5.7. Monotone and Bounded Sequences


In the last chapter the limit theorems provided a comfortable and quick method to decide on the convergence of a sequence. They are however applicable to only a small fraction of sequences as they have to meet a certain structure. So it is quite sensible to look for further covergence criterions.

We take up again monotony and boundedness. Considered separately both properties are not or only sparsely related to convergence. Combining them surprisingly leads us to a new and useful criterion. Compared to the limit theorems however there is a slight disadvantage as we won't get any information on the value of the limit. Luckily there are some tricks to overcome this insufficiency. Furthermore the new criterion is only valid in the reals and not applicable with sequences e.g. in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOgHqkaaa@36D9@ (cf. [5.7.11]).

Theorem:  For every sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@36D9@ we have:

If ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ is monotone and bounded then ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ is convergent.
[5.7.1]

Proof:  We assume ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ to be increasing. Due to boundedness we find an s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgIGiolabl2riHcaa@3955@ such that

a n s  for all  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgsMiJkaadohacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGHiiIZcqWIvesPdaahaaWcbeqaaiabgEHiQaaaaaa@46CE@ .

Thus the set of all sequence members { a n |n } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadggadaWgaaWcbaGaamOBaaqabaGccaGG8bGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaOGaaiyFaaaa@3F81@ is a nonempty, bounded above subset of MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@36D9@ . According to the completeness axiom - and this is why this theorem is subject to the reals - this set has a least upper bound, its supremum. We set  gsup{ a n |n } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iGacohacaGG1bGaaiiCaiaacUhacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiiFaiaad6gacqGHiiIZcqWIvesPdaahaaWcbeqaaiabgEHiQaaakiaac2haaaa@4459@   and prove:

a n g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaadEgaaaa@3A51@

Let ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ be given. As g is the least upper bound of { a n |n } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadggadaWgaaWcbaGaamOBaaqabaGccaGG8bGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaOGaaiyFaaaa@3F81@ it is impossible for gε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgkHiTiabew7aLbaa@38E9@ to be an upper bound at all. Thus there is at least one sequence member above gε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgkHiTiabew7aLbaa@38E9@ , i.e. we have an n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3B58@ such that a n 0 >gε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbWaaSbaaWqaaiaaicdaaeqaaaWcbeaakiabg6da+iaadEgacqGHsislcqaH1oqzaaa@3CF2@ . Considering that g is a normal upper bound as well and that ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ is increasing we get for all n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@39FB@ :

gε< a n 0 a n g<g+ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgkHiTiabew7aLjabgYda8iaadggadaWgaaWcbaGaamOBamaaBaaameaacaaIWaaabeaaaSqabaGccqGHKjYOcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyizImQaam4zaiabgYda8iaadEgacqGHRaWkcqaH1oqzaaa@47CC@ ,

i.e.  a n ]gε,g+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgIGiolaac2facaWGNbGaeyOeI0IaeqyTduMaaiilaiaadEgacqGHRaWkcqaH1oqzcaGGBbaaaa@4261@ . This proves our assertion according to [5.4.2].

Using the new criterion 'monotone and bounded' is always a two step task. First we solely prove the convergence and second calculate the limit.

Our first example classifies all the sequences of the ( q n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gaaaGccaGGPaaaaa@38E2@ type.

Proposition:  With q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgIGiolabl2riHcaa@3953@ we have:

|q|<1 q n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyipaWJaaGymaiabgkDiElaadghadaahaaWcbeqaaiaad6gaaaGccqGHsgIRcaaIWaaaaa@4142@

[5.7.2]

|q|>1( q n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyOpa4JaaGymaiabgkDiElaacIcacaWGXbWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3FF8@   is divergent

[5.7.3]

Proof:  
1.  

Due to [5.5.6] it is sufficient to prove | q n |=|q | n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghadaahaaWcbeqaaiaad6gaaaGccaGG8bGaeyypa0JaaiiFaiaadghacaGG8bWaaWbaaSqabeaacaWGUbaaaOGaeyOKH4QaaGimaaaa@4156@ , so we may assume 0q<1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadghacqGH8aapcaaIXaaaaa@3A8D@ . We multiply this inequality by q n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaCaaaleqabaGaamOBaaaaaaa@377F@ and get

0 q n+1 q n <1  for all  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyizImQaamyCamaaCaaaleqabaGaamOBaaaakiabgYda8iaaigdacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGHiiIZcqWIvesPdaahaaWcbeqaaiabgEHiQaaaaaa@4DD2@ .

