9.13. Skalarprodukte


Wir wenden uns nun verstärkt geometrischen Aspekten zu: In diesem Abschnitt entwickeln wir Konzepte zur Längen- und zur Winkelmessung, im nächsten Abschnitt wird das Prinzip des zu einander Senkrechtstehens, der Orthogonalität, untersucht.

Zur Einführung geometrischer Begriffe benötigt man allerdings zusätzliche Strukturen. Als eine einheitliche Grundlage erweisen sich dabei die Skalarprodukte. Wir stellen sie zunächst vor.


 
Definition:  Es sei (V,+,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAfacaGGSaGaey4kaSIaaiilaiabgwSixlaacMcaaaa@3CA9@ ein Vektorraum. Eine Funktion
 
:V×V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4fIOIaaiOoaiaadAfacqGHxdaTcaWGwbGaeyOKH4QaeSyhHekaaa@3EC0@

heißt ein Sakalarprodukt (bzw. ein inneres Produkt) auf V, falls

  1. vw=wv MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQiaadEhacqGH9aqpcaWG3bGaey4fIOIaamODaaaa@3CBB@ für alle v,wV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyicI4SaamOvaaaa@3AEF@
     
  2. ( v 1 + v 2 )w=( v 1 w)+( v 2 w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEHiQiaadEhacqGH9aqpcaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiabgEHiQiaadEhacaGGPaGaey4kaSIaaiikaiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGHxiIkcaWG3bGaaiykaaaa@4A31@ für alle v 1 , v 2 ,wV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadEhacqGHiiIZcaWGwbaaaa@3E7D@ .
     
  3. (αv)w=α(vw) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeg7aHjaadAhacaGGPaGaey4fIOIaam4Daiabg2da9iabeg7aHjaacIcacaWG2bGaey4fIOIaam4DaiaacMcaaaa@42AB@ für alle v,wV,   α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyicI4SaamOvaiaacYcacaaMe8UaeqySdeMaeyicI4SaeSyhHekaaa@41BF@ .
     
  4. vv>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQiaadAhacqGH+aGpcaaIWaaaaa@3A90@ für alle vV,   v0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgIGiolaadAfacaGGSaGaaGjbVlaadAhacqGHGjsUcaaIWaaaaa@3EFC@ .

V heißt euklidischer Vektorraum, wenn auf V ein Skalarprodukt MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4fIOcaaa@36D8@ gegeben ist. Wir notieren einen euklidischen Vektorraum als 4-Tupel: (V,+,,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAfacaGGSaGaey4kaSIaaiilaiabgwSixlaacYcacqGHxiIkcaGGPaaaaa@3E48@ .
 

Beachte:

  

Ein Skalarprodukt ist in beiden Koordinaten linear. Es ist daher breits eindeutig bestimmt, wenn man seine Werte auf den Vektoren einer vorgegebenen Basis kennt. Umgekehrt läßt sich dieses Verhalten nutzen, um  jeden Vektorraum mit einem Skalarprodukt zu versehen, ihn also (auf mindestens eine Weise) zu einem euklidischen Vektorraum zu machen.

Bemerkung und Bezeichnung:  Es sei V ein Vektorraum, BV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgkOimlaadAfaaaa@3987@ eine Basis von V mit zugehöriger Koordinatentransformation T B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGcbaabeaaaaa@37B5@ . Für jede Funktion φ:B >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdyMaaiOoaiaadkeacqGHsgIRcqWIDesOdaahaaWcbeqaaiabg6da+iaaicdaaaaaaa@3E73@ wird durch die Festsetzung
 
x B,φ y vB T B (x)(v) T B (y)(v)φ(v) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgEHiQmaaBaaaleaacaWGcbGaaiilaiabeA8aMbqabaGccaWG5bGaeyypa0ZaaabuaeaacaWGubWaaSbaaSqaaiaadkeaaeqaaOGaaiikaiaadIhacaGGPaGaaiikaiaadAhacaGGPaGaeyyXICTaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG5bGaaiykaiaacIcacaWG2bGaaiykaiabgwSixlabeA8aMjaacIcacaWG2bGaaiykaaWcbaGaamODaiabgIGiolaadkeaaeqaniabggHiLdaaaa@584A@

ein Skalarprodukt auf V erklärt. Dabei gilt für Basiselemente a,bB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyicI4SaamOqaaaa@3AB1@ a B,φ b={ φ(a),   falls   a=b 0,   falls   ab MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgEHiQmaaBaaaleaacaWGcbGaaiilaiabeA8aMbqabaGccaWGIbGaeyypa0ZaaiqaaeaafaqaaeGabaaabaGaeqOXdyMaaiikaiaadggacaGGPaGaaiilaiaaysW7caqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaaysW7caWGHbGaeyypa0JaamOyaaqaaiaaicdacaGGSaGaaGjbVlaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaaGjbVlaadggacqGHGjsUcaWGIbaaaaGaay5Eaaaaaa@5A26@   .

Setzt man abkürzend α T B (x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG4bGaaiykaaaa@3CBA@ und β T B (y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaeyypa0JaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG5bGaaiykaaaa@3CBD@ , so lässt sich die Definition übersichtlicher notieren:
  

x B,φ y= vB α(v)β(v)φ(v) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgEHiQmaaBaaaleaacaWGcbGaaiilaiabeA8aMbqabaGccaWG5bGaeyypa0ZaaabuaeaacqaHXoqycaGGOaGaamODaiaacMcacqGHflY1cqaHYoGycaGGOaGaamODaiaacMcacqGHflY1cqaHgpGzcaGGOaGaamODaiaacMcaaSqaaiaadAhacqGHiiIZcaWGcbaabeqdcqGHris5aaaa@5331@ .

Ist speziell φ=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdyMaeyypa0JaaGymaaaa@3963@ , so nennt man das Skalarprodukt B,1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4fIOYaaSbaaSqaaiaadkeacaGGSaGaaGymaaqabaaaaa@3936@ das zu B gehörige Standardskalarprodukt.

Beweis: Wesentliches Argument ist (in 2. und 3.) die Linearität von T B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGcbaabeaaaaa@37B5@ .

Zu 1.:x B,φ y= vB T B (x)(v) T B (y)(v)φ(v) = vB T B (y)(v) T B (x)(v)φ(v) =y B,φ x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOwaiaabwhacaqGGaGaaeymaiaab6cacaqG6aGaaGzbVlaadIhacqGHxiIkdaWgaaWcbaGaamOqaiaacYcacqaHgpGzaeqaaOGaamyEaiabg2da9maaqafabaGaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG4bGaaiykaiaacIcacaWG2bGaaiykaiabgwSixlaadsfadaWgaaWcbaGaamOqaaqabaGccaGGOaGaamyEaiaacMcacaGGOaGaamODaiaacMcacqGHflY1cqaHgpGzcaGGOaGaamODaiaacMcaaSqaaiaadAhacqGHiiIZcaWGcbaabeqdcqGHris5aOGaeyypa0ZaaabuaeaacaWGubWaaSbaaSqaaiaadkeaaeqaaOGaaiikaiaadMhacaGGPaGaaiikaiaadAhacaGGPaGaeyyXICTaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG4bGaaiykaiaacIcacaWG2bGaaiykaiabgwSixlabeA8aMjaacIcacaWG2bGaaiykaaWcbaGaamODaiabgIGiolaadkeaaeqaniabggHiLdGccqGH9aqpcaWG5bGaey4fIOYaaSbaaSqaaiaadkeacaGGSaGaeqOXdygabeaakiaadIhaaaa@81ED@ .

Zu 2.:(x+y) B,φ z = vB T B (x+y)(v) T B (z)(v)φ(v) = vB T B (x)(v) T B (z)(v)φ(v) + vB T B (y)(v) T B (z)(v)φ(v) =x B,φ z+y B,φ z. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaabQfacaqG1bGaaeiiaiaabkdacaqGUaGaaeOoaiaaywW7caGGOaGaamiEaiabgUcaRiaadMhacaGGPaGaey4fIOYaaSbaaSqaaiaadkeacaGGSaGaeqOXdygabeaakiaadQhaaeaacqGH9aqpdaaeqbqaaiaadsfadaWgaaWcbaGaamOqaaqabaGccaGGOaGaamiEaiabgUcaRiaadMhacaGGPaGaaiikaiaadAhacaGGPaGaeyyXICTaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG6bGaaiykaiaacIcacaWG2bGaaiykaiabgwSixlabeA8aMjaacIcacaWG2bGaaiykaaWcbaGaamODaiabgIGiolaadkeaaeqaniabggHiLdaakeaaaeaacqGH9aqpdaaeqbqaaiaadsfadaWgaaWcbaGaamOqaaqabaGccaGGOaGaamiEaiaacMcacaGGOaGaamODaiaacMcacqGHflY1caWGubWaaSbaaSqaaiaadkeaaeqaaOGaaiikaiaadQhacaGGPaGaaiikaiaadAhacaGGPaGaeyyXICTaeqOXdyMaaiikaiaadAhacaGGPaaaleaacaWG2bGaeyicI4SaamOqaaqab0GaeyyeIuoakiabgUcaRmaaqafabaGaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG5bGaaiykaiaacIcacaWG2bGaaiykaiabgwSixlaadsfadaWgaaWcbaGaamOqaaqabaGccaGGOaGaamOEaiaacMcacaGGOaGaamODaiaacMcacqGHflY1cqaHgpGzcaGGOaGaamODaiaacMcaaSqaaiaadAhacqGHiiIZcaWGcbaabeqdcqGHris5aaGcbaaabaGaeyypa0JaamiEaiabgEHiQmaaBaaaleaacaWGcbGaaiilaiabeA8aMbqabaGccaWG6bGaey4kaSIaamyEaiabgEHiQmaaBaaaleaacaWGcbGaaiilaiabeA8aMbqabaGccaWG6bGaaGPaVlaac6caaaaaaa@AC87@

Zu 3.:αx B,φ y= vB T B (αx)(v) T B (y)(v)φ(v) =α vB T B (x)(v) T B (y)(v)φ(v) =α(x B,φ y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOwaiaabwhacaqGGaGaae4maiaab6cacaqG6aGaaGzbVlabeg7aHjaadIhacqGHxiIkdaWgaaWcbaGaamOqaiaacYcacqaHgpGzaeqaaOGaamyEaiabg2da9maaqafabaGaamivamaaBaaaleaacaWGcbaabeaakiaacIcacqaHXoqycaWG4bGaaiykaiaacIcacaWG2bGaaiykaiabgwSixlaadsfadaWgaaWcbaGaamOqaaqabaGccaGGOaGaamyEaiaacMcacaGGOaGaamODaiaacMcacqGHflY1cqaHgpGzcaGGOaGaamODaiaacMcaaSqaaiaadAhacqGHiiIZcaWGcbaabeqdcqGHris5aOGaeyypa0JaeqySde2aaabuaeaacaWGubWaaSbaaSqaaiaadkeaaeqaaOGaaiikaiaadIhacaGGPaGaaiikaiaadAhacaGGPaGaeyyXICTaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG5bGaaiykaiaacIcacaWG2bGaaiykaiabgwSixlabeA8aMjaacIcacaWG2bGaaiykaaWcbaGaamODaiabgIGiolaadkeaaeqaniabggHiLdGccqGH9aqpcqaHXoqycaGGOaGaamiEaiabgEHiQmaaBaaaleaacaWGcbGaaiilaiabeA8aMbqabaGccaWG5bGaaiykaaaa@89C4@ .

Zu4.:  Zu jedem x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@3967@ gibt es ein v x B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaWG4baabeaakiabgIGiolaadkeaaaa@3A62@ , so dass T B (x) v x 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG4bGaaiykaiaadAhadaWgaaWcbaGaamiEaaqabaGccqGHGjsUcaaIWaaaaa@3EC4@ . Da ferner φ(v)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdyMaaiikaiaadAhacaGGPaGaeyOpa4JaaGimaaaa@3BB8@ für alle v hat man also:

x B,φ x= vB ( T B (x)(v)) 2 φ(v) ( T B (x)( v x )) 2 φ( v x )>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgEHiQmaaBaaaleaacaWGcbGaaiilaiabeA8aMbqabaGccaWG4bGaeyypa0ZaaabuaeaacaGGOaGaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWG4bGaaiykaiaacIcacaWG2bGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHflY1cqaHgpGzcaGGOaGaamODaiaacMcaaSqaaiaadAhacqGHiiIZcaWGcbaabeqdcqGHris5aOGaeyyzImRaaiikaiaadsfadaWgaaWcbaGaamOqaaqabaGccaGGOaGaamiEaiaacMcacaGGOaGaamODamaaBaaaleaacaWG4baabeaakiaacMcacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyyXICTaeqOXdyMaaiikaiaadAhadaWgaaWcbaGaamiEaaqabaGccaGGPaGaeyOpa4JaaGimaaaa@66E5@ .

