8.9. Allgemeine Exponential- und Logarithmusfunktionen


Die Rechengesetze für ln und e X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaaaaa@37E0@ bieten eine Alternative zur Berechnung von Potenzen an: Für alle a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ und n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablssiIcaa@39DB@ ist nämlich

a n = e ln( a n ) = e nlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamOBaaaakiabg2da9iaadwgadaahaaWcbeqaaiGacYgacaGGUbGaaiikaiaadggadaahaaadbeqaaiaad6gaaaWccaGGPaaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamOBaiabgwSixlGacYgacaGGUbGaamyyaaaaaaa@4796@ .

Diese Darstellung eröffnet nun die Möglichkeit, Potenzen mit beliebigen reellen Exponenten einzuführen.

Definition:  Für a,x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWG4bGaeyicI4SaeSyhHekaaa@3B73@ , a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ , setzen wir

a x e xlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaaaaa@4034@
[8.9.1]

Wie bisher nennen wir a die Basis und x den Exponenten der Potenz   a x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaaaaa@37FC@ . Als Funktionswert der e-Funktion ist jede Potenz von a positiv: a x >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg6da+iaaicdaaaa@39C8@ .

Ferner beachte man, dass wir nach [8.8.25] auch die Schreibweise a x =exp(nlna) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iGacwgacaGG4bGaaiiCaiaacIcacaWGUbGaeyyXICTaciiBaiaac6gacaWGHbGaaiykaaaa@4347@ verwenden dürfen.

Der neue Potenzbegriff ist nur für positive Basen erklärt. Um sicher zu gehen, dass er hier tatsächlich den alten fortsetzt, müssen zwei Punkte geklärt werden:

  • Stimmen für x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolablQriKcaa@39DD@ die neuen Werte mit den alten überein?

  • Gelten die Potenzgesetze auch weiterhin?

Beide Fragen beantworten wir positiv.

Bemerkung:  Sei a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ . Dann gilt für alle x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolablQriKcaa@39DD@ :

a x =exp(xlna) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iGacwgacaGG4bGaaiiCaiaacIcacaWG4bGaeyyXICTaciiBaiaac6gacaWGHbGaaiykaaaa@4351@
[8.9.2]

Beweis:  Ist etwa x= n m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9maalaaabaGaamOBaaqaaiaad2gaaaaaaa@39E4@ , m>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg6da+iaaicdaaaa@38A0@ , so hat man mit [8.8.2] und [8.7.6;10] in der alten Bedeutung für a x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaaaaa@37FC@ :

a x = a n m = a n m =exp(ln a n m )=exp( n m lna)=exp(xlna) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadggadaahaaWcbeqaamaaleaameaacaWGUbaabaGaamyBaaaaaaGccqGH9aqpdaGcbaqaaiaadggadaahaaWcbeqaaiaad6gaaaaabaGaamyBaaaakiabg2da9iGacwgacaGG4bGaaiiCaiaacIcaciGGSbGaaiOBamaakeaabaGaamyyamaaCaaaleqabaGaamOBaaaaaeaacaWGTbaaaOGaaiykaiabg2da9iGacwgacaGG4bGaaiiCaiaacIcadaWcaaqaaiaad6gaaeaacaWGTbaaaiabgwSixlGacYgacaGGUbGaamyyaiaacMcacqGH9aqpciGGLbGaaiiEaiaacchacaGGOaGaamiEaiabgwSixlGacYgacaGGUbGaamyyaiaacMcaaaa@6201@

Auch beim Nachweis der Potenzgesetze greifen wir auf die Eigenschaften [8.8.2;3] zurück. Zusätzlich setzen wir die Rechenregeln für den Logarithmus [8.7.8;9] und für die e-Funktion [8.8.15;16] ein.

