeyyeIuoaaOqaaaqaaiabg2da9maaqahabaGaam4AaiaacIcacaWGRbGaeyOeI0IaaGymaiaacMcadaWcaaqaaiaad6gacaGGHaaabaGaam4AaiaacgcacaGGOaGaamOBaiabgkHiTiaadUgacaGGPaGaaiyiaaaacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaikdaaeaacaWGUbaaniabggHiLdaakeaaaeaacqGH9aqpdaaeWbqaaiaadUgacaGGOaGaam4AaiabgkHiTiaaigdacaGGPaGaaiikauaabeqaceaaaeaacaWGUbaabaGaam4AaaaacaGGPaGaamiEamaaCaaaleqabaGaam4AaaaakiaacIcacaaIXaGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gacqGHsislcaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaaaaaa@CAE4@

4.  Wir fügen [6.7.5] und [6.7.6] zusammen:

nxn x 2 + n 2 x 2 =nx+n(n1) x 2 = k=0 n k(T n k )T x k (1x) nk + k=0 n k(k1)(T n k )T x k (1x) nk = k=0 n (k+k(k1))(T n k )T x k (1x) nk = k=0 n k 2 (T n k )T x k (1x) nk MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamOBaiaadIhacqGHsislcaWGUbGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad6gadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaeyypa0JaamOBaiaadIhacqGHRaWkcaWGUbGaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaaaeaacqGH9aqpdaaeWbqaaiaadUgacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccqGHRaWkdaaeWbqaaiaadUgacaGGOaGaam4AaiabgkHiTiaaigdacaGGPaGaaiikauaabeqaceaaaeaacaWGUbaabaGaam4AaaaacaGGPaGaamiEamaaCaaaleqabaGaam4AaaaakiaacIcacaaIXaGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gacqGHsislcaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaGcbaaabaGaeyypa0ZaaabCaeaacaGGOaGaam4AaiabgUcaRiaadUgacaGGOaGaam4AaiabgkHiTiaaigdacaGGPaGaaiykaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaOqaaaqaaiabg2da9maaqahabaGaam4AamaaCaaaleqabaGaaGOmaaaakiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaaaaa@A802@

5.  Zunächst gilt für alle x 0 (2x1) 2 =4 x 2 4x+14x(1x)1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaacIcacaaIYaGaamiEaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGinaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aGaamiEaiabgUcaRiaaigdacaaMf8Uaeyi1HSTaaGzbVlaaisdacaWG4bGaaiikaiaaigdacqGHsislcaWG4bGaaiykaiabgsMiJkaaigdaaaa@53A2@ . Also hat man

x(1x) 1 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacIcacaaIXaGaeyOeI0IaamiEaiaacMcacqGHKjYOdaWcaaqaaiaaigdaaeaacaaI0aaaaaaa@3E25@

Mit dieser Abschätzung und den bisherigen Ergebnissen erhalten wir jetzt:

k=0 n (knx) 2 (T n k )T x k (1x) nk = k=0 n k 2 (T n k )T x k (1x) nk 2nx k=0 n k(T n k )T x k (1x) nk + n 2 x 2 k=0 n (T n k )T x k (1x) nk = nxn x 2 + n 2 x 2 2nxnx+ n 2 x 2 = nx(1x) n 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaaabaWaaabCaeaacaGGOaGaam4AaiabgkHiTiaad6gacaWG4bGaaiykamaaCaaaleqabaGaaGOmaaaakiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaOqaaiabg2da9aqaamaaqahabaGaam4AamaaCaaaleqabaGaaGOmaaaakiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgkHiTiaaikdacaWGUbGaamiEamaaqahabaGaam4AaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRiaad6gadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacaaIYaaaaOWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaakeaacqGH9aqpaeaacaWGUbGaamiEaiabgkHiTiaad6gacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOBamaaCaaaleqabaGaaGOmaaaakiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGaamOBaiaadIhacqGHflY1caWGUbGaamiEaiabgUcaRiaad6gadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaeyypa0dabaGaamOBaiaadIhacaGGOaGaaGymaiabgkHiTiaadIhacaGGPaaabaGaeyizImkabaWaaSaaaeaacaWGUbaabaGaaGinaaaaaaaaaa@B3EA@