Bleibt der Zusatz über die Basisvektoren. Dabei beachte man zunächst, dass für den Koordinatenvektor eines aB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadkeaaaa@391A@ gilt:

T B (a)= χ {a} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWGHbGaaiykaiabg2da9iabeE8aJnaaBaaaleaacaGG7bGaamyyaiaac2haaeqaaaaa@3FCD@ .
Damit ergibt sich
  • a B,φ a= vB T B (a)(v) T B (a)(v)φ(v) = vB χ {a} (v) χ {a} (v)φ(v) =φ(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgEHiQmaaBaaaleaacaWGcbGaaiilaiabeA8aMbqabaGccaWGHbGaeyypa0ZaaabuaeaacaWGubWaaSbaaSqaaiaadkeaaeqaaOGaaiikaiaadggacaGGPaGaaiikaiaadAhacaGGPaGaeyyXICTaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWGHbGaaiykaiaacIcacaWG2bGaaiykaiabgwSixlabeA8aMjaacIcacaWG2bGaaiykaaWcbaGaamODaiabgIGiolaadkeaaeqaniabggHiLdGccqGH9aqpdaaeqbqaaiabeE8aJnaaBaaaleaacaGG7bGaamyyaiaac2haaeqaaOGaaiikaiaadAhacaGGPaGaeyyXICTaeq4Xdm2aaSbaaSqaaiaacUhacaWGHbGaaiyFaaqabaGccaGGOaGaamODaiaacMcacqGHflY1cqaHgpGzcaGGOaGaamODaiaacMcaaSqaaiaadAhacqGHiiIZcaWGcbaabeqdcqGHris5aOGaeyypa0JaeqOXdyMaaiikaiaadggacaGGPaaaaa@7A5C@ .
  • Und für ab MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@397D@ : a B,φ b= vB T B (a)(v) T B (b)(v)φ(v) = vB χ {a} (v) χ {b} (v)φ(v) =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgEHiQmaaBaaaleaacaWGcbGaaiilaiabeA8aMbqabaGccaWGIbGaeyypa0ZaaabuaeaacaWGubWaaSbaaSqaaiaadkeaaeqaaOGaaiikaiaadggacaGGPaGaaiikaiaadAhacaGGPaGaeyyXICTaamivamaaBaaaleaacaWGcbaabeaakiaacIcacaWGIbGaaiykaiaacIcacaWG2bGaaiykaiabgwSixlabeA8aMjaacIcacaWG2bGaaiykaaWcbaGaamODaiabgIGiolaadkeaaeqaniabggHiLdGccqGH9aqpdaaeqbqaaiabeE8aJnaaBaaaleaacaGG7bGaamyyaiaac2haaeqaaOGaaiikaiaadAhacaGGPaGaeyyXICTaeq4Xdm2aaSbaaSqaaiaacUhacaWGIbGaaiyFaaqabaGccaGGOaGaamODaiaacMcacqGHflY1cqaHgpGzcaGGOaGaamODaiaacMcaaSqaaiaadAhacqGHiiIZcaWGcbaabeqdcqGHris5aOGaeyypa0JaaGimaaaa@7721@ .


Wir geben nun einige konkrete Beispiele für ein Skalarprodukt an.

Beispiel:  
  1. In n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ ist das in 9.9 eingeführte Skalarprodukt · MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4JPFgaaa@3859@ ein Skalarprodukt. ( n ,+,,·) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabl2riHoaaCaaaleqabaGaamOBaaaakiaacYcacqGHRaWkcaGGSaGaeyyXICTaaiilaiabl+y6NjaacMcaaaa@4188@ ist somit euklidischer Vektorraum.
     
  2. In 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3843@ ist durch
     
    xy= x 1 y 1 +2 x 2 y 2 +3 x 3 y 3 + x 1 y 3 + x 3 y 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgEHiQiaadMhacqGH9aqpcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamyEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamyEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaaiodacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaamyEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiaadMhadaWgaaWcbaGaaGymaaqabaaaaa@522B@
    ein Skalarprodukt erklärt.
     
  3. In C 0 ([a,b]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaacMcaaaa@3D3B@ wird durch die Festsetzung
     
      fg= a b fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgacqGH9aqpdaWdXbqaaiaadAgacqGHflY1caWGNbaaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aaaa@420F@
    ein Skalarprodukt erklärt.
     
  4. Im Quotientenraum F konv () / F 0konv () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaWgaaWcbaGaam4Aaiaad+gacaWGUbGaamODaaqabaGccaGGOaGaeSyfHuQaaiykamaaBaaaleaacaGGVaWaaSbaaWqaaiab=vi8gnaaBaaabaGaaGimaiabgkHiTiaadUgacaWGVbGaamOBaiaadAhaaeqaaiaacIcacqWIvesPcaGGPaaabeaaaSqabaaaaa@5452@ erklären wir ein Skalarprodukt über die Limesbildung:

    (( a n )+ F 0konv ())(( b n )+ F 0konv ())=lim a n b n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgUcaRmrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWB0aaSbaaSqaaiaaicdacqGHsislcaWGRbGaam4Baiaad6gacaWG2baabeaakiaacIcacqWIvesPcaGGPaGaaiykaiabgEHiQiaacIcacaGGOaGaamOyamaaBaaaleaacaWGUbaabeaakiaacMcacqGHRaWkcqWFfcVrdaWgaaWcbaGaaGimaiabgkHiTiaadUgacaWGVbGaamOBaiaadAhaaeqaaOGaaiikaiablwriLkaacMcacaGGPaGaeyypa0JaciiBaiaacMgacaGGTbGaamyyamaaBaaaleaacaWGUbaabeaakiabgwSixlaadkgadaWgaaWcbaGaamOBaaqabaaaaa@6B62@

 

Beweis:

Zu b.:   Die Kommutativität von ∗ ist offensichtlich. Zu den weiteren Eigenschaften:
 

(x+y)z =( x 1 + y 1 ) z 1 +2( x 2 + y 2 ) z 2 +3( x 3 + y 3 ) z 3 +( x 1 + y 1 ) z 3 +( x 3 + y 3 ) z 1 = x 1 z 1 + y 1 z 1 +2 x 2 z 2 +2 y 2 z 2 +3 x 3 z 3 +3 y 3 z 3 + x 1 z 3 + y 1 z 3 + x 3 z 1 + y 3 z 1 = x 1 z 1 +2 x 2 z 2 +3 x 3 z 3 + x 1 z 3 + x 3 z 1 + y 1 z 1 +2 y 2 z 2 +3 y 3 z 3 + y 1 z 3 + y 3 z 1 =xz+yz. αxy =α x 1 y 1 +2α x 2 y 2 +3α x 3 y 3 +α x 1 y 3 +α x 3 y 1 =α( x 1 y 1 +2 x 2 y 2 +3 x 3 y 3 + x 1 y 3 + x 3 y 1 ) =α(xy). xx = x 1 x 1 +2 x 2 x 2 +3 x 3 x 3 + x 1 x 3 + x 3 x 1 = x 1 2 +2 x 2 2 +3 x 3 2 +2 x 1 x 3 = ( x 1 + x 3 ) 2 +2 x 2 2 +2 x 3 2 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabWGaaaaaaaqaaiaacIcacaWG4bGaey4kaSIaamyEaiaacMcacqGHxiIkcaWG6baabaGaeyypa0JaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIYaGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaadQhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIZaGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaadQhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaamOEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIZaaabeaakiaacMcacaWG6bWaaSbaaSqaaiaaigdaaeqaaaGcbaaabaGaeyypa0JaamiEamaaBaaaleaacaaIXaaabeaakiaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamOEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaaikdacaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaamOEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaaiodacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaamOEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaaiodacaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaamOEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIXaaabeaakiaadQhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadMhadaWgaaWcbaGaaG4maaqabaGccaWG6bWaaSbaaSqaaiaaigdaaeqaaaGcbaaabaGaeyypa0JaamiEamaaBaaaleaacaaIXaaabeaakiaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIYaGaamiEamaaBaaaleaacaaIYaaabeaakiaadQhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIZaGaamiEamaaBaaaleaacaaIZaaabeaakiaadQhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamOEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIXaaabeaakiaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIYaGaamyEamaaBaaaleaacaaIYaaabeaakiaadQhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIZaGaamyEamaaBaaaleaacaaIZaaabeaakiaadQhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaamOEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadMhadaWgaaWcbaGaaG4maaqabaGccaWG6bWaaSbaaSqaaiaaigdaaeqaaaGcbaaabaGaeyypa0JaamiEaiabgEHiQiaadQhacqGHRaWkcaWG5bGaey4fIOIaamOEaiaac6caaeaaaeaaaeaacqaHXoqycaWG4bGaey4fIOIaamyEaaqaaiabg2da9iabeg7aHjaadIhadaWgaaWcbaGaaGymaaqabaGccaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGOmaiabeg7aHjaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaG4maiabeg7aHjaadIhadaWgaaWcbaGaaG4maaqabaGccaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeqySdeMaamiEamaaBaaaleaacaaIXaaabeaakiaadMhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcqaHXoqycaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaamyEamaaBaaaleaacaaIXaaabeaaaOqaaaqaaiabg2da9iabeg7aHjaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamyEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamyEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaaiodacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaamyEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGPaaabaaabaGaeyypa0JaeqySdeMaaiikaiaadIhacqGHxiIkcaWG5bGaaiykaiaac6caaeaaaeaaaeaacaWG4bGaey4fIOIaamiEaaqaaiabg2da9iaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaG4maiaadIhadaWgaaWcbaGaaG4maaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaaqaaiabg2da9iaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaiodacaWG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaaGcbaaabaGaeyypa0JaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadIhadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaGGUaaaaaaa@61A6@

xx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgEHiQiaadIhaaaa@38D5@ ist also eine Summe von Quadraten und damit stets 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImRaaGimaaaa@386C@ . Sei nun x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@396A@ . Ist x 2 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaakiabgcMi5kaaicdaaaa@3A5C@ oder x 3 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaakiabgcMi5kaaicdaaaa@3A5D@ , so hat man sofort xx>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgEHiQiaadIhacqGH+aGpcaaIWaaaaa@3A97@ . Sind x 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaaa@37D1@ und x 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaaa@37D2@ beide gleich 0, so muss x 1 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiabgcMi5kaaicdaaaa@3A5B@ sein und damit ist xx= ( x 1 + x 3 ) 2 = x 1 2 >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgEHiQiaadIhacqGH9aqpcaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabg6da+iaaicdaaaa@465A@ .

Zu c.:  Man beachte, dass ∗ wohldefiniert ist, denn mit f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36D7@ und g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36D8@ ist auch fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgwSixlaadEgaaaa@3A0D@ stetig, also über [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ integrierbar. Die Kommutativität von ∗ ist offensichtlich. Die Linearität in den Koordinaten ergibt sich aus dem Distributivgesetz und der Linearität des Integrals.
Bleibt, die positive Definitheit zu zeigen. Sei dazu f C 0 ([a,b]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaaaaa@3FAA@ , f0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgcMi5kaaicdaaaa@3958@ . Also gibt es ein y[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAB@ , so dass f(y)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG5bGaaiykaiabgcMi5kaaicdaaaa@3BAF@ ist. Aus Stetigkeitsgründen ist f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36D7@ dann in einer Umgebung von y ungleich 0: es gibt daher ein Intervall [c,d] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadogacaGGSaGaamizaiaac2faaaa@3A2D@ , so dass y[c,d][a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaacUfacaWGJbGaaiilaiaadsgacaGGDbGaeyOGIWSaai4waiaadggacaGGSaGaamOyaiaac2faaaa@42E8@ und f(x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabgcMi5kaaicdaaaa@3BAE@ für alle x[c,d] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGJbGaaiilaiaadsgacaGGDbaaaa@3CAE@ . Da das Integrieren monoton ist, kann man nun folgendermaßen abschätzen:
 

ff= a b f 2 c d f 2 >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadAgacqGH9aqpdaWdXbqaaiaadAgadaahaaWcbeqaaiaaikdaaaaabaGaamyyaaqaaiaadkgaa0Gaey4kIipakiabgwMiZoaapehabaGaamOzamaaCaaaleqabaGaaGOmaaaaaeaacaWGJbaabaGaamizaaqdcqGHRiI8aOGaeyOpa4JaaGimaaaa@4955@ .