Bemerkung (Potenzgesetze):  Sei a,b>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyOpa4JaaGimaaaa@3A2B@ . Dann gilt für alle x,y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4SaeSyhHekaaa@3B8B@ :

1.    a x b x = (ab) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabgwSixlaadkgadaahaaWcbeqaaiaadIhaaaGccqGH9aqpcaGGOaGaamyyaiabgwSixlaadkgacaGGPaWaaWbaaSqabeaacaWG4baaaaaa@440B@

a x b x = ( a b ) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaWG4baaaaGcbaGaamOyamaaCaaaleqabaGaamiEaaaaaaGccqGH9aqpcaGGOaWaaSaaaeaacaWGHbaabaGaamOyaaaacaGGPaWaaWbaaSqabeaacaWG4baaaaaa@3F97@

1 b x = ( 1 b ) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOyamaaCaaaleqabaGaamiEaaaaaaGccqGH9aqpcaGGOaWaaSaaaeaacaaIXaaabaGaamOyaaaacaGGPaWaaWbaaSqabeaacaWG4baaaaaa@3E0D@

[8.9.3]

2.    a x a y = a x+y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabgwSixlaadggadaahaaWcbeqaaiaadMhaaaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaWG4bGaey4kaSIaamyEaaaaaaa@4161@

a x a y = a xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaWG4baaaaGcbaGaamyyamaaCaaaleqabaGaamyEaaaaaaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaWG4bGaeyOeI0IaamyEaaaaaaa@3F32@

1 a y = a y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamyyamaaCaaaleqabaGaamyEaaaaaaGccqGH9aqpcaWGHbWaaWbaaSqabeaacqGHsislcaWG5baaaaaa@3CD6@

[8.9.4]

3.    ln( a x )=xlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaGGOaGaamyyamaaCaaaleqabaGaamiEaaaakiaacMcacqGH9aqpcaWG4bGaeyyXICTaciiBaiaac6gacaWGHbaaaa@425A@

(expa) x =exp(xa) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiGacwgacaGG4bGaaiiCaiaadggacaGGPaWaaWbaaSqabeaacaWG4baaaOGaeyypa0JaciyzaiaacIhacaGGWbGaaiikaiaadIhacqGHflY1caWGHbGaaiykaaaa@45A1@

[8.9.5]

4.    ( a x ) y = a xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIhaaaGccaGGPaWaaWbaaSqabeaacaWG5baaaOGaeyypa0JaamyyamaaCaaaleqabaGaamiEaiabgwSixlaadMhaaaaaaa@40F2@

[8.9.6]

Beweis:  

1.    a x b x = e xlna e xlnb = e xlna+xlnb = e x(lna+lnb) = e xln(ab) = (ab) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabgwSixlaadkgadaahaaWcbeqaaiaadIhaaaGccqGH9aqpcaWGLbWaaWbaaSqabeaacaWG4bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaeyyXICTaamyzamaaCaaaleqabaGaamiEaiabgwSixlGacYgacaGGUbGaamOyaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGHRaWkcaWG4bGaeyyXICTaciiBaiaac6gacaWGIbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlaacIcaciGGSbGaaiOBaiaadggacqGHRaWkciGGSbGaaiOBaiaadkgacaGGPaaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlGacYgacaGGUbGaaiikaiaadggacqGHflY1caWGIbGaaiykaaaakiabg2da9iaacIcacaWGHbGaeyyXICTaamOyaiaacMcadaahaaWcbeqaaiaadIhaaaaaaa@7EEC@

a x b x = e xlna e xlnb = e xlnaxlnb = e x(lnalnb) = e xln a b = ( a b ) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaWG4baaaaGcbaGaamOyamaaCaaaleqabaGaamiEaaaaaaGccqGH9aqpdaWcaaqaaiaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaaakeaacaWGLbWaaWbaaSqabeaacaWG4bGaeyyXICTaciiBaiaac6gacaWGIbaaaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGHsislcaWG4bGaeyyXICTaciiBaiaac6gacaWGIbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlaacIcaciGGSbGaaiOBaiaadggacqGHsislciGGSbGaaiOBaiaadkgacaGGPaaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlGacYgacaGGUbWaaSqaaWqaaiaadggaaeaacaWGIbaaaaaakiabg2da9iaacIcadaWcaaqaaiaadggaaeaacaWGIbaaaiaacMcadaahaaWcbeqaaiaadIhaaaaaaa@74CE@

Die dritte Gleichung ist ein Spezialfall der zweiten.