Thus ( q n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gaaaGccaGGPaaaaa@38E2@ is decreasing and bounded, consequently convergent, say to g.

For the remainder task, to prove g=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaaicdaaaa@3815@ , we consider in addition the sequence ( q n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiykaaaa@3A7F@ , also converging to g. As a little trick we calculate the limit of ( q n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiykaaaa@3A7F@ anew using the third limit theorem:

q n+1 g q n+1 =q q n qg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyOKH4Qaam4zaaqaaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyypa0JaamyCaiabgwSixlaadghadaahaaWcbeqaaiaad6gaaaGccqGHsgIRcaWGXbGaeyyXICTaam4zaaaaaaa@4C47@

From the uniqueness of g we know that  g=qgg(1q)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadghacqGHflY1caWGNbGaeyi1HSTaam4zaiabgwSixlaacIcacaaIXaGaeyOeI0IaamyCaiaacMcacqGH9aqpcaaIWaaaaa@46D0@   holds. So we have g=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaaicdaaaa@3815@ as q1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgcMi5kaaigdaaaa@38E1@ is our premise.

2.  

If |q|>1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyOpa4JaaGymaaaa@3A22@ , say |q|=1+x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyypa0JaaGymaiabgUcaRiaadIhaaaa@3BFF@   with an x>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6da+iaaicdaaaa@3828@ we deduce from the Bernoulli inequality:

| q n |=|q | n = (1+x) n 1+nx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghadaahaaWcbeqaaiaad6gaaaGccaGG8bGaeyypa0JaaiiFaiaadghacaGG8bWaaWbaaSqabeaacaWGUbaaaOGaeyypa0JaaiikaiaaigdacqGHRaWkcaWG4bGaaiykamaaCaaaleqabaGaamOBaaaakiabgwMiZkaaigdacqGHRaWkcaWGUbGaamiEaaaa@4A25@ .

(1+nx) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkcaWGUbGaamiEaiaacMcaaaa@3A4F@ is unbounded and so is ( q n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gaaaGccaGGPaaaaa@38E2@ and thus divergent.

Consider:

  • The case |q|=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyypa0JaaGymaaaa@3A20@ is already well known: ( (1) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaaaakiaacMcaaaa@3AED@ is divergent and 1 n =11 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaaCaaaleqabaGaamOBaaaakiabg2da9iaaigdacqGHsgIRcaaIXaaaaa@3BB7@ .
     

With the new criterion we can stock up the known convergences 1 n k 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOBamaaCaaaleqabaGaam4AaaaaaaGccqGHsgIRcaaIWaaaaa@3AF5@ .

Proposition:  For r,s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacYcacaWGZbGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGHxiIkaaaaaa@3C14@ and  q r s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9maalaaabaGaamOCaaqaaiaadohaaaaaaa@3964@   the following holds:

1 n s 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaOqaaeaacaWGUbaaleaacaWGZbaaaaaakiabgkziUkaaicdaaaa@3AEB@

[5.7.4]

1 n q 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOBamaaCaaaleqabaGaamyCaaaaaaGccqGHsgIRcaaIWaaaaa@3AFB@

[5.7.5]

Proof:  
1.  

As the root operator is monotone we have for all n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A68@ :

1nn+1 1 n s n+1 s 1 1 n s 1 n+1 s 0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiaaigdacqGHKjYOcaWGUbGaeyizImQaamOBaiabgUcaRiaaigdaaeaacqGHshI3aeaacaaIXaGaeyizIm6aaOqaaeaacaWGUbaaleaacaWGZbaaaOGaeyizIm6aaOqaaeaacaWGUbGaey4kaSIaaGymaaWcbaGaam4CaaaaaOqaaiabgkDiEdqaaiaaigdacqGHLjYSdaWcaaqaaiaaigdaaeaadaGcbaqaaiaad6gaaSqaaiaadohaaaaaaOGaeyyzIm7aaSaaaeaacaaIXaaabaWaaOqaaeaacaWGUbGaey4kaSIaaGymaaWcbaGaam4CaaaaaaGccqGHLjYScaaIWaaaaaaa@59D9@