Zu d.:  Zunächst stellen wir sicher, dass ∗ wohldefiniert ist. Ist etwa

( a n )+ F 0konv ()=(a ' n )+ F 0konv () ( b n )+ F 0konv ()=(b ' n )+ F 0konv (), MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaaqaaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgUcaRmrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWB0aaSbaaSqaaiaaicdacqGHsislcaWGRbGaam4Baiaad6gacaWG2baabeaakiaacIcacqWIvesPcaGGPaGaeyypa0JaaiikaiaadggacaGGNaWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgUcaRiab=vi8gnaaBaaaleaacaaIWaGaeyOeI0Iaam4Aaiaad+gacaWGUbGaamODaaqabaGccaGGOaGaeSyfHuQaaiykaaqaaiaacIcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgUcaRiab=vi8gnaaBaaaleaacaaIWaGaeyOeI0Iaam4Aaiaad+gacaWGUbGaamODaaqabaGccaGGOaGaeSyfHuQaaiykaiabg2da9iaacIcacaWGIbGaai4jamaaBaaaleaacaWGUbaabeaakiaacMcacqGHRaWkcqWFfcVrdaWgaaWcbaGaaGimaiabgkHiTiaadUgacaWGVbGaamOBaiaadAhaaeqaaOGaaiikaiablwriLkaacMcaaaaaaa@7EF8@
 
so sind ( a n )(a ' n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyOeI0IaaiikaiaadggacaGGNaWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@3E54@ und ( b n )(b ' n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyOeI0IaaiikaiaadkgacaGGNaWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@3E56@ Nullfolgen, was lim a n =lima ' n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacMgacaGGTbGaamyyamaaBaaaleaacaWGUbaabeaakiabg2da9iGacYgacaGGPbGaaiyBaiaadggacaGGNaWaaSbaaSqaaiaad6gaaeqaaaaa@4151@ und lim b n =limb ' n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacMgacaGGTbGaamOyamaaBaaaleaacaWGUbaabeaakiabg2da9iGacYgacaGGPbGaaiyBaiaadkgacaGGNaWaaSbaaSqaaiaad6gaaeqaaaaa@4153@ sicherstellt. Also hat man:
 
lim a n b n =lima ' n b ' n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacMgacaGGTbGaamyyamaaBaaaleaacaWGUbaabeaakiabgwSixlaadkgadaWgaaWcbaGaamOBaaqabaGccqGH9aqpciGGSbGaaiyAaiaac2gacaWGHbGaai4jamaaBaaaleaacaWGUbaabeaakiabgwSixlaadkgacaGGNaWaaSbaaSqaaiaad6gaaeqaaaaa@4AB0@ .

  

Beachte:

Das nachfolgende allgemeine Beispiel ermöglicht es, Skalarprodukte zu "importieren", also gewissermaßen eine euklidische Struktur von einem Vektorraum auf einen anderen zu übertragen.

Beispiel und Bezeichnung:  Es sei V ein Vektorraum und W ein euklidischer Vektorraum. Ist f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B39@ linear und injektiv (also ein injektiver Homomorphismus), so wird durch
 
v f w=f(v)f(w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQmaaBaaaleaacaWGMbaabeaakiaadEhacqGH9aqpcaWGMbGaaiikaiaadAhacaGGPaGaey4fIOIaamOzaiaacIcacaWG3bGaaiykaaaa@4267@

ein Skalarprodukt auf V definiert. f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4fIOYaaSbaaSqaaiaadAgaaeqaaaaa@37F2@ heißt das durch  f induzierte Skalarprodukt auf V.

Beweis:

  • v f w=f(v)f(w)=f(w)f(v)=w f v MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQmaaBaaaleaacaWGMbaabeaakiaadEhacqGH9aqpcaWGMbGaaiikaiaadAhacaGGPaGaey4fIOIaamOzaiaacIcacaWG3bGaaiykaiabg2da9iaadAgacaGGOaGaam4DaiaacMcacqGHxiIkcaWGMbGaaiikaiaadAhacaGGPaGaeyypa0Jaam4DaiabgEHiQmaaBaaaleaacaWGMbaabeaakiaadAhaaaa@4FE8@ .
  • ( v 1 + v 2 ) f w=f( v 1 + v 2 )f(w)=(f( v 1 )+f( v 2 ))f(w)=f( v 1 )f(w)+f( v 2 )f(w)= v 1 f w+ v 2 f w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEHiQmaaBaaaleaacaWGMbaabeaakiaadEhacqGH9aqpcaWGMbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEHiQiaadAgacaGGOaGaam4DaiaacMcacqGH9aqpcaGGOaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiaadAgacaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacaGGPaGaey4fIOIaamOzaiaacIcacaWG3bGaaiykaiabg2da9iaadAgacaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHxiIkcaWGMbGaaiikaiaadEhacaGGPaGaey4kaSIaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEHiQiaadAgacaGGOaGaam4DaiaacMcacqGH9aqpcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4fIOYaaSbaaSqaaiaadAgaaeqaaOGaam4DaiabgUcaRiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGHxiIkdaWgaaWcbaGaamOzaaqabaGccaWG3baaaa@7991@ .
  • (αv) f w=f(αv)f(w)=αf(v)f(w)=α(f(v)f(w))=α(v f w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeg7aHjaadAhacaGGPaGaey4fIOYaaSbaaSqaaiaadAgaaeqaaOGaam4Daiabg2da9iaadAgacaGGOaGaeqySdeMaamODaiaacMcacqGHxiIkcaWGMbGaaiikaiaadEhacaGGPaGaeyypa0JaeqySdeMaamOzaiaacIcacaWG2bGaaiykaiabgEHiQiaadAgacaGGOaGaam4DaiaacMcacqGH9aqpcqaHXoqycaGGOaGaamOzaiaacIcacaWG2bGaaiykaiabgEHiQiaadAgacaGGOaGaam4DaiaacMcacaGGPaGaeyypa0JaeqySdeMaaiikaiaadAhacqGHxiIkdaWgaaWcbaGaamOzaaqabaGccaWG3bGaaiykaaaa@6482@ .
  • Ist v0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgcMi5kaaicdaaaa@3968@ , so ist wegen der Injektivität von f auch f(v)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG2bGaaiykaiabgcMi5kaaicdaaaa@3BAC@ . Daraus folgt: v f v=f(v)f(v)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQmaaBaaaleaacaWGMbaabeaakiaadAhacqGH9aqpcaWGMbGaaiikaiaadAhacaGGPaGaey4fIOIaamOzaiaacIcacaWG2bGaaiykaiabg6da+iaaicdaaaa@4427@ .

 
Aus den definierenden Eingenschaften des Skalarprodukts ergben sich weitere:

Bemerkung:  Es sei V ein euklidischer Vektorraum. Dann gilt für alle v,w, v i , w i V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaaiilaiaadAhadaWgaaWcbaGaamyAaaqabaGccaGGSaGaam4DamaaBaaaleaacaWGPbaabeaakiabgIGiolaadAfaaaa@408E@ und α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyicI4SaeSyhHekaaa@3A7C@ :
  1. v( w 1 + w 2 )=v w 1 +v w 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQiaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4DamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcaWG2bGaey4fIOIaam4DamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadAhacqGHxiIkcaWG3bWaaSbaaSqaaiaaikdaaeqaaaaa@4776@
     
  2. vαw=α(vw) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQiabeg7aHjaadEhacqGH9aqpcqaHXoqycaGGOaGaamODaiabgEHiQiaadEhacaGGPaaaaa@4152@
     
  3. (v)w=vw=v(w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaadAhacaGGPaGaey4fIOIaam4Daiabg2da9iabgkHiTiaadAhacqGHxiIkcaWG3bGaeyypa0JaamODaiabgEHiQiaacIcacqGHsislcaWG3bGaaiykaaaa@4620@
     
  4. ( v 1 v 2 )w= v 1 w v 2 w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEHiQiaadEhacqGH9aqpcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4fIOIaam4DaiabgkHiTiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGHxiIkcaWG3baaaa@4795@
    v( w 1 w 2 )=v w 1 v w 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQiaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcaWG2bGaey4fIOIaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadAhacqGHxiIkcaWG3bWaaSbaaSqaaiaaikdaaeqaaaaa@478C@
     
  5. 0w=v0=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgEHiQiaadEhacqGH9aqpcaWG2bGaey4fIOIaaGimaiabg2da9iaaicdaaaa@3DF8@
     
  6. I.a. gilt nicht: vw=0v=0      w=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQiaadEhacqGH9aqpcaaIWaGaaGzbVlabgkDiElaaywW7caWG2bGaeyypa0JaaGimaiaaysW7cqGHOiI2caaMe8Uaam4Daiabg2da9iaaicdaaaa@4A49@

Beweis:

Zu 1.:  Mit der Kommutativität und der Linearität in der ersten Koordinate von ∗ kann man wie folgt argumentieren:
 

v( w 1 + w 2 )=( w 1 + w 2 )v= w 1 v+ w 2 v=v w 1 +v w 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQiaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4DamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcaGGOaGaam4DamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadEhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4fIOIaamODaiabg2da9iaadEhadaWgaaWcbaGaaGymaaqabaGccqGHxiIkcaWG2bGaey4kaSIaam4DamaaBaaaleaacaaIYaaabeaakiabgEHiQiaadAhacqGH9aqpcaWG2bGaey4fIOIaam4DamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadAhacqGHxiIkcaWG3bWaaSbaaSqaaiaaikdaaeqaaaaa@5A13@ .

Zu 2.:  2. wird wie gerade bewiesen.

Zu 3.:   (v)w=(1)vw=(1)(vw)=(vw) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaadAhacaGGPaGaey4fIOIaam4Daiabg2da9iaacIcacqGHsislcaaIXaGaaiykaiaadAhacqGHxiIkcaWG3bGaeyypa0JaaiikaiabgkHiTiaaigdacaGGPaGaaiikaiaadAhacqGHxiIkcaWG3bGaaiykaiabg2da9iabgkHiTiaacIcacaWG2bGaey4fIOIaam4DaiaacMcaaaa@507A@ . Die zweite Gleichung folgt nun aus der Kommutativität.

Zu 4.:  Wir zeigen nur die erste Gleichung (die zweite ergibt sich wieder nach dem Schema zu 1.):
 

( v 1 v 2 )w=( v 1 +( v 2 )w= v 1 w+( v 2 )w= v 1 w+(( v 2 w))= v 1 w v 2 w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEHiQiaadEhacqGH9aqpcaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiaacIcacqGHsislcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEHiQiaadEhacqGH9aqpcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4fIOIaam4DaiabgUcaRiaacIcacqGHsislcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEHiQiaadEhacqGH9aqpcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4fIOIaam4DaiabgUcaRiaacIcacqGHsislcaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiabgEHiQiaadEhacaGGPaGaaiykaiabg2da9iaadAhadaWgaaWcbaGaaGymaaqabaGccqGHxiIkcaWG3bGaeyOeI0IaamODamaaBaaaleaacaaIYaaabeaakiabgEHiQiaadEhaaaa@6B46@ .

Zu 5.:   0w=(00)w=0(0w)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgEHiQiaadEhacqGH9aqpcaGGOaGaaGimaiabgwSixlaaicdacaGGPaGaey4fIOIaam4Daiabg2da9iaaicdacqGHflY1caGGOaGaaGimaiabgEHiQiaadEhacaGGPaGaeyypa0JaaGimaaaa@4A5E@ .

Zu 6.:  Z.B. ist in 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ : e 1 e 2 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBaaaleaacaaIXaaabeaakiabgEHiQiaadwgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWaaaaa@3C4F@ .
 