2.    a x a y = e xlna e ylna = e xlna+ylna = e (x+y)lna = a x+y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabgwSixlaadggadaahaaWcbeqaaiaadMhaaaGccqGH9aqpcaWGLbWaaWbaaSqabeaacaWG4bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaeyyXICTaamyzamaaCaaaleqabaGaamyEaiabgwSixlGacYgacaGGUbGaamyyaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGHRaWkcaWG5bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabgwSixlGacYgacaGGUbGaamyyaaaakiabg2da9iaadggadaahaaWcbeqaaiaadIhacqGHRaWkcaWG5baaaaaa@6DB3@

a x a y = e xlna e ylna = e xlnaylna = e (xy)lna = a xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaWG4baaaaGcbaGaamyyamaaCaaaleqabaGaamyEaaaaaaGccqGH9aqpdaWcaaqaaiaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaaakeaacaWGLbWaaWbaaSqabeaacaWG5bGaeyyXICTaciiBaiaac6gacaWGHbaaaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGHsislcaWG5bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaeyypa0JaamyzamaaCaaaleqabaGaaiikaiaadIhacqGHsislcaWG5bGaaiykaiabgwSixlGacYgacaGGUbGaamyyaaaakiabg2da9iaadggadaahaaWcbeqaaiaadIhacqGHsislcaWG5baaaaaa@6960@

Auch hier ergibt sich die dritte Gleichung aus der zweiten.

3.    ln( a x )=ln( e xlna )=xlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaGGOaGaamyyamaaCaaaleqabaGaamiEaaaakiaacMcacqGH9aqpciGGSbGaaiOBaiaacIcacaWGLbWaaWbaaSqabeaacaWG4bGaeyyXICTaciiBaiaac6gacaWGHbaaaOGaaiykaiabg2da9iaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaa@4DCF@

(expa) x = e xln(expa) = e xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiGacwgacaGG4bGaaiiCaiaadggacaGGPaWaaWbaaSqabeaacaWG4baaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlGacYgacaGGUbGaaiikaiGacwgacaGG4bGaaiiCaiaadggacaGGPaaaaOGaeyypa0JaamyzamaaCaaaleqabaGaamiEaiabgwSixlaadggaaaaaaa@4EF0@

4.    ( a x ) y = e yln( a x ) = 3. e yxlna = a xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIhaaaGccaGGPaWaaWbaaSqabeaacaWG5baaaOGaeyypa0JaamyzamaaCaaaleqabaGaamyEaiabgwSixlGacYgacaGGUbGaaiikaiaadggadaahaaadbeqaaiaadIhaaaWccaGGPaaaaOWaaCbeaeaacqGH9aqpaSqaaiaacUfacaaIZaGaaiyxaaqabaGccaWGLbWaaWbaaSqabeaacaWG5bGaeyyXICTaamiEaiabgwSixlGacYgacaGGUbGaamyyaaaakiabg2da9iaadggadaahaaWcbeqaaiaadIhacqGHflY1caWG5baaaaaa@59FA@

In einer ersten Anwendung des erweiterten Potenzbegriffs betrachten wir Exponentialgleichungen, d.h. Gleichungen der Form

a x =b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadkgaaaa@39F3@

Für a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ sind sie stets eindeutig lösbar, und zwar durch Logarithmieren.

Bemerkung und Definition:  Für alle a,b>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyOpa4JaaGimaaaa@3A2B@ , a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ ist

a x =bx= lnb lna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadkgacaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpdaWcaaqaaiGacYgacaGGUbGaamOyaaqaaiGacYgacaGGUbGaamyyaaaaaaa@4713@
[8.9.7]

Die Zahl log a b lnb lna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaamOyaiabg2da9maalaaabaGaciiBaiaac6gacaWGIbaabaGaciiBaiaac6gacaWGHbaaaaaa@416A@ nennen wir den Logarithmus von b zur Basis a. log a b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaamOyaaaa@3ABF@ ist offensichtlich die eindeutig bestimmte Zahl, mit der man a potenzieren muss, um b zu erhalten:

a log a b =b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaciiBaiaac+gacaGGNbWaaSbaaWqaaiaadggaaeqaaSGaamOyaaaakiabg2da9iaadkgaaaa@3DCB@ .