From that we see that ( 1 n s ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaaGymaaqaamaakeaabaGaamOBaaWcbaGaam4CaaaaaaGccaGGPaaaaa@399D@ is decreasing and bounded thus convergent with a limit, say g. Again we calculate g using the third limit theorem:

1 n = ( 1 n s ) s g s g s =0g=0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOBaaaacqGH9aqpcaGGOaWaaSaaaeaacaaIXaaabaWaaOqaaeaacaWGUbaaleaacaWGZbaaaaaakiaacMcadaahaaWcbeqaaiaadohaaaGccqGHsgIRcaWGNbWaaWbaaSqabeaacaWGZbaaaOGaeyO0H4Taam4zamaaCaaaleqabaGaam4Caaaakiabg2da9iaaicdacqGHshI3caWGNbGaeyypa0JaaGimaaaa@4CD9@
2.  

With the third limit theorem the result is immediate from 1.:

1 n q = 1 n r s = ( 1 n s ) r 0 r =0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOBamaaCaaaleqabaGaamyCaaaaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGUbWaaWbaaSqabeaadaWcaaqaaiaadkhaaeaacaWGZbaaaaaaaaGccqGH9aqpcaGGOaWaaSaaaeaacaaIXaaabaWaaOqaaeaacaWGUbaaleaacaWGZbaaaaaakiaacMcadaahaaWcbeqaaiaadkhaaaGccqGHsgIRcaaIWaWaaWbaaSqabeaacaWGYbaaaOGaeyypa0JaaGimaaaa@494B@

The next example is a classical one. It introduces one of the most important mathematical constants, the number e.

Example:  

  • ( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ and  ( (1+ 1 n ) n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacMcaaaa@3E3D@ are convergent.
[5.7.6]

Proof:  Both assertions are best proved simultaneously. We need three steps to show that each sequence is monotone and bounded.
1.  

( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ is increasing, because from the Bernoulli inequality we get for n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A68@

(1+ 1 n+1 ) n+1 (1 1 n+1 ) n+1 = (1 1 (n+1) 2 ) n+1 1 1 n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwSixlaacIcacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBaiabgUcaRiaaigdaaaGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGH9aqpcaGGOaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaaaaOGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHLjYScaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBaiabgUcaRiaaigdaaaaaaa@5D2C@

and thus have:

(1+ 1 n+1 ) n+1 1 (1 1 n+1 ) n = ( n+1 n ) n = (1+ 1 n ) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwMiZoaalaaabaGaaGymaaqaaiaacIcacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBaiabgUcaRiaaigdaaaGaaiykamaaCaaaleqabaGaamOBaaaaaaGccqGH9aqpcaGGOaWaaSaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaad6gaaaGaaiykamaaCaaaleqabaGaamOBaaaakiabg2da9iaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaaaa@568E@ .
 
2.  

( (1+ 1 n ) n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacMcaaaa@3E3D@ is decreasing: Again we employ the Bernoulli inequality for n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A68@ to get

( (n+1) 2 (n+1) 2 1 ) n+1 = (1+ 1 (n+1) 2 1 ) n+1 (1+ 1 (n+1) 2 ) n+1 1+ 1 n+1 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyypa0JaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwMiZkaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwMiZkaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaaaaa@66F3@

This allows the following estimate:

(1+ 1 n+1 ) n+2 ( (n+1) 2 (n+1) 2 1 ) n+1 (1+ 1 n+1 ) n+1 = ( (n+1) 2 (n+2)n n+2 n+1 ) n+1 = ( n+1 n ) n+1 = (1+ 1 n ) n+1 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGOmaaaaaOqaaiabgsMiJkaacIcadaWcaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwSixlaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaiabgUcaRiaaigdaaaGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaaaeaacqGH9aqpcaGGOaWaaSaaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaiikaiaad6gacqGHRaWkcaaIYaGaaiykaiaad6gaaaGaeyyXIC9aaSaaaeaacaWGUbGaey4kaSIaaGOmaaqaaiaad6gacqGHRaWkcaaIXaaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaaabaGaeyypa0JaaiikamaalaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaaabaGaeyypa0JaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaaaaa@82D8@
 
3.  

( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ and  ( (1+ 1 n ) n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacMcaaaa@3E3D@ are bounded. As (1+ 1 1 ) 1 =2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaaaaiaacMcadaahaaWcbeqaaiaaigdaaaGccqGH9aqpcaaIYaaaaa@3C99@ and (1+ 1 1 ) 2 =4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaaaaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaI0aaaaa@3C9C@ the just proven monotony implies:

2 (1+ 1 n ) n (1+ 1 n ) n+1 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgsMiJkaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyizImQaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyizImQaaGinaaaa@495B@ .

Consider:

  • The convergence (1+ 1 n ) n+1 (1+ 1 n ) n = (1+ 1 n ) n 1 n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyOeI0IaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGH9aqpcaGGOaGaaGymaiabgUcaRmaalaaabaGaaGymaaqaaiaad6gaaaGaaiykamaaCaaaleqabaGaamOBaaaakiabgwSixpaalaaabaGaaGymaaqaaiaad6gaaaGaeyOKH4QaaGimaaaa@5142@ shows that in addition to [5.7.6] ( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ and  ( (1+ 1 n ) n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacMcaaaa@3E3D@ have the same limit! Leonhard Euler denoted this limit by the symbol  e :

    elim (1+ 1 n ) n =lim (1+ 1 n ) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaiabg2da9iGacYgacaGGPbGaaiyBaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyypa0JaciiBaiaacMgacaGGTbGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaa@4B4E@

    [5.7.7]

    We will encounter the number e some more times in the sequel and provide other calculations than [5.7.7]. Euler himself published the first 18 decimal places of e 1748 in his Introductio in Analysin infinitorum

    e = 2.718281828459045235....

    Certainly Euler didn't use the representation in [5.7.7] for his calculation as the convergence is rather slow. For ( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ e.g. this can be checked interactively with the following applet. Take

    (This applet operates on so called constructive real numbers and in theory can display arbitrary many decimal places. Though the default of 100 places could be replaced
    by e.g.  with a  
    one should keep in mind that the actual work station is a limiting factor. Problems are not unlikely to occur with more than 3000 decimal places!)

    The section after next will provide a sequence that converges to e markedly speedy. This sequence also will serve to prove that e is irrational.


     

Using the boundedness of ( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ e.g. above by 4 enables us to prove the convergence of another, non-elementary sequence.

Example:  

  • n n 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGUbaaleaacaWGUbaaaOGaeyOKH4QaaGymaaaa@3A1C@
[5.7.8]

Proof:  As (1+ 1 n ) n 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGHKjYOcaaI0aaaaa@3DBA@ the following assertions hold for each n4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaaisdaaaa@38E0@ :

(1+ 1 n ) n n n+1n n n = n n+1 n n+1 n+1 n n . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaaqaaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyizImQaamOBaaqaaiaad6gacqGHRaWkcaaIXaGaeyizImQaamOBaiabgwSixpaakeaabaGaamOBaaWcbaGaamOBaaaakiabg2da9maakeaabaGaamOBamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaabaGaamOBaaaaaOqaamaakeaabaGaamOBaiabgUcaRiaaigdaaSqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyizIm6aaOqaaeaacaWGUbaaleaacaWGUbaaaaaaaaa@5649@

Therefor ( n n ) n4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaakeaabaGaamOBaaWcbaGaamOBaaaakiaacMcadaWgaaWcbaGaamOBaiabgwMiZkaaisdaaeqaaaaa@3C70@ is decreasing and, because of 1 n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJoaakeaabaGaamOBaaWcbaGaamOBaaaaaaa@39DA@ , bounded as well thus convergent to a number g1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgwMiZkaaigdaaaa@38D6@ . The case g>1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg6da+iaaigdaaaa@3818@ however is impossible: The ordering of MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@36D9@ is archimedic, so for every x>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6da+iaaicdaaaa@3828@ there is an n 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaeyyzImRaaGinaaaaaaa@3BFD@ such that 1<(n1) x 2 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgYda8iaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacqGHflY1daWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaaa@4022@ . The generalized binomial theorem [5.2.5] now allows the following estimate for this n:

