8.5. Volumenberechnung


In diesem Abschnitt soll ein allgemeines Konzept zur Volumenberechnung entwickelt werden mit dem Ziel, geeigneten Teilmengen M des n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaa@3A19@ eine Maßzahl V n+1 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcaaaa@3BB8@ zuzuweisen, die im zweidimensionalen Fall mit den alten Flächenmaßzahlen und im dreidimensionalen Fall mit den Volumenvorstellungen übereinstimmt.

Wir werden dies, angelehnt an die Interpretation des Flächenmaßes am Ende des letzten Abschnitts, rekursiv gestalten: Das (n + 1)-dimensionale Volumen einer Menge M wird durch Aufintegrieren der n-dimensionalen Volumina ihrer Schnitte M x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaaaaa@37E7@ gewonnen.

Definition:  Ist M[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419E@ eine Teilmenge des n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaa@3A19@ , so nennen wir für jedes x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ die Menge

M x {( y 1 ,, y n ) n |(x, y 1 ,, y n )M} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaGGOaGaamyEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyEamaaBaaaleaacaWGUbaabeaakiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaad6gaaaGccaGG8bGaaiikaiaadIhacaGGSaGaamyEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyEamaaBaaaleaacaWGUbaabeaakiaacMcacqGHiiIZcaWGnbGaaiyFaaaa@53FA@
[8.5.1]

einen Schnitt in M.

Das folgende Applet visualisiert für x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaaicdaaaa@38A9@ den Schnitt in einem Zuckerhut (display by JavaView

 i

JavaView ist ein interaktiver Betrachter für 3-dimensionale Geometrien. Mit der linken Maustaste läßt sich die Darstellung steuern, z.B.

  • Rotieren mit Taste "o" (voreingestellt)

  • Skalieren mit Taste "s"

  • Verschieben mit Taste "t"

Alle Möglichkeiten sind hier aufgelistet: www.javaview.de/jars/shortcuts.html. Mit der rechten Maustaste läßt sich ein umfangreiches Kontextmenü aufrufen.

).

Wir berechnen zur Übung einige Schnitte in überschaubaren Teilmengen des 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3845@ und des 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3846@ . In Beispielen auftretende Parameter seien stets positiv.

Beispiel:  

  • Die Schnitte in einem Quadrat  Q [0,a] 2 [0,a]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIYaaaaOGaeyOGIWSaai4waiaaicdacaGGSaGaamyyaiaac2facqGHxdaTcqWIDesOaaa@465E@ sind (konstante) Intervalle, denn für x[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadggacaGGDbaaaa@3C7D@ ist

Q x ={y|(x,y)[0,a]×[0,a]}=[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaWG5bGaeyicI4SaeSyhHeQaaiiFaiaacIcacaWG4bGaaiilaiaadMhacaGGPaGaeyicI4Saai4waiaaicdacaGGSaGaamyyaiaac2facqGHxdaTcaGGBbGaaGimaiaacYcacaWGHbGaaiyxaiaac2hacqGH9aqpcaGGBbGaaGimaiaacYcacaWGHbGaaiyxaaaa@54C2@
[1]
  • Die Schnitte in einer Ellipse  E{(x,y) 2 | b 2 x 2 + a 2 y 2 a 2 b 2 }[a,a]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaaGOmaaaakiaacYhacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggadaahaaWcbeqaaiaaikdaaaGccaWG5bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyyamaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaaGccaGG9bGaeyOGIWSaai4waiabgkHiTiaadggacaGGSaGaamyyaiaac2facqGHxdaTcqWIDesOaaa@5B31@ sind (variable) Intervalle, den für x[a,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaWGHbGaaiilaiaadggacaGGDbaaaa@3D96@ ist

E x ={y| b 2 x 2 + a 2 y 2 a 2 b 2 } ={y| y 2 b 2 a 2 ( a 2 x 2 )}=[ b a a 2 x 2 , b a a 2 x 2 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadweadaWgaaWcbaGaamiEaaqabaaakeaacqGH9aqpcaGG7bGaamyEaiabgIGiolabl2riHkaacYhacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggadaahaaWcbeqaaiaaikdaaaGccaWG5bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyyamaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaaGccaGG9baabaaabaGaeyypa0Jaai4EaiaadMhacqGHiiIZcqWIDesOcaGG8bGaamyEamaaCaaaleqabaGaaGOmaaaakiabgsMiJoaalaaabaGaamOyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaaiikaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaaiykaiaac2hacqGH9aqpcaGGBbGaeyOeI0YaaSaaaeaacaWGIbaabaGaamyyaaaadaGcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGSaWaaSaaaeaacaWGIbaabaGaamyyaaaadaGcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGDbaaaaaa@74E7@
[2]

Man beachte den Fall x 2 =a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadggaaaa@39C8@ : E x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWG4baabeaaaaa@37DF@ ist hier das einpunktige Intervall [0,0]={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGimaiaac2facqGH9aqpcaGG7bGaaGimaiaac2haaaa@3D90@ .