 

 
Euklidische Vektorräume ermöglichen die Einführung geometrischer Strukturen. In diesem Abschnitt betrachten wir zwei grundlegende Konzepte: die Längen- und die Winkelmessung.

Wir beginnen mit der Längenmessung und orientieren uns dabei an den geometrischen Verhältnissen des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@

Stellt man sich unter der Länge eines Vektors x die Länge 
des durch x gegebenen Pfeils vor, so kann man, etwa in 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@
diese Länge über den Satz des Pythagoras errechnen:

x 1 2 + x 2 2 = x·x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaeqaaOGaeyypa0ZaaOaaaeaacaWG4bGaeS4JPFMaamiEaaWcbeaaaaa@41BD@ .
         

  
Definition:  Es sei V ein euklidischer Vektorraum. Für vV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgIGiolaadAfaaaa@3943@ setzen wir
 
| v | vv MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyypa0ZaaOaaaeaacaWG2bGaey4fIOIaamODaaWcbeaaaaa@3E0C@ .

Die Zahl | v | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdaaaa@3A06@ heißt die Länge (bzw. die Norm) des Vektors v. Ist | v |=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyypa0JaaGymaaaa@3BC7@ , so nennen wir v einen Einheitsvektor.
 

Beachte:

 

Beispiel:  Wir berechnen die Längen einiger Vektoren
  1. in n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@
    • | ( 3 4 ) |= ( 3 4 )·( 3 4 ) = 9+16 =5 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaqadaqaauaabeqaceaaaeaacaaIZaaabaGaeyOeI0IaaGinaaaaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGH9aqpdaGcaaqaamaabmaabaqbaeqabiqaaaqaaiaaiodaaeaacqGHsislcaaI0aaaaaGaayjkaiaawMcaaiabl+y6NnaabmaabaqbaeqabiqaaaqaaiaaiodaaeaacqGHsislcaaI0aaaaaGaayjkaiaawMcaaaWcbeaakiabg2da9maakaaabaGaaGyoaiabgUcaRiaaigdacaaI2aaaleqaaOGaeyypa0JaaGynaaaa@4EB0@ .
       
    • | ( 1 3 1 3 1 3 ) |= ( 1 3 1 3 1 3 )·( 1 3 1 3 1 3 ) = 1 3 + 1 3 + 1 3 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaqadaqaauaabeqadeaaaeaadaWcdaWcbaGaaGymaaqaamaakaaabaGaaG4maaadbeaaaaaakeaadaWcdaWcbaGaaGymaaqaamaakaaabaGaaG4maaadbeaaaaaakeaadaWcdaWcbaGaaGymaaqaamaakaaabaGaaG4maaadbeaaaaaaaaGccaGLOaGaayzkaaaacaGLhWUaayjcSdGaeyypa0ZaaOaaaeaadaqadaqaauaabeqadeaaaeaadaWcdaWcbaGaaGymaaqaamaakaaabaGaaG4maaadbeaaaaaakeaadaWcdaWcbaGaaGymaaqaamaakaaabaGaaG4maaadbeaaaaaakeaadaWcdaWcbaGaaGymaaqaamaakaaabaGaaG4maaadbeaaaaaaaaGccaGLOaGaayzkaaGaeS4JPF2aaeWaaeaafaqabeWabaaabaWaaSWaaSqaaiaaigdaaeaadaGcaaqaaiaaiodaaWqabaaaaaGcbaWaaSWaaSqaaiaaigdaaeaadaGcaaqaaiaaiodaaWqabaaaaaGcbaWaaSWaaSqaaiaaigdaaeaadaGcaaqaaiaaiodaaWqabaaaaaaaaOGaayjkaiaawMcaaaWcbeaakiabg2da9maakaaabaWaaSaaaeaacaaIXaaabaGaaG4maaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIZaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiodaaaaaleqaaOGaeyypa0JaaGymaaaa@5A52@ .
       
  2. in C 0 ([0,1]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaGGBbGaaGimaiaacYcacaaIXaGaaiyxaiaacMcaaaa@3CE0@ :
    • | X 2 |= X 2 X 2 = 0 1 X 4 = 1 5 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGybWaaWbaaSqabeaacaaIYaaaaaGccaGLhWUaayjcSdGaeyypa0ZaaOaaaeaacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4fIOIaamiwamaaCaaaleqabaGaaGOmaaaaaeqaaOGaeyypa0ZaaOaaaeaadaWdXbqaaiaadIfadaahaaWcbeqaaiaaisdaaaaabaGaaGimaaqaaiaaigdaa0Gaey4kIipaaSqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaadaGcaaqaaiaaiwdaaSqabaaaaaaa@49F1@ .
       
    • | c |= cc = 0 1 c 2 =| c | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGJbaacaGLhWUaayjcSdGaeyypa0ZaaOaaaeaacaWGJbGaey4fIOIaam4yaaWcbeaakiabg2da9maakaaabaWaa8qCaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaleqaaOGaeyypa0ZaaqWaaeaacaWGJbaacaGLhWUaayjcSdaaaa@49BC@ .
       
  3. in F konv () / F 0konv () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrdaWgaaWcbaGaam4Aaiaad+gacaWGUbGaamODaaqabaGccaGGOaGaeSyfHuQaaiykamaaBaaaleaacaGGVaWaaSbaaWqaaiab=vi8gnaaBaaabaGaaGimaiabgkHiTiaadUgacaWGVbGaamOBaiaadAhaaeqaaiaacIcacqWIvesPcaGGPaaabeaaaSqabaaaaa@5452@ :
    • | ( 2n n+1 )+ F 0konv () |= lim( 2n n+1 )( 2n n+1 ) =2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaqadaqaamaalaaabaGaaGOmaiaad6gaaeaacaWGUbGaey4kaSIaaGymaaaaaiaawIcacaGLPaaacqGHRaWktuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vi8gnaaBaaaleaacaaIWaGaeyOeI0Iaam4Aaiaad+gacaWGUbGaamODaaqabaGccaGGOaGaeSyfHuQaaiykaaGaay5bSlaawIa7aiabg2da9maakaaabaGaciiBaiaacMgacaGGTbWaaeWaaeaadaWcaaqaaiaaikdacaWGUbaabaGaamOBaiabgUcaRiaaigdaaaaacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaaikdacaWGUbaabaGaamOBaiabgUcaRiaaigdaaaaacaGLOaGaayzkaaaaleqaaOGaeyypa0JaaGOmaaaa@6589@ .

 

 
Bemerkung:  Es sei V ein euklidischer Vektorraum. Dann gilt für alle v,wV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyicI4SaamOvaaaa@3AEF@ und α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyicI4SaeSyhHekaaa@3A7C@ :
  1. | v |0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyyzImRaaGimaaaa@3C86@ .
     
  2. | v |=0v=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyypa0JaaGimaiaaywW7cqGHuhY2caaMf8UaamODaiabg2da9iaaicdaaaa@43F9@ .
     
  3. | αv |=| α || v | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqaHXoqycaWG2baacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacqaHXoqyaiaawEa7caGLiWoacqGHflY1daabdaqaaiaadAhaaiaawEa7caGLiWoaaaa@47D3@ .
     
  4. | v |=| v | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacqGHsislcaWG2baacaGLhWUaayjcSdaaaa@4016@ .
     
  5. | vw || v || w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaey4fIOIaam4DaaGaay5bSlaawIa7aiabgsMiJoaaemaabaGaamODaaGaay5bSlaawIa7aiabgwSixpaaemaabaGaam4DaaGaay5bSlaawIa7aaaa@482B@ .("Cauchy-Schwarzsche Ungleichung")
     
  6. | vw |=| v || w |v,w   linear abhängig MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaey4fIOIaam4DaaGaay5bSlaawIa7aiabg2da9maaemaabaGaamODaaGaay5bSlaawIa7aiabgwSixpaaemaabaGaam4DaaGaay5bSlaawIa7aiaaywW7cqGHuhY2caaMf8UaamODaiaacYcacaWG3bGaaGjbVlaabYgacaqGPbGaaeOBaiaabwgacaqGHbGaaeOCaiaabccacaqGHbGaaeOyaiaabIgacaqGKdGaaeOBaiaabEgacaqGPbGaae4zaaaa@5F24@ .
     
  7. | v+w || v |+| w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaey4kaSIaam4DaaGaay5bSlaawIa7aiabgsMiJoaaemaabaGaamODaaGaay5bSlaawIa7aiabgUcaRmaaemaabaGaam4DaaGaay5bSlaawIa7aaaa@46B6@ .("Dreiecksungleichung")
     
  8. | vw || v || w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aiabgwMiZoaaemaabaGaamODaaGaay5bSlaawIa7aiabgkHiTmaaemaabaGaam4DaaGaay5bSlaawIa7aaaa@46DD@ .("Zweite Dreiecksungleichung")
     
  9. | v+w | 2 + | vw | 2 =2 | v | 2 +2 | w | 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaey4kaSIaam4DaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiabgUcaRmaaemaabaGaamODaiabgkHiTiaadEhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaIYaWaaqWaaeaacaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmamaaemaabaGaam4DaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaaa@5229@ .("Parallelogrammgesetz")
     

Beweis:

Zu 1.:  Dies ist eine Eigenschaft der Wurzel: | v |= v 2 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyypa0ZaaOaaaeaacaWG2bWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHLjYScaaIWaaaaa@3F8A@ .

Zu 2.:  Für diese " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ " Richtung benötigen wir ebenfalls eine Wurzeleigenschaft:
Ist nämlich v0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgcMi5kaaicdaaaa@3965@ , so ist vv>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgEHiQiaadAhacqGH+aGpcaaIWaaaaa@3A90@ , also hat man auch | v |= v 2 >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyypa0ZaaOaaaeaacaWG2bWaaWbaaSqabeaacaaIYaaaaaqabaGccqGH+aGpcaaIWaaaaa@3ECC@ .
Die Richtung " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ " ergibt sich sofort aus 00=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgEHiQiaaicdacqGH9aqpcaaIWaaaaa@3A0C@ .

Zu 3.:  Es reicht, die Gleichheit der Quadrate festzustellen:
 

| αv | 2 =αvαv=αα(vv)= α 2 v 2 = | α | 2 | v | 2 = (| α || v |) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqaHXoqycaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaeqySdeMaamODaiabgEHiQiabeg7aHjaadAhacqGH9aqpcqaHXoqycqaHXoqycaGGOaGaamODaiabgEHiQiaadAhacaGGPaGaeyypa0JaeqySde2aaWbaaSqabeaacaaIYaaaaOGaamODamaaCaaaleqabaGaaGOmaaaakiabg2da9maaemaabaGaeqySdegacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOWaaqWaaeaacaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaiikamaaemaabaGaeqySdegacaGLhWUaayjcSdGaeyyXIC9aaqWaaeaacaWG2baacaGLhWUaayjcSdGaaiykamaaCaaaleqabaGaaGOmaaaaaaa@6C03@ .

Zu 4.:  Die Behauptung folgt mit α=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaeyOeI0IaaGymaaaa@3A36@ direkt aus 3.