n<n(n1) x 2 2 =(T n 2 )T 1 n2 x 2 i=0 n (T n i )T 1 ni x i = (1+x) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgYda8iaad6gacqGHflY1caGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaeyyXIC9aaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaacqGH9aqpcaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaaIYaaaaiaacMcacaaIXaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGOmaaaakiabgwSixlaadIhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOdaaeWbqaaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadMgaaaGaaiykaiaaigdadaahaaWcbeqaaiaad6gacqGHsislcaWGPbaaaOGaeyyXICTaamiEamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabg2da9iaacIcacaaIXaGaey4kaSIaamiEaiaacMcadaahaaWcbeqaaiaad6gaaaaaaa@6893@ .

So we have n n <1+x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGUbaaleaacaWGUbaaaOGaeyipaWJaaGymaiabgUcaRiaadIhaaaa@3B12@ and thus 1+xg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgUcaRiaadIhacqGHGjsUcaWGNbaaaa@3AB6@ , considering that  n n g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGUbaaleaacaWGUbaaaOGaeyyzImRaam4zaaaa@3A26@ .

The convergence of ( n n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaakeaabaGaamOBaaWcbaGaamOBaaaakiaacMcaaaa@38CD@ entails in further results. For 1an MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadggacqGHKjYOcaWGUbaaaa@3B67@ we have 1 a n n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJoaakeaabaGaamyyaaWcbaGaamOBaaaakiabgsMiJoaakeaabaGaamOBaaWcbaGaamOBaaaaaaa@3D8D@ so the nesting theorem [5.5.8] provides

a n 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGHbaaleaacaWGUbaaaOGaeyOKH4QaaGymaaaa@3A0F@
[5.7.9]

From that the same is also true for  0<a<1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadggacqGH8aapcaaIXaaaaa@39CC@ a n = 1 1 a n 1 1 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGHbaaleaacaWGUbaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOqaaeaadaWcaaqaaiaaigdaaeaacaWGHbaaaaWcbaGaamOBaaaaaaGccqGHsgIRdaWcaaqaaiaaigdaaeaacaaIXaaaaiabg2da9iaaigdaaaa@4135@ .
 

The remainder examples now emphasize on the importance of the 'monotone and bounded' criterion for recursive sequences.

Example:  

  • Let a 1 2 a n+1 2 a n a n +1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaikdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9maalaaabaGaaGOmaiaadggadaWgaaWcbaGaamOBaaqabaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaaGymaaaaaaa@45E9@   generate the recursive sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ . We have:  a n 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaaigdaaaa@3A20@ .

Proof:  First we show by induction
 

1 a n 2  for all  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laaigdacqGHKjYOcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyizImQaaGOmaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@4D64@ ,

which in fact means that ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ is already bounded.

►   122, i.e.  1 a 1 2. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laaigdacqGHKjYOcaaIYaGaeyizImQaaGOmaiaabYcacaqGGaGaaeyyaiaabYgacaqGZbGaae4BaiaabQdacaaIXaGaeyizImQaamyyamaaBaaaleaacaaIXaaabeaakiabgsMiJkaaikdaaaa@4BEA@

►   From 1 a n 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadggadaWgaaWcbaGaamOBaaqabaGccqGHKjYOcaaIYaaaaa@3F78@ we can estimate

1= 2 a n a n + a n 2 a n a n +1 22 1+1 =2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laaigdacqGH9aqpdaWcaaqaaiaaikdacaWGHbWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadggadaWgaaWcbaGaamOBaaqabaaaaOGaeyizIm6aaSaaaeaacaaIYaGaamyyamaaBaaaleaacaWGUbaabeaaaOqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaaIXaaaaiabgsMiJoaalaaabaGaaGOmaiabgwSixlaaikdaaeaacaaIXaGaey4kaSIaaGymaaaacqGH9aqpcaaIYaaaaa@5544@

and thus have  1 a n+1 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laaigdacqGHKjYOcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabgsMiJkaaikdaaaa@4258@ .