  • Die Schnitte in einer Lochscheibe  L{(x,y) 2 | r 2 x 2 + y 2 R 2 }[R,R]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaaGOmaaaakiaacYhacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaWGsbWaaWbaaSqabeaacaaIYaaaaOGaaiyFaiabgkOimlaacUfacqGHsislcaWGsbGaaiilaiaadkfacaGGDbGaey41aqRaeSyhHekaaa@591D@ sind aufwändiger zu berechnen. Für x[R,R] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaWGsbGaaiilaiaadkfacaGGDbaaaa@3D78@ ist nämlich

L x ={y| r 2 x 2 y 2 R 2 x 2 } ={y[ R 2 x 2 , R 2 x 2 ]| y 2 r 2 x 2 } ={ [ R 2 x 2 , R 2 x 2 ]  falls  |x|r {y[ R 2 x 2 , R 2 x 2 ]||y| r 2 x 2   falls  |x|<r} ={ [ R 2 x 2 , R 2 x 2 ]  falls  |x|r [ R 2 x 2 , r 2 x 2 ][ r 2 x 2 , R 2 x 2 ]  falls  |x|<r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamitamaaBaaaleaacaWG4baabeaaaOqaaiabg2da9iaacUhacaWG5bGaeyicI4SaeSyhHeQaaiiFaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyEamaaCaaaleqabaGaaGOmaaaakiabgsMiJkaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaaiyFaaqaaaqaaiabg2da9iaacUhacaWG5bGaeyicI4Saai4waiabgkHiTmaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaacYcadaGcaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGDbGaaiiFaiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHLjYScaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaakiaac2haaeaaaeaacqGH9aqpdaGabaqaauaabaqaceaaaeaacaGGBbGaeyOeI0YaaOaaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaiilamaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaac2facaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaacYhacaWG4bGaaiiFaiabgwMiZkaadkhaaeaacaGG7bGaamyEaiabgIGiolaacUfacqGHsisldaGcaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGSaWaaOaaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaiyxaiaacYhacaGG8bGaamyEaiaacYhacqGHLjYSdaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaacYhacaWG4bGaaiiFaiabgYda8iaadkhacaGG9baaaaGaay5EaaaabaaabaGaeyypa0ZaaiqaaeaafaqaaeGabaaabaGaai4waiabgkHiTmaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaacYcadaGcaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGDbGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaGG8bGaamiEaiaacYhacqGHLjYScaWGYbaabaGaai4waiabgkHiTmaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaacYcacqGHsisldaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGDbWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4caGGBbWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaiilamaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaac2facaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaacYhacaWG4bGaaiiFaiabgYda8iaadkhaaaaacaGL7baaaaaaaa@F7DA@
[3]

Im Sonderfall r=R MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadkfaaaa@38C0@ sind die Schnitte in L ein- bzw. zweipunktig:

L x ={ {0}  falls  |x|=R { R 2 x 2 , R 2 x 2 }  falls  |x|<R MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacaWG4baabeaakiabg2da9maaceaabaqbaeaabiqaaaqaaiaacUhacaaIWaGaaiyFaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaaiiFaiaadIhacaGG8bGaeyypa0JaamOuaaqaaiaacUhacqGHsisldaGcaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGSaWaaOaaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaiyFaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaaiiFaiaadIhacaGG8bGaeyipaWJaamOuaaaaaiaawUhaaaaa@5CD5@
  • Die Schnitte in einem Würfel  W [0,a] 3 [0,a]× 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIZaaaaOGaeyOGIWSaai4waiaaicdacaGGSaGaamyyaiaac2facqGHxdaTcqWIDesOdaahaaWcbeqaaiaaikdaaaaaaa@474E@ sind (konstante) Quadrate, denn für x[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadggacaGGDbaaaa@3C7D@ ist