Zu 5.:  Für w=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiabg2da9iaaicdaaaa@38A5@ ist nichts zu zeigen; sei also w0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgcMi5kaaicdaaaa@3966@ . Der Beweis ist jetzt ein wenig trickreich. Neben einigen Eigenschaften des Skalarprodukts benötigen wir am Ende das Monotonieverhalten der Wurzelfunktion. Wir setzen nun c= vw | w | 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9maalaaabaGaamODaiabgEHiQiaadEhaaeaadaabdaqaaiaadEhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaaaaaaa@3FD4@ und zeigen der Reihe nach:

0 (vcw)(vcw) =vv2c(vw)+ c 2 (ww) = | v | 2 2c(vw)+ c 2 | w | 2 = | v | 2 2 (vw) 2 | w | 2 + (vw) 2 | w | 2 0 | v | 2 | w | 2 (vw) 2 (vw) 2 | v | 2 | w | 2 vw | v || w |. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabCGaaaaabaGaaGimaaqaaiabgsMiJkaacIcacaWG2bGaeyOeI0Iaam4yaiaadEhacaGGPaGaey4fIOIaaiikaiaadAhacqGHsislcaWGJbGaam4DaiaacMcaaeaaaeaacqGH9aqpcaWG2bGaey4fIOIaamODaiabgkHiTiaaikdacaWGJbGaaiikaiaadAhacqGHxiIkcaWG3bGaaiykaiabgUcaRiaadogadaahaaWcbeqaaiaaikdaaaGccaGGOaGaam4DaiabgEHiQiaadEhacaGGPaaabaaabaGaeyypa0ZaaqWaaeaacaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadogacaGGOaGaamODaiabgEHiQiaadEhacaGGPaGaey4kaSIaam4yamaaCaaaleqabaGaaGOmaaaakmaaemaabaGaam4DaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaOqaaaqaaiabg2da9maaemaabaGaamODaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdadaWcaaqaaiaacIcacaWG2bGaey4fIOIaam4DaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaadaabdaqaaiaadEhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaGGOaGaamODaiabgEHiQiaadEhacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaWaaqWaaeaacaWG3baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaaaaOqaaiabgkDiElaaywW7caaIWaaabaGaeyizIm6aaqWaaeaacaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyyXIC9aaqWaaeaacaWG3baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaiikaiaadAhacqGHxiIkcaWG3bGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiabgkDiElaaywW7caGGOaGaamODaiabgEHiQiaadEhacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaeyizIm6aaqWaaeaacaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyyXIC9aaqWaaeaacaWG3baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaGcbaGaeyO0H4TaaGzbVlaadAhacqGHxiIkcaWG3baabaGaeyizIm6aaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyyXIC9aaqWaaeaacaWG3baacaGLhWUaayjcSdaaaaaa@CA8E@

Zu 6.:  " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ ": Für w=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiabg2da9iaaicdaaaa@38A5@ ist wieder nichts zu zeigen; sei also w0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiabgcMi5kaaicdaaaa@3966@ . Wie im Beweis zu 4. errechnen wir:
 

(vcw) 2 = | v | 2 2 (vw) 2 | w | 2 + (vw) 2 | w | 2 = | v | 2 2 | v | 2 | w | 2 | w | 2 + | v | 2 | w | 2 | w | 2 = | v | 2 2 | v | 2 + | v | 2 =0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaaiikaiaadAhacqGHsislcaWGJbGaam4DaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaacqGH9aqpdaabdaqaaiaadAhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaWaaSaaaeaacaGGOaGaamODaiabgEHiQiaadEhacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaWaaqWaaeaacaWG3baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaaiikaiaadAhacqGHxiIkcaWG3bGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaamaaemaabaGaam4DaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaaaakeaaaeaacqGH9aqpdaabdaqaaiaadAhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaWaaSaaaeaadaabdaqaaiaadAhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccqGHflY1daabdaqaaiaadEhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaaakeaadaabdaqaaiaadEhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaadaabdaqaaiaadAhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccqGHflY1daabdaqaaiaadEhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaaakeaadaabdaqaaiaadEhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaaaaaGcbaaabaGaeyypa0ZaaqWaaeaacaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmamaaemaabaGaamODaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiabgUcaRmaaemaabaGaamODaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaOqaaaqaaiabg2da9iaaicdacaGGUaaaaaaa@9A49@

Damit aber ist | vcw |=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0Iaam4yaiaadEhaaiaawEa7caGLiWoacqGH9aqpcaaIWaaaaa@3E97@ , also v=cw MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9iaadogacaWG3baaaa@39CE@ . Die Sequenz  v,w  ist daher linear abhängig.

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ ": Sei nun  v,w  linear abhängig, etwa v=αw MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9iabeg7aHjaadEhaaaa@3A85@ . Dann rechnet man der Reihe nach:
 

| vw |=| αww |=| α || ww |=| α | | w | 2 =| α || w || w |=| αw || w |=| v || w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaey4fIOIaam4DaaGaay5bSlaawIa7aiabg2da9maaemaabaGaeqySdeMaam4DaiabgEHiQiaadEhaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiabeg7aHbGaay5bSlaawIa7amaaemaabaGaam4DaiabgEHiQiaadEhaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiabeg7aHbGaay5bSlaawIa7amaaemaabaGaam4DaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiabg2da9maaemaabaGaeqySdegacaGLhWUaayjcSdWaaqWaaeaacaWG3baacaGLhWUaayjcSdGaeyyXIC9aaqWaaeaacaWG3baacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacqaHXoqycaWG3baacaGLhWUaayjcSdGaeyyXIC9aaqWaaeaacaWG3baacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyyXIC9aaqWaaeaacaWG3baacaGLhWUaayjcSdaaaa@844A@ .

Zu 7.:  Wir betrachten wieder nur die Quadrate:
 

| v+w | 2 = (v+w) 2 = v 2 +2(vw)+ w 2 v 2 +2| vw |+ w 2 v 2 +2| v || w |+ w 2 (Cauchy-Schwarz) = | v | 2 +2| v || w |+ | w | 2 = (| v |+| w |) 2 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabCGaaaaabaaabaWaaqWaaeaacaWG2bGaey4kaSIaam4DaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaOqaaiabg2da9aqaaiaacIcacaWG2bGaey4kaSIaam4DaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaacqGH9aqpaeaacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaacIcacaWG2bGaey4fIOIaam4DaiaacMcacqGHRaWkcaWG3bWaaWbaaSqabeaacaaIYaaaaaGcbaGaeyizImkabaGaamODamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdadaabdaqaaiaadAhacqGHxiIkcaWG3baacaGLhWUaayjcSdGaey4kaSIaam4DamaaCaaaleqabaGaaGOmaaaaaOqaaiabgsMiJcqaaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaWaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyyXIC9aaqWaaeaacaWG3baacaGLhWUaayjcSdGaey4kaSIaam4DamaaCaaaleqabaGaaGOmaaaakiaaywW7caaMf8UaaGzbVlaabIcacaqGdbGaaeyyaiaabwhacaqGJbGaaeiAaiaabMhacaqGTaGaae4uaiaabogacaqGObGaae4DaiaabggacaqGYbGaaeOEaiaabMcaaeaacaqG9aaabaWaaqWaaeaacaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmamaaemaabaGaamODaaGaay5bSlaawIa7aiabgwSixpaaemaabaGaam4DaaGaay5bSlaawIa7aiabgUcaRmaaemaabaGaam4DaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaOqaaiabg2da9aqaaiaacIcadaabdaqaaiaadAhaaiaawEa7caGLiWoacqGHRaWkdaabdaqaaiaadEhaaiaawEa7caGLiWoacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaaiOlaaaaaaa@A711@

Zu 8.:  Die Behauptung folgt sofort aus | v |=| vw+w || vw |+| w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWG2bGaeyOeI0Iaam4DaiabgUcaRiaadEhaaiaawEa7caGLiWoacqGHKjYOdaabdaqaaiaadAhacqGHsislcaWG3baacaGLhWUaayjcSdGaey4kaSYaaqWaaeaacaWG3baacaGLhWUaayjcSdaaaa@4FAB@ .

Zu 9.:  | v+w | 2 + | vw | 2 = (v+w) 2 + (vw) 2 = v 2 +2(vw)+ w 2 + v 2 2(vw)+ w 2 =2 | v | 2 +2 | w | 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaey4kaSIaam4DaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiabgUcaRmaaemaabaGaamODaiabgkHiTiaadEhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaGGOaGaamODaiabgUcaRiaadEhacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiikaiaadAhacqGHsislcaWG3bGaaiykamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadAhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaiikaiaadAhacqGHxiIkcaWG3bGaaiykaiabgUcaRiaadEhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaacIcacaWG2bGaey4fIOIaam4DaiaacMcacqGHRaWkcaWG3bWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGOmamaaemaabaGaamODaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdadaabdaqaaiaadEhaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaaaaa@7591@ .
  

 

 
Bemerkung und Bezeichnung:  Es sei V ein euklidischer Vektorraum, vV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgIGiolaadAfaaaa@3943@ . Ist v0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgcMi5kaaicdaaaa@3965@ , so setzt man
 
v°= v | v | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgclaWkabg2da9maalaaabaGaamODaaqaamaaemaabaGaamODaaGaay5bSlaawIa7aaaaaaa@3EFE@ .

v° MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgclaWcaa@38D0@ heißt der zu v gehörige Einheitsvektor. Dabei gilt:
  1. | v° |=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyiSaalacaGLhWUaayjcSdGaeyypa0JaaGymaaaa@3DB3@ .
     
  2. <v°>=<v> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamODaiabgclaWkabg6da+iabg2da9iabgYda8iaadAhacqGH+aGpaaa@3EE9@ .

Beweis:

Zu 1.:   | v° |=| 1 | v | v |= 1 | v | | v |=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyiSaalacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaadaWcaaqaaiaaigdaaeaadaabdaqaaiaadAhaaiaawEa7caGLiWoaaaGaamODaaGaay5bSlaawIa7aiabg2da9maalaaabaGaaGymaaqaamaaemaabaGaamODaaGaay5bSlaawIa7aaaacqGHflY1daabdaqaaiaadAhaaiaawEa7caGLiWoacqGH9aqpcaaIXaaaaa@5413@ .

Zu 2.:   Die Gleichheit folgt mit v=| v |v° MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9maaemaabaGaamODaaGaay5bSlaawIa7aiaadAhacqGHWcaSaaa@3EEE@ aus einer elementaren Gesetzmäßigkeit für Erzeugnisse.
  

 

Direkt verbunden mit dem Längenbegriff ist das Konzept der Abstandsmessung. Die folgende Definition orientiert sich an den Verhältnissen des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ . Hier repräsentiert der Vektor xy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgkHiTiaadMhaaaa@38D1@ die Nebendiagonale des von x und  y aufgespannten Prallelogramms; seine Länge | xy | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG4bGaeyOeI0IaamyEaaGaay5bSlaawIa7aaaa@3BF3@ mißt also die Entfernung zwischen den Punkten x und  y.
 
Definition:  Es sei V ein euklidischer Vektorraum. Für v,wV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyicI4SaamOvaaaa@3AEF@ heißt die Zahl
 
| vw | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aaaa@3BEF@

Abstand von v zu w.
 

 
Bemerkung:  In einem euklidischen Vektorraum V  gilt für alle u,v,wV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacYcacaWG2bGaaiilaiaadEhacqGHiiIZcaWGwbaaaa@3C99@ :
  1. | vw |=| wv | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aiabg2da9maaemaabaGaam4DaiabgkHiTiaadAhaaiaawEa7caGLiWoaaaa@42FB@ .
     
  2. | v0 |=| v | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0IaaGimaaGaay5bSlaawIa7aiabg2da9maaemaabaGaamODaaGaay5bSlaawIa7aaaa@40D0@ .
     
  3. | vw |=0v=w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aiabg2da9iaaicdacaaMf8Uaeyi1HSTaaGzbVlaadAhacqGH9aqpcaWG3baaaa@4624@ .
     
  4. | vw || vu |+| uw | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aiabgsMiJoaaemaabaGaamODaiabgkHiTiaadwhaaiaawEa7caGLiWoacqGHRaWkdaabdaqaaiaadwhacqGHsislcaWG3baacaGLhWUaayjcSdaaaa@4A8F@ .

Beweis: Alle Punkte werden auf die entsprechenden Eigenschaften der Länge zurückgeführt. 2. ist offensichtlich richtig.

Zu 1.:  | vw |=| (wv) |=| wv | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aiabg2da9maaemaabaGaeyOeI0IaaiikaiaadEhacqGHsislcaWG2bGaaiykaaGaay5bSlaawIa7aiabg2da9maaemaabaGaam4DaiabgkHiTiaadAhaaiaawEa7caGLiWoaaaa@4C4D@ .

Zu 3.:  | vw |=0vw=0v=w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aiabg2da9iaaicdacaaMf8Uaeyi1HSTaaGzbVlaadAhacqGHsislcaWG3bGaeyypa0JaaGimaiaaywW7cqGHuhY2caaMf8UaamODaiabg2da9iaadEhaaaa@5040@ .

Zu 4.:  | vw |=| vu+uw || vu |+| uw | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aiabg2da9maaemaabaGaamODaiabgkHiTiaadwhacqGHRaWkcaWG1bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aiabgsMiJoaaemaabaGaamODaiabgkHiTiaadwhaaiaawEa7caGLiWoacqGHRaWkdaabdaqaaiaadwhacqGHsislcaWG3baacaGLhWUaayjcSdaaaa@555E@ .
 