Nach diesen Vorbereitungen beweisen wir nun den Weierstraßschen Approximationssatz in der Form [6.7.2]. Sei dazu  f C 0 ([a,b]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaaaaa@3FAA@ und ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3955@ gegeben. Wir müssen ein n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3BDB@ finden, so dass

|f(x) B n f(x)|<ε  für alle  n n 0   und alle  x[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGcbWaaSbaaSqaaiaad6gaaeqaaOGaamOzaiaacIcacaWG4bGaaiykaiaacYhacqGH8aapcqaH1oqzcaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGHLjYScaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaaeyDaiaab6gacaqGKbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWG4bGaeyicI4Saai4waiaaicdacaGGSaGaaGymaiaac2faaaa@5DBF@

Wir setzen zur Abkürzung  msup{f(x)|x[0,1]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2da9iGacohacaGG1bGaaiiCaiaacUhacaWGMbGaaiikaiaadIhacaGGPaGaaiiFaiaadIhacqGHiiIZcaGGBbGaaGimaiaacYcacaaIXaGaaiyxaiaac2haaaa@4771@ (beachte:  f ist gemäß [6.6.4] auf [0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGymaiaac2faaaa@39D1@ beschränkt). Da  f auf [0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGymaiaac2faaaa@39D1@ gleichmäßig stetig ist (siehe [6.5.5]), gibt es ein δ>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaeyOpa4JaaGimaaaa@3953@ , so dass

|f(x)f(y)|< ε 2   für alle  x[0,1]  mit |xy|<δ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadMhacaGGPaGaaiiFaiabgYda8maalaaabaGaeqyTdugabaGaaGOmaaaacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaGGBbGaaGimaiaacYcacaaIXaGaaiyxaiaab2gacaqGPbGaaeiDaiaacYhacaWG4bGaeyOeI0IaamyEaiaacYhacqGH8aapcqaH0oazaaa@5B47@ [1]

Mit  f(x)=f(x) k=0 n (T n k )T x k (1x) nk = k=0 n f(x)(T n k )T x k (1x) nk MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaamiEaiaacMcadaaeWbqaaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabg2da9maaqahabaGaamOzaiaacIcacaWG4bGaaiykaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaaa@6649@ (beachte [6.7.4]) erhält man über die Dreiecksungleichung für jedes n die Abschätzung

|f(x) B n f(x)| k=0 n |f(x)f( k n )|(T n k )T x k (1x) nk MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGcbWaaSbaaSqaaiaad6gaaeqaaOGaamOzaiaacIcacaWG4bGaaiykaiaacYhacqGHKjYOdaaeWbqaaiaacYhacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcadaWcaaqaaiaadUgaaeaacaWGUbaaaiaacMcacaGG8bGaaiikauaabeqaceaaaeaacaWGUbaabaGaam4AaaaacaGGPaGaamiEamaaCaaaleqabaGaam4AaaaakiaacIcacaaIXaGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gacqGHsislcaWGRbaaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaaa@5FA7@ [2]

Für ein festes x teilen wir nun die dabei auftretenden Summenden in zwei Gruppen auf:

A{k{0,,n}||x k n |<δ} B{k{0,,n}||x k n |δ} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadgeacqGH9aqpcaGG7bGaam4AaiabgIGiolaacUhacaaIWaGaaiilaiablAciljaacYcacaWGUbGaaiyFaiaacYhacaGG8bGaamiEaiabgkHiTmaalaaabaGaam4Aaaqaaiaad6gaaaGaaiiFaiabgYda8iabes7aKjaac2haaeaacaWGcbGaeyypa0Jaai4EaiaadUgacqGHiiIZcaGG7bGaaGimaiaacYcacqWIMaYscaGGSaGaamOBaiaac2hacaGG8bGaaiiFaiaadIhacqGHsisldaWcaaqaaiaadUgaaeaacaWGUbaaaiaacYhacqGHLjYScqaH0oazcaGG9baaaaaa@62A5@