W x ={(y,z) 2 |(x,y,z) [0,a] 3 }= [0,a] 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaGGOaGaamyEaiaacYcacaWG6bGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaaGOmaaaakiaacYhacaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGPaGaeyicI4Saai4waiaaicdacaGGSaGaamyyaiaac2fadaahaaWcbeqaaiaaiodaaaGccaGG9bGaeyypa0Jaai4waiaaicdacaGGSaGaamyyaiaac2fadaahaaWcbeqaaiaaikdaaaaaaa@5628@
[4]
  • Die Schnitte in einer Kugel (Sphäre)

    S{(x,y,z) 3 | x 2 + y 2 + z 2 r 2 }[r,r]× 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGPaGaeyicI4SaeSyhHe6aaWbaaSqabeaacaaIZaaaaOGaaiiFaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOEamaaCaaaleqabaGaaGOmaaaakiabgsMiJkaadkhadaahaaWcbeqaaiaaikdaaaGccaGG9bGaeyOGIWSaai4waiabgkHiTiaadkhacaGGSaGaamOCaiaac2facqGHxdaTcqWIDesOdaahaaWcbeqaaiaaikdaaaaaaa@5B52@

    sind Kreise (mit variablem Radius), denn für x[r,r] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaWGYbGaaiilaiaadkhacaGGDbaaaa@3DB8@ ist

S x ={(y,z) 2 | x 2 + y 2 + z 2 r 2 } ={(y,z) 2 | y 2 + z 2 r 2 x 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadofadaWgaaWcbaGaamiEaaqabaaakeaacqGH9aqpcaGG7bGaaiikaiaadMhacaGGSaGaamOEaiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaaikdaaaGccaGG8bGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG6bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamOCamaaCaaaleqabaGaaGOmaaaakiaac2haaeaaaeaacqGH9aqpcaGG7bGaaiikaiaadMhacaGGSaGaamOEaiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaaikdaaaGccaGG8bGaamyEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaakiaac2haaaaaaa@6663@
[5]

Im speziellen Fall x 2 = r 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadkhadaahaaWcbeqaaiaaikdaaaaaaa@3AC2@ ist S x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWG4baabeaaaaa@37ED@ ein Kreis mit Radius 0, also ein Punkt.

Wir setzen nun rekursiv fest, wann eine Menge M zur Volumenberechnung geeignet sein soll, und welches Volumen ihr dann zukommt. Wir orientieren uns dabei an der zum Ende des vorherigen Abschnitts betrachteten Interpretation der Flächenmaßzahlen.

Definition:  

  • Ist M=[ l 1 , r 1 ][ l k , r k ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUfacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkhadaWgaaWcbaGaaGymaaqabaGccaGGDbWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4cqWIMaYscqWFnkc4caGGBbGaamiBamaaBaaaleaacaWGRbaabeaakiaacYcacaWGYbWaaSbaaSqaaiaadUgaaeqaaOGaaiyxaaaa@5987@ eine disjunkte Vereinigung

     i

    Die Vereinigung AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgQIiilaadkeaaaa@3919@ zweier Mengen A und B heißt disjunkt (elementfremd) falls AB= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgMIihlaadkeacqGH9aqpcqGHfiIXaaa@3B96@ . In diesem Fall ersetzt man das Zeichen MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOkIGmaaa@378C@ oft durch das Symbol MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4aaa@479B@ .

    Ein Download der Schrift Lucida Bright Math Symbol löst Probleme bei der Darstellung.

    endlich vieler abgeschlossener Intervalle, l i r i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaWGPbaabeaakiabgsMiJkaadkhadaWgaaWcbaGaamyAaaqabaaaaa@3BC7@ , so sagen wir: M besitzt das eindimensionale Volumen

V 1 (M) i=1 k r i l i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGnbGaaiykaiabg2da9maaqahabaGaamOCamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadYgadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdaaaa@45D2@
[8.5.2]

Zusätzlich setzen wir V 1 ()0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacqGHfiIXcaGGPaGaeyypa0JaaGimaaaa@3C4A@ .

  • Ist M[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419E@ , a<b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgYda8iaadkgaaaa@38BD@ , so sagen wir: M besitzt ein ( n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@387C@ )-dimensionales Volumen, falls für jedes x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ der Schnitt M x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaaaaa@37E7@ ein n-dimensionales Volumen V n ( M x ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaaaa@3B4E@ besitzt und die Funktion V n ( M X ):[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHcaa@4386@ über [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ integrierbar ist. In diesem Fall heißt die Zahl

V n+1 (M) a b V n ( M X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcacqGH9aqpdaWdXbqaaiaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamytamaaBaaaleaacaWGybaabeaakiaacMcaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdaaaa@4636@
[8.5.3]

das ( n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@387C@ )-dimensionale Volumen von M. Ist M[a,a]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadggacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419D@ , so setzen wir zusätzlich V n+1 (M)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcacqGH9aqpcaaIWaaaaa@3D78@ .