 
Die Existenz eines Abstandsbegriffs eröffnet für euklidische Vektorräume eine völlig neue Perspektive: Grundprinzipien der reellen Analysis lassen sich in geeigneter Weise auf euklidische Vektorräume übertragen! Dieses Konzept soll am Beispiel der Konvergenz vorgestellt werden.
 
Definition:  Es sei V ein euklidischer Vektorraum ( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@3996@ eine Folge in V und vV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgIGiolaadAfaaaa@3943@
  1. Wir sagen ( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@3996@ konvergiert gegen v (in Zeichen: v n v MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaWGUbaabeaakiabgkziUkaadAhaaaa@3AF5@ ), falls es zu jedem ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ ein n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3BD8@ gibt, so dass
     
    | v n v |<εfür alle   n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODaaGaay5bSlaawIa7aiabgYda8iabew7aLjaaywW7caqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaaysW7caWGUbGaeyyzImRaamOBamaaBaaaleaacaaIWaaabeaaaaa@4F19@ .

    Falls v n v MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaWGUbaabeaakiabgkziUkaadAhaaaa@3AF5@ , so nennen wir ( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@3996@ konvergent und v einen Grenzwert (oder Limes) von ( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@3996@ .
     
  2. ( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@3996@ heißt Cauchy-Folge, falls es zu jedem ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ ein n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3BD8@ gibt, so dass
     
    | v n v m |<εfür alle   n,m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaWGTbaabeaaaOGaay5bSlaawIa7aiabgYda8iabew7aLjaaywW7caqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaaysW7caWGUbGaaiilaiaad2gacqGHLjYScaWGUbWaaSbaaSqaaiaaicdaaeqaaaaa@51E3@ .

     
  3. V heißt vollständig, falls jede Cauchy-Folge konvergiert.

 
Bemerkung:  V sei ein euklidischer Vektorraum. Dann gilt:
  1. Jede Folge ( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@3996@ in V hat höchstens einen Grenzwert.
     
  2. Jede konvegente Folge ist eine Cauchy-Folge.
     
  3. v n v       w n wα v n +β w n αv+βw MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaWGUbaabeaakiabgkziUkaadAhacaaMe8Uaey4jIKTaaGjbVlaadEhadaWgaaWcbaGaamOBaaqabaGccqGHsgIRcaWG3bGaaGzbVlabgkDiElaaywW7cqaHXoqycaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeqOSdiMaam4DamaaBaaaleaacaWGUbaabeaakiabgkziUkabeg7aHjaadAhacqGHRaWkcqaHYoGycaWG3baaaa@5AB5@ .
     

Beweis:

Zu 1.:  Angenommen v und v' sind zwei verschiedene Grenzwerte von ( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@3996@ . Dann gibt es zu jedem ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ ein n, so dass

| v n v |< ε 2       | v n v' |< ε 2 | vv' |=| v v n + v n v' || v v n |+| v n v' |<ε | vv' |=0 vv'=0im Widerspruch zu   vv' MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaaabaWaaqWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODaaGaay5bSlaawIa7aiabgYda8maalaaabaGaeqyTdugabaGaaGOmaaaacaaMe8Uaey4jIKTaaGjbVpaaemaabaGaamODamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadAhacaGGNaaacaGLhWUaayjcSdGaeyipaWZaaSaaaeaacqaH1oqzaeaacaaIYaaaaaqaaiabgkDiElaaywW7aeaadaabdaqaaiaadAhacqGHsislcaWG2bGaai4jaaGaay5bSlaawIa7aiabg2da9maaemaabaGaamODaiabgkHiTiaadAhadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODaiaacEcaaiaawEa7caGLiWoacqGHKjYOdaabdaqaaiaadAhacqGHsislcaWG2bWaaSbaaSqaaiaad6gaaeqaaaGccaGLhWUaayjcSdGaey4kaSYaaqWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODaiaacEcaaiaawEa7caGLiWoacqGH8aapcqaH1oqzaeaacqGHshI3caaMf8oabaWaaqWaaeaacaWG2bGaeyOeI0IaamODaiaacEcaaiaawEa7caGLiWoacqGH9aqpcaaIWaaabaGaeyO0H4TaaGzbVdqaaiaadAhacqGHsislcaWG2bGaai4jaiabg2da9iaaicdacaaMf8UaaeyAaiaab2gacaqGGaGaae4vaiaabMgacaqGKbGaaeyzaiaabkhacaqGZbGaaeiCaiaabkhacaqG1bGaae4yaiaabIgacaqGGaGaaeOEaiaabwhacaaMe8UaamODaiabgcMi5kaadAhacaGGNaaaaaaa@A9CB@

Zu 2.:  Sei ( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@3996@ konvergent gegen v und ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ vorgegeben. Dann gibt es ein n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaaaaa@37C2@ , so dass | v n v |< ε 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODaaGaay5bSlaawIa7aiabgYda8maalaaabaGaeqyTdugabaGaaGOmaaaaaaa@408E@ für alle n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@3A7B@ .
Damit hat man für n,m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacYcacaWGTbGaeyyzImRaamOBamaaBaaaleaacaaIWaaabeaaaaa@3C1D@ :
 

| v n v m |=| v n v+v v m || v n v |+| v m v |<ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaWGTbaabeaaaOGaay5bSlaawIa7aiabg2da9maaemaabaGaamODamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadAhacqGHRaWkcaWG2bGaeyOeI0IaamODamaaBaaaleaacaWGTbaabeaaaOGaay5bSlaawIa7aiabgsMiJoaaemaabaGaamODamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadAhaaiaawEa7caGLiWoacqGHRaWkdaabdaqaaiaadAhadaWgaaWcbaGaamyBaaqabaGccqGHsislcaWG2baacaGLhWUaayjcSdGaeyipaWJaeqyTdugaaa@5EFD@ .

Zu 3.:  Ist ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ vorgegeben, so gibt es n 1 , n 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIXaaabeaakiaacYcacaWGUbWaaSbaaSqaaiaaikdaaeqaaaaa@3A58@ , so dass

| v n v |< ε 2(| α |+1) für alle   n n 1 | w n w |< ε 2(| β |+1) für alle   n n 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaamaaemaabaGaamODamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadAhaaiaawEa7caGLiWoacqGH8aapdaWcaaqaaiabew7aLbqaaiaaikdacaGGOaWaaqWaaeaacqaHXoqyaiaawEa7caGLiWoacqGHRaWkcaaIXaGaaiykaaaacaaMf8UaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaaMe8UaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGymaaqabaaakeaadaabdaqaaiaadEhadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWG3baacaGLhWUaayjcSdGaeyipaWZaaSaaaeaacqaH1oqzaeaacaaIYaGaaiikamaaemaabaGaeqOSdigacaGLhWUaayjcSdGaey4kaSIaaGymaiaacMcaaaGaaGzbVlaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaaGjbVlaad6gacqGHLjYScaWGUbWaaSbaaSqaaiaaikdaaeqaaaaaaaa@796C@

Für alle n n 0 =max{ n 1 , n 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaGccqGH9aqpciGGTbGaaiyyaiaacIhacaGG7bGaamOBamaaBaaaleaacaaIXaaabeaakiaacYcacaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaaiyFaaaa@44D8@ gilt damit:
 

| α v n +β w n (αv+βw) || α || v n v |+| β || w n w |< | α |ε 2(| α |+1) + | β |ε 2(β+1) ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqaHXoqycaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeqOSdiMaam4DamaaBaaaleaacaWGUbaabeaakiabgkHiTiaacIcacqaHXoqycaWG2bGaey4kaSIaeqOSdiMaam4DaiaacMcaaiaawEa7caGLiWoacqGHKjYOdaabdaqaaiabeg7aHbGaay5bSlaawIa7amaaemaabaGaamODamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadAhaaiaawEa7caGLiWoacqGHRaWkdaabdaqaaiabek7aIbGaay5bSlaawIa7amaaemaabaGaam4DamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadEhaaiaawEa7caGLiWoacqGH8aapdaWcaaqaamaaemaabaGaeqySdegacaGLhWUaayjcSdGaeqyTdugabaGaaGOmaiaacIcadaabdaqaaiabeg7aHbGaay5bSlaawIa7aiabgUcaRiaaigdacaGGPaaaaiabgUcaRmaalaaabaWaaqWaaeaacqaHYoGyaiaawEa7caGLiWoacqaH1oqzaeaacaaIYaGaaiikaiabek7aIjabgUcaRiaaigdacaGGPaaaaiabgsMiJkabew7aLbaa@8448@ .

 

Beachte:

 

Auch für das zweite geometrische Grundkonzept, die Winkelmessung, lassen wir uns durch die Verhältnisse im n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ motivieren. Betrachtet man etwa zwei Einheitsvektoren 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ , so lässt sich der Kosinus des Winkel zwischen diesen Vektoren  elementargeometrisch am Einheitskreis ermitteln.
Nach der Skizze ist αβ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyOeI0IaeqOSdigaaa@3A16@ der Winkel zwischen  x und y.
Seinen Kosinus können wir mit Hilfe des Additionstheorems
berechnen:
 
cos(αβ) =cosαcosβ+sinαsinβ = x 1 y 1 + x 2 y 2 =x·y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiGacogacaGGVbGaai4CaiaacIcacqaHXoqycqGHsislcqaHYoGycaGGPaaabaGaeyypa0Jaci4yaiaac+gacaGGZbGaeqySdeMaeyyXICTaci4yaiaac+gacaGGZbGaeqOSdiMaey4kaSIaci4CaiaacMgacaGGUbGaeqySdeMaeyyXICTaci4CaiaacMgacaGGUbGaeqOSdigabaaabaGaeyypa0JaamiEamaaBaaaleaacaaIXaaabeaakiabgwSixlaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTaamyEamaaBaaaleaacaaIYaaabeaaaOqaaaqaaiabg2da9iaadIhacqWIpM+zcaWG5baaaaaa@6A4F@
           

Diese Beziehung kann man nun leicht auf beliebige Skalarprodukte verallgemeinern:
 
Definition:  Ist V ein euklidischer Vektorraum, so heißt für v,wV,   v,w0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyicI4SaamOvaiaacYcacaaMe8UaamODaiaacYcacaWG3bGaeyiyIKRaaGimaaaa@4254@ die Zahl
 
(v,w) cos 1 ( vw | v || w | )[0,π] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadAhacaGGSaGaam4DaiaacMcacqGH9aqpciGGJbGaai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaWaaSaaaeaacaWG2bGaey4fIOIaam4DaaqaamaaemaabaGaamODaaGaay5bSlaawIa7aiabgwSixpaaemaabaGaam4DaaGaay5bSlaawIa7aaaacaGGPaGaeyicI4Saai4waiaaicdacaGGSaGaeqiWdaNaaiyxaaaa@5608@

das Winkelmaß zwischen v und w.
 

Beachte:

 

Beispiel: 
  1. in n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@
    • (( 1 1 ),( 2 2 ))= cos 1 ( ( 1 1 )·( 2 2 ) | ( 1 1 ) || ( 2 2 ) | )= cos 1 ( 0 2 8 )= cos 1 (0)= π 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikamaabmaabaqbaeqabiqaaaqaaiaaigdaaeaacaaIXaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaauaabeqaceaaaeaacqGHsislcaaIYaaabaGaaGOmaaaaaiaawIcacaGLPaaacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikamaalaaabaWaaeWaaeaafaqabeGabaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaeS4JPF2aaeWaaeaafaqabeGabaaabaGaeyOeI0IaaGOmaaqaaiaaikdaaaaacaGLOaGaayzkaaaabaWaaqWaaeaadaqadaqaauaabeqaceaaaeaacaaIXaaabaGaaGymaaaaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHflY1daabdaqaamaabmaabaqbaeqabiqaaaqaaiabgkHiTiaaikdaaeaacaaIYaaaaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikamaalaaabaGaaGimaaqaamaakaaabaGaaGOmaaWcbeaakiabgwSixpaakaaabaGaaGioaaWcbeaaaaGccaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikaiaaicdacaGGPaGaeyypa0ZaaSaaaeaacqaHapaCaeaacaaIYaaaaaaa@7795@ .
       