Beweis:  Mit [8.9.5] hat man:  a x =bln a x =lnbxlna=lnbx= lnb lna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iaadkgacaaMf8Uaeyi1HSTaaGzbVlGacYgacaGGUbGaamyyamaaCaaaleqabaGaamiEaaaakiabg2da9iGacYgacaGGUbGaamOyaiaaywW7cqGHuhY2caaMf8UaamiEaiabgwSixlGacYgacaGGUbGaamyyaiabg2da9iGacYgacaGGUbGaamOyaiaaywW7cqGHuhY2caaMf8UaamiEaiabg2da9maalaaabaGaciiBaiaac6gacaWGIbaabaGaciiBaiaac6gacaWGHbaaaaaa@63B4@ .

Mit den Logarithmen zu einer festen Basis a können wir nun die allgemeinen Logarithmusfunktionen einführen.

Definition:  Für jedes a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ , a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ , heißt die Funktion

log a : >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaaiOoaiabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaakiabgkziUkabl2riHcaa@415C@
[8.9.8]

die (allgemeine) Logarithmusfunktion zur Basis a. Statt log a (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaaiikaiaadIhacaGGPaaaaa@3C2E@ schreibt man meist log a x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaamiEaaaa@3AD5@ . Offensichtlich ist jede Logarithmusfunktion ein Vielfaches von ln:  log a = 1 lna ln MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiabgwSixlGacYgacaGGUbaaaa@42A1@ .

Da lne=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWGLbGaeyypa0JaaGymaaaa@3A7B@ hat man insbesondere log e =ln MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadwgaaeqaaOGaeyypa0JaciiBaiaac6gaaaa@3CC6@ , die Logarithmusfunktion zur Basis e ist also der natürliche Logarithmus. Zwei weitere Logarithmusfunktionen zeichnen wir durch einen eigenen Namen aus:

  • den dekadischen Logarithmus  lg log 10 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacEgacqGH9aqpciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGymaiaaicdaaeqaaaaa@3D40@

  • den dualen Logarithmus  ld log 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaadsgacqGH9aqpciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaaaaa@3C84@

Als Vielfache von ln haben alle Logarithmen ähnliche Eigenschaften wie ln. So gelten etwa die Rechenregeln [8.7.6-10] sinngemäß auch für log a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaaaa@39CE@ . Ferner ist log a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaaaa@39CE@ integrierbar und beliebig oft differenzierbar, der Graph geht durch (senkrechtes) Strecken/Stauchen aus dem ln-Graphen hervor.

Mit der Erweiterung des Potenzbegriffs können weitere Funktionentypen verallgemeinert werden. Wir betrachten zunächst die allgemeinen Potenzfunktionen.

Definition:  Für jedes reelle a heißt die Funktion

X a e aln : >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadggacqGHflY1ciGGSbGaaiOBaaaakiaacQdacqWIDesOdaahaaWcbeqaaiabg6da+iaaicdaaaGccqGHsgIRcqWIDesOaaa@46A5@
[8.9.9]

die (allgemeine) Potenzfunktion zum Exponenten a. Man hat offenbar X a (x)= e alnx = x a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaakiaacIcacaWG4bGaaiykaiabg2da9iaadwgadaahaaWcbeqaaiaadggacqGHflY1ciGGSbGaaiOBaiaadIhaaaGccqGH9aqpcaWG4bWaaWbaaSqabeaacaWGHbaaaaaa@458A@ .

Alle Potenzfunktionen sind differenzierbar und integrierbar. Ableitungen und Stammfunktionen werden dabei "wie üblich" gebildet:

Bemerkung:  Jede Potenzfunktion X a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaaaaa@37DC@ ist

1.   differenzierbar und ( X a ) =a X a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGcceGGPaGbauaacqGH9aqpcaWGHbGaamiwamaaCaaaleqabaGaamyyaiabgkHiTiaaigdaaaaaaa@3ECF@

[8.9.10]

2.   beliebig oft differenzierbar und ( X a ) (n) = i=0 n1 (ai) X an MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaqeWbqaaiaacIcacaWGHbGaeyOeI0IaamyAaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaey4dIunakiabgwSixlaadIfadaahaaWcbeqaaiaadggacqGHsislcaWGUbaaaaaa@4E80@   für alle n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaicdaaaa@38A1@

[8.9.11]

3.   integrierbar und für a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kabgkHiTiaaigdaaaa@3A41@ ist 1 a+1 X a+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamyyaiabgUcaRiaaigdaaaGaamiwamaaCaaaleqabaGaamyyaiabgUcaRiaaigdaaaaaaa@3CC7@ eine Stammfunktion zu X a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaaaaa@37DC@