Für kA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolaadgeaaaa@3926@ ist gemäß [1]  |f(x)f( k n )|< ε 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikamaalaaabaGaam4Aaaqaaiaad6gaaaGaaiykaiaacYhacqGH8aapdaWcaaqaaiabew7aLbqaaiaaikdaaaaaaa@43C8@ , so dass man (für A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgcMi5kabgwGigdaa@39F2@ ) folgendermaßen abschätzen kann (für A= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iabgwGigdaa@3931@ gilt [3] natürlich auch, denn die leere Summe hat ja den Wert 0):

kA |f(x)f( k n )|(T n k )T x k (1x) nk < kA ε 2 (T n k )T x k (1x) nk = ε 2 kA (T n k )T x k (1x) nk = ε 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaamaaqafabaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikamaalaaabaGaam4Aaaqaaiaad6gaaaGaaiykaiaacYhacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4AaiabgIGiolaadgeaaeqaniabggHiLdaakeaacqGH8aapaeaadaaeqbqaamaalaaabaGaeqyTdugabaGaaGOmaaaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4AaiabgIGiolaadgeaaeqaniabggHiLdaakeaacqGH9aqpaeaadaWcaaqaaiabew7aLbqaaiaaikdaaaWaaabuaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4AaiabgIGiolaadgeaaeqaniabggHiLdGccqGH9aqpdaWcaaqaaiabew7aLbqaaiaaikdaaaaaaaaa@8018@ [3]

Ist kB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolaadkeaaaa@3927@ , so hat man | k n x|δ (knx) 2 n 2 δ 2 (knx) 2 n 2 δ 2 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFamaalaaabaGaam4Aaaqaaiaad6gaaaGaeyOeI0IaamiEaiaacYhacqGHLjYScqaH0oazcaaMf8Uaeyi1HSTaaGzbVpaalaaabaGaaiikaiaadUgacqGHsislcaWGUbGaamiEaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaacaWGUbWaaWbaaSqabeaacaaIYaaaaaaakiabgwMiZkabes7aKnaaCaaaleqabaGaaGOmaaaakiaaywW7cqGHuhY2caaMf8+aaSaaaeaacaGGOaGaam4AaiabgkHiTiaad6gacaWG4bGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaad6gadaahaaWcbeqaaiaaikdaaaGccqaH0oazdaahaaWcbeqaaiaaikdaaaaaaOGaeyyzImRaaGymaaaa@63B9@ . Mit [6.7.8] gelingt daher die folgende Abschätzung:

kB |f(x)f( k n )|(T n k )T x k (1x) nk 2m kB (T n k )T x k (1x) nk 2m kB (knx) 2 n 2 δ 2 (T n k )T x k (1x) nk = 2m n 2 δ 2 kB (knx) 2 (T n k )T x k (1x) nk 2m n 2 δ 2 k=0 n (knx) 2 (T n k )T x k (1x) nk 2m n 2 δ 2 n 4 = m 2n δ 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaaaabaaabaWaaabuaeaacaGG8bGaamOzaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaWaaSaaaeaacaWGRbaabaGaamOBaaaacaGGPaGaaiiFaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyicI4SaamOqaaqab0GaeyyeIuoaaOqaaiabgsMiJcqaaiaaikdacaWGTbWaaabuaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4AaiabgIGiolaadkeaaeqaniabggHiLdaakeaacqGHKjYOaeaacaaIYaGaamyBamaaqafabaWaaSaaaeaacaGGOaGaam4AaiabgkHiTiaad6gacaWG4bGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaad6gadaahaaWcbeqaaiaaikdaaaGccqaH0oazdaahaaWcbeqaaiaaikdaaaaaaOGaaiikauaabeqaceaaaeaacaWGUbaabaGaam4AaaaacaGGPaGaamiEamaaCaaaleqabaGaam4AaaaakiaacIcacaaIXaGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gacqGHsislcaWGRbaaaaqaaiaadUgacqGHiiIZcaWGcbaabeqdcqGHris5aaGcbaGaeyypa0dabaWaaSaaaeaacaaIYaGaamyBaaqaaiaad6gadaahaaWcbeqaaiaaikdaaaGccqaH0oazdaahaaWcbeqaaiaaikdaaaaaaOWaaabuaeaacaGGOaGaam4AaiabgkHiTiaad6gacaWG4bGaaiykamaaCaaaleqabaGaaGOmaaaakiaacIcafaqabeGabaaabaGaamOBaaqaaiaadUgaaaGaaiykaiaadIhadaahaaWcbeqaaiaadUgaaaGccaGGOaGaaGymaiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaWGUbGaeyOeI0Iaam4AaaaaaeaacaWGRbGaeyicI4SaamOqaaqab0GaeyyeIuoaaOqaaiabgsMiJcqaamaalaaabaGaaGOmaiaad2gaaeaacaWGUbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdq2aaWbaaSqabeaacaaIYaaaaaaakmaaqahabaGaaiikaiaadUgacqGHsislcaWGUbGaamiEaiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaiaacMcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaaigdacqGHsislcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaakeaacqGHKjYOaeaadaWcaaqaaiaaikdacaWGTbaabaGaamOBamaaCaaaleqabaGaaGOmaaaakiabes7aKnaaCaaaleqabaGaaGOmaaaaaaGccqGHflY1daWcaaqaaiaad6gaaeaacaaI0aaaaiabg2da9maalaaabaGaamyBaaqaaiaaikdacaWGUbGaeqiTdq2aaWbaaSqabeaacaaIYaaaaaaaaaaaaa@D8DF@ [4]