Beachte:

  • Durch eine kleine induktive Überlegung erweisen sich Volumina als positive Zahlen:  V n (M)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbGaaiykaiabgwMiZkaaicdaaaa@3C9B@ .
     

  • Aufgrund der jeweiligen Zusätze haben alle endlichen Mengen das Volumen Null:

    V n ()= V n ({ x 1 ,, x k })=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacqGHfiIXcaGGPaGaeyypa0JaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaGG7bGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGRbaabeaakiaac2hacaGGPaGaeyypa0JaaGimaaaa@4978@

     
  • [8.5.2] enthält auch den (häufigen) Sonderfall k=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaigdaaaa@389D@ . M ist dann ein Intervall, M=[l,r] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUfacaWGSbGaaiilaiaadkhacaGGDbaaaa@3C1C@ , lr MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgsMiJkaadkhaaaa@3989@ , und das Volumen V 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaaaaa@37AE@ verkürzt sich zu V 1 (M)=rl MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGnbGaaiykaiabg2da9iaadkhacqGHsislcaWGSbaaaa@3DBE@ .
     

  • Mit [8.5.3] haben wir das Prinzip des Cavalieri etabliert:

    M,N[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaacYcacaWGobGaeyOGIWSaai4waiaadggacaGGSaGaamOyaiaac2facqGHxdaTcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@4321@ seien zwei Mengen, die ein Volumen besitzen. Stimmen die Maße ihrer Schnitte überein, so auch ihre Volumina:

        V n ( M x )= V n ( N x )  für alle  x[a,b] V n+1 (M)= V n+1 (N) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamOtamaaBaaaleaacaWG4baabeaakiaacMcacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaaywW7cqGHshI3caaMf8UaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcacqGH9aqpcaWGwbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacIcacaWGobGaaiykaaaa@6237@
    [8.5.4]

     
  • Die Definition [8.5.2] setzt die Flächenmessung aus 8.4. fort, denn die dort eingeführten Flächenmaßzahlen kommen hier als zweidimensionale Volumina wieder vor: Setzt man nämlich für eine positive Funktion f C 0 ([a,b]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaaaaa@3FAA@

    M{(x,y) 2 |axb      0yf(x)}[a,b]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaaGOmaaaakiaacYhacaWGHbGaeyizImQaamiEaiabgsMiJkaadkgacaaMe8Uaey4jIKTaaGjbVlaaicdacqGHKjYOcaWG5bGaeyizImQaamOzaiaacIcacaWG4bGaaiykaiaac2hacqGHckcZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgEna0kabl2riHcaa@5FCE@

    so besitzt M ein Volumen und V 2 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGnbGaaiykaaaa@39E4@ ist die Maßzahl der Fläche, die f im Bereich [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ mit der x-Achse einschließt.

    Beweis:  Für x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ ist M x ={y|0yf(x)}=[0,f(x)] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaWG5bGaeyicI4SaeSyhHeQaaiiFaiaaicdacqGHKjYOcaWG5bGaeyizImQaamOzaiaacIcacaWG4bGaaiykaiaac2hacqGH9aqpcaGGBbGaaGimaiaacYcacaWGMbGaaiikaiaadIhacaGGPaGaaiyxaaaa@4FBD@ , und damit: V 1 ( M x )=f(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaadAgacaGGOaGaamiEaiaacMcaaaa@3F5D@ . Also hat man

    V 2 (M)= a b V 1 ( M X ) = a b f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGnbGaaiykaiabg2da9maapehabaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiabg2da9maapehabaGaamOzaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaaa@4A5B@

     

Wir üben die Volumenberechnung zunächst im Zweidimensionalen und ermitteln noch einmal einige bekannte Volumina.