Furthermore ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ proves to be decreasing: Because a n 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGHLjYScaaIXaaaaa@3E5B@ implies a n ( a n 1)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaaigdacaGGPaGaeyyzImRaaGimaaaa@436A@ , the assertion holds due to the following equivalence:

a n a n+1 a n 2 a n a n +1 a n 2 + a n 2 a n a n 2 a n 0 a n ( a n 1)0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=xaabaqafiaaaaqaaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHLjYScaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaOqaaiabgsDiBdqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHLjYSdaWcaaqaaiaaikdacaWGHbWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaaigdaaaaabaGaeyi1HSnabaGaamyyamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgUcaRiaadggadaWgaaWcbaGaamOBaaqabaGccqGHLjYScaaIYaGaamyyamaaBaaaleaacaWGUbaabeaaaOqaaiabgsDiBdqaaiaadggadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHsislcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyyzImRaaGimaaqaaiabgsDiBdqaaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaaigdacaGGPaGaeyyzImRaaGimaaaaaaa@7165@

All in all ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ has a limit, say g[1,2] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHiiIZcaGGBbGaaGymaiaacYcacaaIYaGaaiyxaaaa@4022@ . But g is the limit of ( a n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiykaaaa@3AEE@ as well, so we can calculate g using the limit theorems:

g a n+1 = 2 a n a n +1 2g g+1 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHqgcRcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9maalaaabaGaaGOmaiaadggadaWgaaWcbaGaamOBaaqabaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaaGymaaaacqGHsgIRdaWcaaqaaiaaikdacaWGNbaabaGaam4zaiabgUcaRiaaigdaaaaaaa@4E07@

As g is unique, g satisfies the equation  g= 2g g+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGH9aqpdaWcaaqaaiaaikdacaWGNbaabaGaam4zaiabgUcaRiaaigdaaaaaaa@3FFE@  . So we have (note that g[1,2] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHiiIZcaGGBbGaaGymaiaacYcacaaIYaGaaiyxaaaa@4022@ ):

g 2 +g=2gg(g1)=0g=1. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGNbGaeyypa0JaaGOmaiaadEgacqGHuhY2caWGNbGaaiikaiaadEgacqGHsislcaaIXaGaaiykaiabg2da9iaaicdacqGHuhY2caWGNbGaeyypa0JaaGymaaaa@4E24@

The example to follow is a valuable tool when calculating square roots approximatively. It is an ancient procedure as the name suggests.

Proposition (Babylonian Square Root Algorithm):  Let a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggacqGH+aGpcaaIWaaaaa@3C73@ be arbitrary. For each initial value a 1 >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcaaIWaaaaa@3D64@ the recursive sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ given by  a n+1 1 2 ( a n + a a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRmaalaaabaGaamyyaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaaaOGaaiykaaaa@4753@   is convergent, more precise:

a n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGHsgIRdaGcaaqaaiaadggaaSqabaaaaa@3EC8@
[5.7.10]

Proof:  A simple inductive consideration shows that a n >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGH+aGpcaaIWaaaaa@3D9C@ for all n. As squares are always positive we can argue as follows
 

0 ( a n a a n ) 2 = a n 2 a + a a n 2 a a n + a a n a 1 2 ( a n + a a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=xaabaqadiaaaeaaaeaacaaIWaGaeyizImQaaiikamaakaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaeqaaOGaeyOeI0YaaOaaaeaadaWcaaqaaiaadggaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaaIYaWaaOaaaeaacaWGHbaaleqaaOGaey4kaSYaaSaaaeaacaWGHbaabaGaamyyamaaBaaaleaacaWGUbaabeaaaaaakeaacqGHshI3aeaacaaIYaWaaOaaaeaacaWGHbaaleqaaOGaeyizImQaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRmaalaaabaGaamyyaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaaaaGcbaGaeyO0H4nabaWaaOaaaeaacaWGHbaaleqaaOGaeyizIm6aaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRmaalaaabaGaamyyaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaaaOGaaiykaaaaaaa@682B@

to get the estimate a n+1 a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyyzIm7aaOaaaeaacaWGHbaaleqaaaaa@403E@ . Employing this result we get for n2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laad6gacqGHLjYScaaIYaaaaa@3D40@ :