[8.9.12]

Beweis:  

1.   Die Differenzierbarkeit folgt aus der Kettenregel [7.7.8], die auch die Ableitungsformel liefert:

( X a ) =( e X aln ) =(( e X ) aln)aln=( e X aln)a X 1 = X a a X 1 =a X a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGcceGGPaGbauaacqGH9aqpcaGGOaGaamyzamaaCaaaleqabaGaamiwaaaakiablIHiVjaadggacqGHflY1ciGGSbGaaiOBaiqacMcagaqbaiabg2da9iaacIcacaGGOaGaamyzamaaCaaaleqabaGaamiwaaaakiqacMcagaqbaiablIHiVjaadggacqGHflY1ciGGSbGaaiOBaiaacMcacqGHflY1caWGHbGaeyyXICTaciiBaiaac6gacaGGNaGaeyypa0JaaiikaiaadwgadaahaaWcbeqaaiaadIfaaaGccqWIyiYBcaWGHbGaeyyXICTaciiBaiaac6gacaGGPaGaeyyXICTaamyyaiabgwSixlaadIfadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaWGybWaaWbaaSqabeaacaWGHbaaaOGaeyyXICTaamyyaiabgwSixlaadIfadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaWGHbGaamiwamaaCaaaleqabaGaamyyaiabgkHiTiaaigdaaaaaaa@7BB6@

2.   Es ist ein Induktionsbeweis erforderlich, wobei der Induktionsanfang mit 1. bereits gemacht ist. Sei also X a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaaaaa@37DC@ bereits n-mal differenzierbar und die angegebene Ableitungsformel gültig. Dann ist auch die n-te Ableitung  ( X a ) (n) = i=0 n1 (ai) X an MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaqeWbqaaiaacIcacaWGHbGaeyOeI0IaamyAaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaey4dIunakiabgwSixlaadIfadaahaaWcbeqaaiaadggacqGHsislcaWGUbaaaaaa@4E80@ als Vielfaches einer Potenzfunktion differenzierbar mit

( X a ) (n+1) = i=0 n1 (ai) ( X an ) = i=0 n1 (ai) (an) X an1 = i=0 n (ai) X a(n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadggaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyypa0ZaaebCaeaacaGGOaGaamyyaiabgkHiTiaadMgacaGGPaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabg+GivdGccqGHflY1caGGOaGaamiwamaaCaaaleqabaGaamyyaiabgkHiTiaad6gaaaGcceGGPaGbauaacqGH9aqpdaqeWbqaaiaacIcacaWGHbGaeyOeI0IaamyAaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaey4dIunakiabgwSixlaacIcacaWGHbGaeyOeI0IaamOBaiaacMcacqGHflY1caWGybWaaWbaaSqabeaacaWGHbGaeyOeI0IaamOBaiabgkHiTiaaigdaaaGccqGH9aqpdaqeWbqaaiaacIcacaWGHbGaeyOeI0IaamyAaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHpis1aOGaeyyXICTaamiwamaaCaaaleqabaGaamyyaiabgkHiTiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaa@8071@

3.   Der Fall a=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iabgkHiTiaaigdaaaa@3980@ ist bekannt. Für a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kabgkHiTiaaigdaaaa@3A41@ errechnet sich nach 1. die Ableitung der differenzierbaren Funktion 1 a+1 X a+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamyyaiabgUcaRiaaigdaaaGaamiwamaaCaaaleqabaGaamyyaiabgUcaRiaaigdaaaaaaa@3CC7@ zu X a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamyyaaaaaaa@37DC@ .

Die allgemeinen Exponentialfunktionen sind ebenfalls aus dem erweiterten Potenzbegriff zu gewinnen.

Definition:  Für jedes a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ heißt die Funktion

a X e Xlna : >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIfacqGHflY1ciGGSbGaaiOBaiaadggaaaGccaGG6aGaeSyhHeQaeyOKH4QaeSyhHe6aaWbaaSqabeaacqGH+aGpcaaIWaaaaaaa@4778@
[8.9.13]

die (allgemeine) Eponentialfunktion zur Basis a. Dabei ist a X (x)= e xlna = a x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaakiaacIcacaWG4bGaaiykaiabg2da9iaadwgadaahaaWcbeqaaiaadIhacqGHflY1ciGGSbGaaiOBaiaadggaaaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaWG4baaaaaa@458A@ .