    • (( 1 0 1 ),( 1 1 0 ))= cos 1 ( ( 1 0 1 )·( 1 1 0 ) | ( 1 0 1 ) || ( 1 1 0 ) | )= cos 1 ( 1 2 2 )= cos 1 ( 1 2 )= π 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikamaabmaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacaGGSaWaaeWaaeaafaqabeWabaaabaGaaGymaaqaaiaaigdaaeaacaaIWaaaaaGaayjkaiaawMcaaiaacMcacqGH9aqpciGGJbGaai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaWaaSaaaeaadaqadaqaauaabeqadeaaaeaacaaIXaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaGaeS4JPF2aaeWaaeaafaqabeWabaaabaGaaGymaaqaaiaaigdaaeaacaaIWaaaaaGaayjkaiaawMcaaaqaamaaemaabaWaaeWaaeaafaqabeWabaaabaGaaGymaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgwSixpaaemaabaWaaeWaaeaafaqabeWabaaabaGaaGymaaqaaiaaigdaaeaacaaIWaaaaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikamaalaaabaGaaGymaaqaamaakaaabaGaaGOmaaWcbeaakiabgwSixpaakaaabaGaaGOmaaWcbeaaaaGccaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaaiykaiabg2da9maalaaabaGaeqiWdahabaGaaG4maaaaaaa@79F9@ .
       
  2. in C 0 ([0,1]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGimaaaakiaacIcacaGGBbGaaGimaiaacYcacaaIXaGaaiyxaiaacMcaaaa@3CE0@ :
    • (X, X 4 )= cos 1 ( 0 1 X 5 0 1 X 2 0 1 X 8 )= cos 1 ( 1 6 1 3 1 9 )= cos 1 ( 1 2 3 )= π 6 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadIfacaGGSaGaamiwamaaCaaaleqabaGaaGinaaaakiaacMcacqGH9aqpciGGJbGaai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaWaaSaaaeaadaWdXbqaaiaadIfadaahaaWcbeqaaiaaiwdaaaaabaGaaGimaaqaaiaaigdaa0Gaey4kIipaaOqaamaakaaabaWaa8qCaeaacaWGybWaaWbaaSqabeaacaaIYaaaaaqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaleqaaOGaeyyXIC9aaOaaaeaadaWdXbqaaiaadIfadaahaaWcbeqaaiaaiIdaaaaabaGaaGimaaqaaiaaigdaa0Gaey4kIipaaSqabaaaaOGaaiykaiabg2da9iGacogacaGGVbGaai4CamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcadaWcaaqaamaalaaabaGaaGymaaqaaiaaiAdaaaaabaWaaOaaaeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaWcbeaakiabgwSixpaakaaabaWaaSaaaeaacaaIXaaabaGaaGyoaaaaaSqabaaaaOGaaiykaiabg2da9iGacogacaGGVbGaai4CamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcadaWcaaqaaiaaigdaaeaacaaIYaaaamaakaaabaGaaG4maaWcbeaakiaacMcacqGH9aqpdaWcaaqaaiabec8aWbqaaiaaiAdaaaaaaa@71BF@ .

 
Bemerkung:  Es sei V ein euklidischer Vektorraum, v,wV,   v,w0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyicI4SaamOvaiaacYcacaaMe8UaamODaiaacYcacaWG3bGaeyiyIKRaaGimaaaa@4254@ . Dann gilt für α0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyiyIKRaaGimaaaa@3A09@ :
  1. (v,v)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadAhacaGGSaGaamODaiaacMcacqGH9aqpcaaIWaaaaa@3CD0@ .
  2. (v,w)=(w,v) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadAhacaGGSaGaam4DaiaacMcacqGH9aqpcqWIIiYucaGGOaGaam4DaiaacYcacaWG2bGaaiykaaaa@413F@ .
  3. (αv,w)=(v,w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiabeg7aHjaadAhacaGGSaGaam4DaiaacMcacqGH9aqpcqWIIiYucaGGOaGaamODaiaacYcacaWG3bGaaiykaaaa@42DE@ .
  4. (v,w)=(v°,w°)= cos 1 (v°w°) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadAhacaGGSaGaam4DaiaacMcacqGH9aqpcqWIIiYucaGGOaGaamODaiabgclaWkaacYcacaWG3bGaeyiSaaRaaiykaiabg2da9iGacogacaGGVbGaai4CamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG2bGaeyiSaaRaey4fIOIaam4DaiabgclaWkaacMcaaaa@52E6@

Beweis:

Zu 1.:  (v,v)= cos 1 ( vv | v || v | )= cos 1 ( | v | 2 | v | 2 )= cos 1 (1)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadAhacaGGSaGaamODaiaacMcacqGH9aqpciGGJbGaai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaWaaSaaaeaacaWG2bGaey4fIOIaamODaaqaamaaemaabaGaamODaaGaay5bSlaawIa7aiabgwSixpaaemaabaGaamODaaGaay5bSlaawIa7aaaacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikamaalaaabaWaaqWaaeaacaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaGcbaWaaqWaaeaacaWG2baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaaakiaacMcacqGH9aqpciGGJbGaai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaaGymaiaacMcacqGH9aqpcaaIWaaaaa@6A67@ .

Zu 2.:  (v,w)= cos 1 ( vw | v || w | )= cos 1 ( wv | w || v | )=(w,v) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadAhacaGGSaGaam4DaiaacMcacqGH9aqpciGGJbGaai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaWaaSaaaeaacaWG2bGaey4fIOIaam4DaaqaamaaemaabaGaamODaaGaay5bSlaawIa7aiabgwSixpaaemaabaGaam4DaaGaay5bSlaawIa7aaaacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikamaalaaabaGaam4DaiabgEHiQiaadAhaaeaadaabdaqaaiaadEhaaiaawEa7caGLiWoacqGHflY1daabdaqaaiaadAhaaiaawEa7caGLiWoaaaGaaiykaiabg2da9iablkIitjaacIcacaWG3bGaaiilaiaadAhacaGGPaaaaa@6A57@ .

Zu 3.:  (αv,w)= cos 1 ( αvw | αv || w | )= cos 1 ( α | α | vw | v || w | )= cos 1 ( α α vw | v || w | )=(v,w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiabeg7aHjaadAhacaGGSaGaam4DaiaacMcacqGH9aqpciGGJbGaai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaWaaSaaaeaacqaHXoqycaWG2bGaey4fIOIaam4DaaqaamaaemaabaGaeqySdeMaamODaaGaay5bSlaawIa7aiabgwSixpaaemaabaGaam4DaaGaay5bSlaawIa7aaaacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikamaalaaabaGaeqySdegabaWaaqWaaeaacqaHXoqyaiaawEa7caGLiWoaaaWaaSaaaeaacaWG2bGaey4fIOIaam4DaaqaamaaemaabaGaamODaaGaay5bSlaawIa7aiabgwSixpaaemaabaGaam4DaaGaay5bSlaawIa7aaaacaGGPaGaeyypa0Jaci4yaiaac+gacaGGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikamaalaaabaGaeqySdegabaGaeqySdegaamaalaaabaGaamODaiabgEHiQiaadEhaaeaadaabdaqaaiaadAhaaiaawEa7caGLiWoacqGHflY1daabdaqaaiaadEhaaiaawEa7caGLiWoaaaGaaiykaiabg2da9iablkIitjaacIcacaWG2bGaaiilaiaadEhacaGGPaaaaa@8D7E@ .

Zu 4.:  Die erste Gleichung folgt aus 3., die zweite direkt aus der Definition.
  

Wir ziehen nun Abbildungen zwischen euklidischen Vektorräume mit in unsere Betrachtungen ein. Diejenigen unter ihnen, die die geometrischen Zusatzeigenschaften respektieren zeichnen wir durch einen Namen aus.
 
Definition:   V und W seien zwei euklidische Vektorräume. Eine Funktion f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ heißt
 
längentreu, falls | f(v) |=| v | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGMbGaaiikaiaadAhacaGGPaaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWG2baacaGLhWUaayjcSdaaaa@416D@ für alle vV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgIGiolaadAfaaaa@3943@

abstandstreu, falls | f(v)f(w) |=| vw | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGMbGaaiikaiaadAhacaGGPaGaeyOeI0IaamOzaiaacIcacaWG3bGaaiykaaGaay5bSlaawIa7aiabg2da9maaemaabaGaamODaiabgkHiTiaadEhaaiaawEa7caGLiWoaaaa@4783@ für alle v,wV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyicI4SaamOvaaaa@3AEF@

winkeltreu, falls f(v),f(w)0      (f(v),f(w))=(v,w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG2bGaaiykaiaacYcacaWGMbGaaiikaiaadEhacaGGPaGaeyiyIKRaaGimaiaaysW7cqGHNis2caaMe8UaeSOiImLaaiikaiaadAgacaGGOaGaamODaiaacMcacaGGSaGaamOzaiaacIcacaWG3bGaaiykaiaacMcacqGH9aqpcqWIIiYucaGGOaGaamODaiaacYcacaWG3bGaaiykaaaa@543F@ für alle v,w0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyiyIKRaaGimaaaa@3B11@ .


 

 
Beispiel:  
  1. Jede Translation T a :VV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGHbaabeaakiaacQdacaWGwbGaeyOKH4QaamOvaaaa@3C3F@ , also T a (v)=v+a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGHbaabeaakiaacIcacaWG2bGaaiykaiabg2da9iaadAhacqGHRaWkcaWGHbaaaa@3DFB@ , ist abstandstreu, aber (für a0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaaicdaaaa@3950@ ) nicht längentreu, denn:
    | T a (v) T a (w) |=| v+a(w+a) |=| vw | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGubWaaSbaaSqaaiaadggaaeqaaOGaaiikaiaadAhacaGGPaGaeyOeI0IaamivamaaBaaaleaacaWGHbaabeaakiaacIcacaWG3bGaaiykaaGaay5bSlaawIa7aiabg2da9maaemaabaGaamODaiabgUcaRiaadggacqGHsislcaGGOaGaam4DaiabgUcaRiaadggacaGGPaaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWG2bGaeyOeI0Iaam4DaaGaay5bSlaawIa7aaaa@558C@ , und z.B. | T a (0) |=| a || 0 | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGubWaaSbaaSqaaiaadggaaeqaaOGaaiikaiaaicdacaGGPaaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWGHbaacaGLhWUaayjcSdGaeyiyIK7aaqWaaeaacaaIWaaacaGLhWUaayjcSdaaaa@47C4@ .
     
  2. Jede Streckung L α :VV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacqaHXoqyaeqaaOGaaiOoaiaadAfacqGHsgIRcaWGwbaaaa@3CF0@ , also L α (v)=αv MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacqaHXoqyaeqaaOGaaiikaiaadAhacaGGPaGaeyypa0JaeqySdeMaamODaaaa@3E83@ ist für α0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyiyIKRaaGimaaaa@3A09@ winkeltreu, aber (für | α |1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqaHXoqyaiaawEa7caGLiWoacqGHGjsUcaaIXaaaaa@3D2C@ ) nicht längentreu, denn:
    Mit v,w sind auch L α (v), L α (w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacqaHXoqyaeqaaOGaaiikaiaadAhacaGGPaGaaiilaiaadYeadaWgaaWcbaGaeqySdegabeaakiaacIcacaWG3bGaaiykaaaa@408E@ ungleich 0 und:
     
    ( L α (v), L α (w))=(αv,αw)=(v,w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadYeadaWgaaWcbaGaeqySdegabeaakiaacIcacaWG2bGaaiykaiaacYcacaWGmbWaaSbaaSqaaiabeg7aHbqabaGccaGGOaGaam4DaiaacMcacaGGPaGaeyypa0JaeSOiImLaaiikaiabeg7aHjaadAhacaGGSaGaeqySdeMaam4DaiaacMcacqGH9aqpcqWIIiYucaGGOaGaamODaiaacYcacaWG3bGaaiykaaaa@52A9@ .

    Ferner ist für | α |1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqaHXoqyaiaawEa7caGLiWoacqGHGjsUcaaIXaaaaa@3D2C@ und v0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgcMi5kaaicdaaaa@3965@ : | L α (v) |=| αv |=| α || v || v | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGmbWaaSbaaSqaaiabeg7aHbqabaGccaGGOaGaamODaiaacMcaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiabeg7aHjaadAhaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiabeg7aHbGaay5bSlaawIa7aiabgwSixpaaemaabaGaamODaaGaay5bSlaawIa7aiabgcMi5oaaemaabaGaamODaaGaay5bSlaawIa7aaaa@56D9@ .
     