Beispiel:

Quadrat

Ellipse

Kreis

Lochscheibe

Linie

Rechteck

Dreieck

 
  • Das Quadrat Q= [0,a] 2 [0,a]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIYaaaaOGaeyOGIWSaai4waiaaicdacaGGSaGaamyyaiaac2facqGHxdaTcqWIDesOaaa@465E@ mit Kantenlänge a hat das Volumen

    V 2 (Q)= a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGrbGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaaaaa@3CBD@
    [6]

    Beweis:  Nach [1] haben die Schnitte in Q ein konstantes Volumen:

    V 1 ( Q x )= V 1 ([0,a])=a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGrbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaadAfadaWgaaWcbaGaaGymaaqabaGccaGGOaGaai4waiaaicdacaGGSaGaamyyaiaac2facaGGPaGaeyypa0Jaamyyaaaa@4541@

    V 1 ( Q X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGrbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaaa@3AFA@ ist daher auf [0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaamyyaiaac2faaaa@39FC@ integrierbar, so dass Q ein Volumen besitzt, nämlich

    V 2 (Q)= 0 a V 1 ( Q X ) = 0 a a = a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGrbGaaiykaiabg2da9maapehabaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGrbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiabg2da9maapehabaGaamyyaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaaaaa@4CE3@

In den nächsten Beispielen berechnen wir die klassischen dreidimensionalen Volumina. Wir greifen dabei auf die bereits gewonnenen Ergebnisse [6] bis [9] zurück.

Beispiel:

Würfel

Ellipsoid

Kugel

Kegel

Pyramide

Torus

Quader

Zylinder

 
  • Der Würfel W= [0,a] 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIZaaaaaaa@3CC8@ mit Kantenlänge a besitzt das Volumen

    V 3 (W)= a 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIZaaabeaakiaacIcacaWGxbGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaaiodaaaaaaa@3CC5@

    Beweis:   W[0,a]× 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgkOimlaacUfacaaIWaGaaiilaiaadggacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@4144@ und die Schnitte W x = [0,a] 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWG4baabeaakiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIYaaaaaaa@3DFA@ (siehe [4]) haben nach [6] das konstante Volumen V 2 ( W x )= a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGxbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaaaaa@3DF6@ . W hat damit ein Volumen, und zwar

    V 3 (W)= a 2 0 a 1 = a 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIZaaabeaakiaacIcacaWGxbGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaGcdaWdXbqaaiaaigdaaSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGccqGH9aqpcaWGHbWaaWbaaSqabeaacaaIZaaaaaaa@4472@

Einige der gerade betrachteten Beispiele (u.a. Kugel und Kegel) respräsentieren eine allgemeine Klasse von Teilmengen des 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3846@ , die ein Volumen besitzen, die sog. Rotationskörper. Sie haben eine drechselförmige Gestalt und entstehen durch Rotation eines Graphen um die x-Achse.

Bezeichnung und Bemerkung:  Ist f:[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHcaa@3F2F@ eine stetige Funktion, so nennen wir die Menge

R {(x,y,z) 3 |x[a,b]       y 2 + z 2 (f(x)) 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGPaGaeyicI4SaeSyhHe6aaWbaaSqabeaacaaIZaaaaOGaaiiFaiaadIhacqGHiiIZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaaysW7cqGHNis2caaMe8UaamyEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaGGOaGaamOzaiaacIcacaWG4bGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccaGG9baaaa@5BF1@
[8.5.5]

den durch die Hüllfunktion f (im Bereich [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ ) erzeugten Rotationskörper. R besitzt das Volumen

V 3 (R)=π a b f 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIZaaabeaakiaacIcacaWGsbGaaiykaiabg2da9iabec8aWnaapehabaGaamOzamaaCaaaleqabaGaaGOmaaaaaeaacaWGHbaabaGaamOyaaqdcqGHRiI8aaaa@42AC@

Beweis:   R[a,b]× 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@416C@ und für x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ ist R x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWG4baabeaaaaa@37EC@ ein Kreis mit Radius |f(x)| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacaGG8baaaa@3B2D@ . Man hat also V 2 ( R X )=π f 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGsbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaiabg2da9iabec8aWjaadAgadaahaaWcbeqaaiaaikdaaaaaaa@3F93@ , und damit die Behauptung.