Zwei Exponentialfunktionen kennen wir schon länger:

  • Die Exponentialfunktion zur Basis 1 ist die konstante Funktion 1, denn mit ln1=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaaIXaGaeyypa0JaaGimaaaa@3A4B@ ist

    1 X = e Xln1 = e 0 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaaCaaaleqabaGaamiwaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIfacqGHflY1ciGGSbGaaiOBaiaaigdaaaGccqGH9aqpcaWGLbWaaWbaaSqabeaacaaIWaaaaOGaeyypa0JaaGymaaaa@444A@
     
  • Die Exponentialfunktion zur Eulerschen Zahl e ist die natürliche Exponentialfunktion e X =exp MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaakiabg2da9iGacwgacaGG4bGaaiiCaaaa@3BCB@ , denn mit lne=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWGLbGaeyypa0JaaGymaaaa@3A7B@ ist

    e X =exp(Xlne)=expX=exp MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaakiabg2da9iGacwgacaGG4bGaaiiCaiablIHiVjaacIcacaWGybGaeyyXICTaciiBaiaac6gacaWGLbGaaiykaiabg2da9iGacwgacaGG4bGaaiiCaiablIHiVjaadIfacqGH9aqpciGGLbGaaiiEaiaacchaaaa@4E2C@

    Diese Identität begründet die Potenzschreibweise für die e-Funktion nun inhaltlich: die e-Funktion ist eine spezielle Exponentialfunktion, und zwar die zur Basis e. Die in 8.8 eingeführte Schreibweise ist also nicht nur symbolisch zu verstehen, sondern spiegelt einen Sachverhalt wider.

Die Funktionswerte der Exponentialfunktionen sind Potenzen. Die Potenzgesetze [8.9.4-6] führen daher direkt zu den entsprechenden Funktionalgleichungen für Exponentialfunktionen, so etwa zu einem Spezialfall von [8.9.4]:

a X (x+1)= a X (x) a X (1)=a a X (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaakiaacIcacaWG4bGaey4kaSIaaGymaiaacMcacqGH9aqpcaWGHbWaaWbaaSqabeaacaWGybaaaOGaaiikaiaadIhacaGGPaGaeyyXICTaamyyamaaCaaaleqabaGaamiwaaaakiaacIcacaaIXaGaaiykaiabg2da9iaadggacqGHflY1caWGHbWaaWbaaSqabeaacaWGybaaaOGaaiikaiaadIhacaGGPaaaaa@500D@

Ein Zuwachs um eine Einheit im Argument x liefert also das a-fache des Funktionswerts.

Die innere Funktion in der Zerlegung a X = e X Xlna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaakiabg2da9iaadwgadaahaaWcbeqaaiaadIfaaaGccqWIyiYBcaWGybGaeyyXICTaciiBaiaac6gacaWGHbaaaa@4215@ ist ein Vielfaches von X, daher gehen die Graphen der Exponentialfunktionen durch (waagerechtes) Strecken/Stauchen aus dem e X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaaaaa@37E0@ -Graphen hervor:

Alle Exponentialfunktionen sind differenzierbar und integrierbar. Ableitungen und Stammfunktionen sind dabei leicht zu ermitteln.

Bemerkung:  Jede Exponentialfunktion a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@ ist

1.   differenzierbar und ( a X ) =lna a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGcceGGPaGbauaacqGH9aqpciGGSbGaaiOBaiaadggacqGHflY1caWGHbWaaWbaaSqabeaacaWGybaaaaaa@4155@

[8.9.14]

2.   beliebig oft differenzierbar und ( a X ) (n) = (lna) n a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpcaGGOaGaciiBaiaac6gacaWGHbGaaiykamaaCaaaleqabaGaamOBaaaakiabgwSixlaadggadaahaaWcbeqaaiaadIfaaaaaaa@464F@ für alle n>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg6da+iaaicdaaaa@38A1@

[8.9.15]