  3. In 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ ist die Drehung (Rotation) 
    R α =( cosα sinα sinα cosα ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacqaHXoqyaeqaaOGaeyypa0ZaaeWaaeaafaqabeGacaaabaGaci4yaiaac+gacaGGZbGaeqySdegabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqySdegabaGaci4CaiaacMgacaGGUbGaeqySdegabaGaci4yaiaac+gacaGGZbGaeqySdegaaaGaayjkaiaawMcaaaaa@4DF3@

    um einen bliebigen Winkel α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3788@ längen-, winkel- und abstandstreu, denn:
     
    | R α (x) | =| ( x 1 cosα x 2 sinα x 1 sinα+ x 2 cosα ) | = ( x 1 cosα x 2 sinα) 2 + ( x 1 sinα+ x 2 cosα) 2 = x 1 2 cos 2 α2 x 1 x 2 cosαsinα+ x 2 2 sin 2 α+ x 1 2 sin 2 α+2 x 1 x 2 sinαcosα+ x 2 2 cos 2 α = x 1 2 cos 2 α+ x 2 2 sin 2 α+ x 1 2 sin 2 α+ x 2 2 cos 2 α = ( x 1 2 + x 2 2 ) cos 2 α+( x 1 2 + x 2 2 ) sin 2 α = ( x 1 2 + x 2 2 )( cos 2 α+ sin 2 α) = x 1 2 + x 2 2 =| x |. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabGGaaaaaaeaadaabdaqaaiaadkfadaWgaaWcbaGaeqySdegabeaakiaacIcacaWG4bGaaiykaaGaay5bSlaawIa7aaqaaiabg2da9maaemaabaWaaeWaaeaafaqabeGabaaabaGaamiEamaaBaaaleaacaaIXaaabeaakiGacogacaGGVbGaai4Caiabeg7aHjabgkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gacqaHXoqyaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaci4CaiaacMgacaGGUbGaeqySdeMaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaakiGacogacaGGVbGaai4Caiabeg7aHbaaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaeaaaeaacqGH9aqpdaGcaaqaaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaci4yaiaac+gacaGGZbGaeqySdeMaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiGacohacaGGPbGaaiOBaiabeg7aHjaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiabeg7aHjabgUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGcciGGJbGaai4BaiaacohacqaHXoqycaGGPaWaaWbaaSqabeaacaaIYaaaaaqabaaakeaaaeaacqGH9aqpdaGcaaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGcciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqycqGHsislcaaIYaGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGcciGGJbGaai4BaiaacohacqaHXoqycqGHflY1ciGGZbGaaiyAaiaac6gacqaHXoqycqGHRaWkcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqySdeMaey4kaSIaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeg7aHjabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiGacohacaGGPbGaaiOBaiabeg7aHjabgwSixlGacogacaGGVbGaai4Caiabeg7aHjabgUcaRiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGcciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqyaSqabaaakeaaaeaacqGH9aqpdaGcaaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGcciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqycqGHRaWkcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqySdeMaey4kaSIaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeg7aHjabgUcaRiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGcciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqyaSqabaaakeaaaeaacqGH9aqpdaGcaaqaaiaacIcacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaakiaacMcaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqycqGHRaWkcaGGOaGaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegaleqaaaGcbaaabaGaeyypa0ZaaOaaaeaacaGGOaGaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPaGaaiikaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeg7aHjabgUcaRiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeg7aHjaacMcaaSqabaaakeaaaeaacqGH9aqpdaGcaaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaqabaaakeaaaeaacqGH9aqpdaabdaqaaiaadIhaaiaawEa7caGLiWoacaGGUaaaaaaa@29C0@

    Wegen der Längentreue hat man zunächst für ein x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@3967@ : | R α (x) |=| x |0 R α (x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGsbWaaSbaaSqaaiabeg7aHbqabaGccaGGOaGaamiEaiaacMcaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiaadIhaaiaawEa7caGLiWoacqGHGjsUcaaIWaGaaGzbVlabgkDiElaaywW7caWGsbWaaSbaaSqaaiabeg7aHbqabaGccaGGOaGaamiEaiaacMcacqGHGjsUcaaIWaaaaa@52AF@ .
    Ferner reicht es, wieder wegen der Längentreue, die Gleichung ( R α (x), R α (y))=(x,y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadkfadaWgaaWcbaGaeqySdegabeaakiaacIcacaWG4bGaaiykaiaacYcacaWGsbWaaSbaaSqaaiabeg7aHbqabaGccaGGOaGaamyEaiaacMcacaGGPaGaeyypa0JaeSOiImLaaiikaiaadIhacaGGSaGaamyEaiaacMcaaaa@4951@ nur für Einheitsvektoren x und y zu bestätigen. Dies ergibt sich nun direkt aus folgender Rechnung:
     

    R α (x)· R α (y) =( x 1 cosα x 2 sinα x 1 sinα+ x 2 cosα )·( y 1 cosα y 2 sinα y 1 sinα+ y 2 cosα ) = x 1 y 1 cos 2 α x 1 y 2 cosαsinα x 2 y 1 sinαcosα+ x 2 y 2 sin 2 α + x 1 y 1 sin 2 α+ x 1 y 2 sinαcosα+ x 2 y 1 cosαsinα+ x 2 y 2 cos 2 α =( x 1 y 1 + x 2 y 2 ) cos 2 α+( x 1 y 1 + x 2 y 2 ) sin 2 α = x 1 y 1 + x 2 y 2 =x·y. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaaaabaGaamOuamaaBaaaleaacqaHXoqyaeqaaOGaaiikaiaadIhacaGGPaGaeS4JPFMaamOuamaaBaaaleaacqaHXoqyaeqaaOGaaiikaiaadMhacaGGPaaabaGaeyypa0ZaaeWaaeaafaqabeGabaaabaGaamiEamaaBaaaleaacaaIXaaabeaakiGacogacaGGVbGaai4Caiabeg7aHjabgkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gacqaHXoqyaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaci4CaiaacMgacaGGUbGaeqySdeMaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaakiGacogacaGGVbGaai4Caiabeg7aHbaaaiaawIcacaGLPaaacqWIpM+zdaqadaqaauaabeqaceaaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaci4yaiaac+gacaGGZbGaeqySdeMaeyOeI0IaamyEamaaBaaaleaacaaIYaaabeaakiGacohacaGGPbGaaiOBaiabeg7aHbqaaiaadMhadaWgaaWcbaGaaGymaaqabaGcciGGZbGaaiyAaiaac6gacqaHXoqycqGHRaWkcaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaci4yaiaac+gacaGGZbGaeqySdegaaaGaayjkaiaawMcaaaqaaaqaaiabg2da9iaadIhadaWgaaWcbaGaaGymaaqabaGccaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqySdeMaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaakiaadMhadaWgaaWcbaGaaGOmaaqabaGcciGGJbGaai4BaiaacohacqaHXoqycqGHflY1ciGGZbGaaiyAaiaac6gacqaHXoqycqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamyEamaaBaaaleaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiabeg7aHjabgwSixlGacogacaGGVbGaai4Caiabeg7aHjabgUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegabaaabaGaaGzbVlabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqySdeMaey4kaSIaamiEamaaBaaaleaacaaIXaaabeaakiaadMhadaWgaaWcbaGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gacqaHXoqycqGHflY1ciGGJbGaai4BaiaacohacqaHXoqycqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamyEamaaBaaaleaacaaIXaaabeaakiGacogacaGGVbGaai4Caiabeg7aHjabgwSixlGacohacaGGPbGaaiOBaiabeg7aHjabgUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegabaaabaGaeyypa0JaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaakiaadMhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqySdeMaey4kaSIaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabeaakiaadMhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegabaaabaGaeyypa0JaamiEamaaBaaaleaacaaIXaaabeaakiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamyEamaaBaaaleaacaaIYaaabeaaaOqaaaqaaiabg2da9iaadIhacqWIpM+zcaWG5bGaaiOlaaaaaaa@1A73@

    Die Abstandstreue folgt mit der nächsten Bemerkung aus der Längentreue.

  

 
Bemerkung:  Es sei f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ eine lineare Abbildung zwischen zwei euklidischen Vektorräumen. Dann gilt:
 
f ist längentreu MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7aaa@3B61@ f ist abstandstreu.

Beweis:

"":   | f(v)f(w) |=| f(vw) |=| vw | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiOiaiabgkDiElaackcacaGG6aGaaGjbVlaaywW7daabdaqaaiaadAgacaGGOaGaamODaiaacMcacqGHsislcaWGMbGaaiikaiaadEhacaGGPaaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWGMbGaaiikaiaadAhacqGHsislcaWG3bGaaiykaaGaay5bSlaawIa7aiabg2da9maaemaabaGaamODaiabgkHiTiaadEhaaiaawEa7caGLiWoaaaa@5855@ .

"":   | f(v) |=| f(v)f(0) |=| v0 |=| v | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiOiaiabgcDiClaackcacaGG6aGaaGjbVlaaywW7daabdaqaaiaadAgacaGGOaGaamODaiaacMcaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiaadAgacaGGOaGaamODaiaacMcacqGHsislcaWGMbGaaiikaiaaicdacaGGPaaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWG2bGaeyOeI0IaaGimaaGaay5bSlaawIa7aiabg2da9maaemaabaGaamODaaGaay5bSlaawIa7aaaa@5B07@ .
 

Die verschiedenen Treueeigenschaften sind mit der Hintereinanderausführung verträglich:
 
Bemerkung:  U, V und W seien drei euklidische Vektorräume f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ und g:UV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGvbGaeyOKH4QaamOvaaaa@3B35@ zwei Abbildungen, dann gilt:
  1. f und g längentreu fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caWGMbGaeSigI8Maam4zaaaa@3E73@ längentreu.
  2. f und g abstandstreu fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caWGMbGaeSigI8Maam4zaaaa@3E73@ abstandstreu.
  3. f und g winkeltreu fg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caWGMbGaeSigI8Maam4zaaaa@3E73@ winkeltreu.

Beweis: Für v,wU MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyicI4Saamyvaaaa@3AEE@ hat man:

Zu 1.:  | f(g(v)) |=| g(v) |=| v | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGMbGaaiikaiaadEgacaGGOaGaamODaiaacMcacaGGPaaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWGNbGaaiikaiaadAhacaGGPaaacaGLhWUaayjcSdGaeyypa0ZaaqWaaeaacaWG2baacaGLhWUaayjcSdaaaa@4B1A@ .

Zu 2.:  | f(g(v))f(g(w)) |=| g(v)g(w) |=| vw | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGMbGaaiikaiaadEgacaGGOaGaamODaiaacMcacaGGPaGaeyOeI0IaamOzaiaacIcacaWGNbGaaiikaiaadEhacaGGPaGaaiykaaGaay5bSlaawIa7aiabg2da9maaemaabaGaam4zaiaacIcacaWG2bGaaiykaiabgkHiTiaadEgacaGGOaGaam4DaiaacMcaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiaadAhacqGHsislcaWG3baacaGLhWUaayjcSdaaaa@57A3@ .

Zu 3.:  Zunächst hat man für ein v0:   g(v)0f(g(v))0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgcMi5kaaicdacaGG6aGaaGjbVlaadEgacaGGOaGaamODaiaacMcacqGHGjsUcaaIWaGaaGzbVlabgkDiElaaywW7caWGMbGaaiikaiaadEgacaGGOaGaamODaiaacMcacaGGPaGaeyiyIKRaaGimaaaa@4EEF@ .
Und weiter: (f(g(v)),f(g(w)))=(g(v),g(w))=(v,w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOiImLaaiikaiaadAgacaGGOaGaam4zaiaacIcacaWG2bGaaiykaiaacMcacaGGSaGaamOzaiaacIcacaWGNbGaaiikaiaadEhacaGGPaGaaiykaiaacMcacqGH9aqpcqWIIiYucaGGOaGaam4zaiaacIcacaWG2bGaaiykaiaacYcacaWGNbGaaiikaiaadEhacaGGPaGaaiykaiabg2da9iablkIitjaacIcacaWG2bGaaiilaiaadEhacaGGPaaaaa@5509@ für alle v,w0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaeyiyIKRaaGimaaaa@3B11@ .
 

 


 9.12
9.14.