Wählt man nun ein n 0 > m ε δ 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabg6da+maalaaabaGaamyBaaqaaiabew7aLjabes7aKnaaCaaaleqabaGaaGOmaaaaaaaaaa@3E0E@ , so läßt sich die Abschätzung [2] für n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@3A7E@ gemäß [3] und [4] erweitern zu:

|f(x) B n f(x)|< ε 2 + m 2n δ 2 ε 2 + ε 2 =ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGcbWaaSbaaSqaaiaad6gaaeqaaOGaamOzaiaacIcacaWG4bGaaiykaiaacYhacqGH8aapdaWcaaqaaiabew7aLbqaaiaaikdaaaGaey4kaSYaaSaaaeaacaWGTbaabaGaaGOmaiaad6gacqaH0oazdaahaaWcbeqaaiaaikdaaaaaaOGaeyizIm6aaSaaaeaacqaH1oqzaeaacaaIYaaaaiabgUcaRmaalaaabaGaeqyTdugabaGaaGOmaaaacqGH9aqpcqaH1oqzaaa@5517@

Damit ist der Satz von Weierstraß für das Intervall [0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGymaiaac2faaaa@39D1@ bewiesen. Von diesem Spezialfall befreien wir uns nun durch die folgende Überlegung:

Ist [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ ein beliebiges Intervall, so betrachte man die lineare (und damit auch stetige) Funktion g(ba)X+a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaacIcacaWGIbGaeyOeI0IaamyyaiaacMcacaWGybGaey4kaSIaamyyaaaa@3E96@ . Sie bildet das Intervall [0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGymaiaac2faaaa@39D1@ bijektiv auf das Intervall [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ ab. Ist nun  f C 0 ([a,b]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaaaaa@3FAA@ , so ist  fg C 0 ([0,1]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIWaaaaOGaaiikaiaacUfacaaIWaGaaiilaiaaigdacaGGDbGaaiykaaaa@4178@ . Zu vorgegebenem ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3955@ gibt es daher nach dem schon bewiesenen Spezialfall ein Polynom p, so dass

|fg(x)p(x)|<ε  für alle  x[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacqWIyiYBcaWGNbGaaiikaiaadIhacaGGPaGaeyOeI0IaamiCaiaacIcacaWG4bGaaiykaiaacYhacqGH8aapcqaH1oqzcaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaGGBbGaaGimaiaacYcacaaIXaGaaiyxaaaa@5246@ [5]

Die Umkehrfunktion von g ist linear, p g 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiablIHiVjaadEgadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@3ADC@ also wieder ein Polynom. Da x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ und g 1 (x)[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaiabgIGiolaacUfacaaIWaGaaiilaiaaigdacaGGDbaaaa@4076@ gleichwertig sind, können wir [5] umschreiben zu:

|f(x)p g 1 (x)|=|fg( g 1 (x))p( g 1 (x))|<ε  für alle  x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGWbGaeSigI8Maam4zamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaiaacYhacqGH9aqpcaGG8bGaamOzaiablIHiVjaadEgacaGGOaGaam4zamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaiaacMcacqGHsislcaWGWbGaaiikaiaadEgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaamiEaiaacMcacaGGPaGaaiiFaiabgYda8iabew7aLjaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@696A@
 

Das folgende Applet generiert für drei ausgewählte Funktionen die zugehörigen Bernsteinpolynome und illustriert so deren Approximationsverhalten.


6.6. 6.8.