2.   integrierbar und für a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ ist 1 lna a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiaadggadaahaaWcbeqaaiaadIfaaaaaaa@3B71@ eine Stammfunktion zu a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@

[8.9.16]

Beweis:  

1.   Differenzierbarkeit und Ableitungsformel folgen auch hier aus der Kettenregel [7.7.8]:

( a X ) =( e X Xlna ) =(( e X ) Xlna)(Xlna ) =( e X Xlna)lna=lna a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGcceGGPaGbauaacqGH9aqpcaGGOaGaamyzamaaCaaaleqabaGaamiwaaaakiablIHiVjaadIfacqGHflY1ciGGSbGaaiOBaiaadggaceGGPaGbauaacqGH9aqpcaGGOaGaaiikaiaadwgadaahaaWcbeqaaiaadIfaaaGcceGGPaGbauaacqWIyiYBcaWGybGaeyyXICTaciiBaiaac6gacaWGHbGaaiykaiabgwSixlaacIcacaWGybGaeyyXICTaciiBaiaac6gacaWGHbGabiykayaafaGaeyypa0JaaiikaiaadwgadaahaaWcbeqaaiaadIfaaaGccqWIyiYBcaWGybGaeyyXICTaciiBaiaac6gacaWGHbGaaiykaiabgwSixlGacYgacaGGUbGaamyyaiabg2da9iGacYgacaGGUbGaamyyaiabgwSixlaadggadaahaaWcbeqaaiaadIfaaaaaaa@7412@

2.   Für den hier zu führenden Induktionsbeweis ist der Anfang in 1. bereits gemacht. Beim Induktionsschluss ist nur zu beachten, dass die n-te Ableitung von a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@ ein Vielfaches von a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@ , also sofort wieder differenzierbar ist. Bei der Ableitung von ( a X ) (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaaaaa@3BB8@ tritt daher der Faktor lna MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWGHbaaaa@38B6@ noch ein weiteres Mal auf, so dass die Ableitungsformel auch für ( a X ) (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaadIfaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@3D55@ gilt.

3.   Der Fall 1 X =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaaCaaaleqabaGaamiwaaaakiabg2da9iaaigdaaaa@397C@ ist trivial. Für a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ bestätigt man mit 1. die Behauptung durch Ableiten der Funktion 1 lna a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiaadggadaahaaWcbeqaaiaadIfaaaaaaa@3B71@ .

e X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaaaaa@37E0@ und ln sind zueinander invers. Für die allgemeinen Exponential- und Logarithmusfunktionen gilt dies ebenfalls.

Bemerkung:  Für jedes a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ , a1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaigdaaaa@3954@ sind a X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaamiwaaaaaaa@37DC@ und log a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaaaa@39CE@ zueinander invers:

a X log a =X| >0 log a a X =X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadggadaahaaWcbeqaaiaadIfaaaGccqWIyiYBciGGSbGaai4BaiaacEgadaWgaaWcbaGaamyyaaqabaGccqGH9aqpcaWGybGaaiiFaiabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaaaOqaaiGacYgacaGGVbGaai4zamaaBaaaleaacaWGHbaabeaakiablIHiVjaadggadaahaaWcbeqaaiaadIfaaaGccqGH9aqpcaWGybaaaaaa@4C67@
[8.9.17]

Beweis:  Wir zeigen, dass sich die beiden Funktionen in ihrer Wirkung gegenseitig aufheben:

  1. Nach [8.9.7] gilt für alle x>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6da+iaaicdaaaa@38AB@ a log a x =x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCaaaleqabaGaciiBaiaac+gacaGGNbWaaSbaaWqaaiaadggaaeqaaSGaamiEaaaakiabg2da9iaadIhaaaa@3DF7@ .

  2. Mit [8.9.8] und [8.9.5] ist log a ( a x )= 1 lna ln( a x )= 1 lna xlna=x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadggaaeqaaOGaaiikaiaadggadaahaaWcbeqaaiaadIhaaaGccaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiabgwSixlGacYgacaGGUbGaaiikaiaadggadaahaaWcbeqaaiaadIhaaaGccaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaciiBaiaac6gacaWGHbaaaiabgwSixlaadIhacqGHflY1ciGGSbGaaiOBaiaadggacqGH9aqpcaWG4baaaa@5880@ für alle x.


8.8. 8.10.