a n a n+1   = a n a n 2 a 2 a n = a n 2 a 2 a n a 2 a 2 a = a 2 a 2 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=xaabaqaeiaaaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaOqaaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaakeaacaaIYaaaaiabgkHiTmaalaaabaGaamyyaaqaaiaaikdacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaaaOqaaaqaaiabg2da9maalaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaOqaaiaaikdaaaGaeyOeI0YaaSaaaeaacaWGHbaabaGaaGOmaiaadggadaWgaaWcbaGaamOBaaqabaaaaaGcbaaabaGaeyyzIm7aaSaaaeaadaGcaaqaaiaadggaaSqabaaakeaacaaIYaaaaiabgkHiTmaalaaabaGaamyyaaqaaiaaikdadaGcaaqaaiaadggaaSqabaaaaaGcbaaabaGaeyypa0ZaaSaaaeaadaGcaaqaaiaadggaaSqabaaakeaacaaIYaaaaiabgkHiTmaalaaabaWaaOaaaeaacaWGHbaaleqaaaGcbaGaaGOmaaaacqGH9aqpcaaIWaaaaaaa@634A@

Thus ( a n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laacIcacaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacMcaaaa@3ED0@ is decreasing and due to  a a n+1 a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=paakaaabaGaamyyaaWcbeaakiabgsMiJkaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyizImQaamyyamaaBaaaleaacaaIYaaabeaaaaa@43BA@   bounded as well and thus in fact convergent with a limit g a >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHLjYSdaGcaaqaaiaadggaaSqabaGccqGH+aGpcaaIWaaaaa@3F4A@ . As a n g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGHsgIRcaWGNbaaaa@3EB3@ is also true our 'standard trick' is applicable and from

g a n+1 = 1 2 ( a n + a a n ) g0 1 2 (g+ a g ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHqgcRcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkdaWcaaqaaiaadggaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaakiaacMcadaWfqaqaaiabgkziUcWcbaGaam4zaiabgcMi5kaaicdaaeqaaOWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaam4zaiabgUcaRmaalaaabaGaamyyaaqaaiaadEgaaaGaaiykaaaa@5655@

we calculate g like this:  g= 1 2 (g+ a g )2g=g+ a g g 2 =ag= a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaWGNbGaey4kaSYaaSaaaeaacaWGHbaabaGaam4zaaaacaGGPaGaeyi1HSTaaGOmaiaadEgacqGH9aqpcaWGNbGaey4kaSYaaSaaaeaacaWGHbaabaGaam4zaaaacqGHuhY2caWGNbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamyyaiabgsDiBlaadEgacqGH9aqpdaGcaaqaaiaadggaaSqabaaaaa@567D@ .

Consider:

  • The basic principle of the Babylonian algorithm is as simple as effective. The equivalence

    a n < a a a n > a a = a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGH8aapdaGcaaqaaiaadggaaSqabaGccqGHuhY2daWcaaqaaiaadggaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaakiabg6da+maalaaabaGaamyyaaqaamaakaaabaGaamyyaaWcbeaaaaGccqGH9aqpdaGcaaqaaiaadggaaSqabaaaaa@485A@

    says: If a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaaaaa@3BD0@ is too small (to big) then a a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=paalaaabqaq=laadggaaeaba9VaamyyamaaBaaaleaacaWGUbaabeaaaaaaaa@3F4C@ is too big (too small). In any way their arithmetic mean a n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaaaa@3D6D@ should be an even better estimate.
     

  • If a is rational a simple proof by induction shows that ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ is a sequence in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=lablQriKcaa@3B3B@ . In particular we have:

    There is a monotone and bounded sequence ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=lablQriKcaa@3B3B@ converging to the irrational number 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=paakaaabqaq=laaikdaaSqabaaaaa@3BE5@ .

    [5.7.11]

    As the limit of ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ is unique we conclude that ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ is divergent in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=lablQriKcaa@3B3B@ !
     

  • The Babylonian root algorithm converges rather quickly. Even with an unfavourable initial value only few iterations are needed to fix the first ten decimal places. Let's take the square root of to demonstrate this. First we choose a 1 = MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9aaa@3846@   as initial value, then set the number of iteration loops to and finally start the algorithm:

    n= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9aaa@3762@   a n = MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabg2da9aaa@387E@  


5.6. 5.8.