Als Beispiel berechnen wir das Volumen des durch die Hüllfunktion X 2 +1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaaaa@3959@ in [1,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTiaaigdacaGGSaGaaGymaiaac2faaaa@3ABF@ erzeugten Rotationskörpers R (Seilrolle):

V 3 (R) =π 1 1 ( X 2 +1 ) 2 =π 1 1 X 4 +2 X 2 +1 =π( 1 5 X 5 + 2 3 X 3 +X ) | 1 1 = 56 15 π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaadAfadaWgaaWcbaGaaG4maaqabaGccaGGOaGaamOuaiaacMcaaeaacqGH9aqpcqaHapaCdaWdXbqaaiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaaabaGaeyOeI0IaaGymaaqaaiaaigdaa0Gaey4kIipaaOqaaaqaaiabg2da9iabec8aWnaapehabaGaamiwamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaWcbaGaeyOeI0IaaGymaaqaaiaaigdaa0Gaey4kIipaaOqaaaqaaiabg2da9iabec8aWjaacIcadaWcaaqaaiaaigdaaeaacaaI1aaaaiaadIfadaahaaWcbeqaaiaaiwdaaaGccqGHRaWkdaWcaaqaaiaaikdaaeaacaaIZaaaaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWGybGaaiykaiaacYhadaqhaaWcbaGaeyOeI0IaaGymaaqaaiaaigdaaaGccqGH9aqpdaWcaaqaaiaaiwdacaaI2aaabaGaaGymaiaaiwdaaaGaeqiWdahaaaaa@6C89@

 

Aufgabe:  Das Ellipsoid

E{(x,y,z) 3 |x[a,a]       y 2 + z 2 b 2 a 2 ( a 2 x 2 )} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGPaGaeyicI4SaeSyhHe6aaWbaaSqabeaacaaIZaaaaOGaaiiFaiaadIhacqGHiiIZcaGGBbGaeyOeI0IaamyyaiaacYcacaWGHbGaaiyxaiaaysW7cqGHNis2caaMe8UaamyEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOdaWcaaqaaiaadkgadaahaaWcbeqaaiaaikdaaaaakeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaaakiabgwSixlaacIcacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaakiaacMcacaGG9baaaa@635F@

 i

Das Ellipsoid in dieser Aufgabe hat zwei identische Halbachsen, nämlich b in y- und z-Richtung, denn es entsteht durch Rotation der oberen Halbellipse {(x,y) 2 | x 2 a 2 + y 2 b 2 =1} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaacIcacaWG4bGaaiilaiaadMhacaGGPaGaeyicI4SaeSyhHe6aaWbaaSqabeaacaaIYaaaaOGaaiiFamaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWG5bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOyamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaaIXaGaaiyFaaaa@4B2E@ .


Halbellipse mit a = 2 und b = 1,2

Der für die Schnittkreise E x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWG4baabeaaaaa@37DF@ benötigte Radius y=f(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadAgacaGGOaGaamiEaiaacMcaaaa@3B31@ ergibt sich damit aus folgender Rechnung:

x 2 a 2 + y 2 b 2 =1 b 2 x 2 + a 2 y 2 = a 2 b 2 y 2 = a 2 b 2 b 2 x 2 a 2 y= b a a 2 x 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaamaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWG5bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOyamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaaIXaaabaGaeyi1HSTaamOyamaaCaaaleqabaGaaGOmaaaakiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamyEamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaGccaWGIbWaaWbaaSqabeaacaaIYaaaaaGcbaaabaGaeyi1HSTaamyEamaaCaaaleqabaGaaGOmaaaakiabg2da9maalaaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGIbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaaGcbaaabaGaeyi1HSTaamyEaiabg2da9maalaaabaGaamOyaaqaaiaadggaaaWaaOaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaaaaaaa@6A7F@

hat das Volumen V 3 (E)= 4 3 a b 2 π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIZaaabeaakiaacIcacaWGfbGaaiykaiabg2da9maalaaabaGaaGinaaqaaiaaiodaaaGaamyyaiaadkgadaahaaWcbeqaaiaaikdaaaGccqaHapaCaaa@40EB@ .

Beweis: ? b a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGIbaabaGaamyyaaaaaaa@37C9@

Zur Berechnung n-dimensionaler Volumina ist der Einsatz des Induktionsprinzips unerläßlich. Wir beginnen unsere Untersuchungen mit der Berechnung des n-dimensionalen Würfel- bzw. Kugelvolumens.

Bemerkung:  

  1. Der n-dimensionale Würfel W n = [0,a] n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWGUbaabeaakiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaWGUbaaaaaa@3E27@ hat das Volumen

V n ( W n )= a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGxbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaad6gaaaaaaa@3E5A@
[8.5.6]
  1. Die n-dimensionale Kugel S n ={x n | x 1 2 ++ x n 2 r 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGUbaabeaakiabg2da9iaacUhacaWG4bGaeyicI4SaeSyhHe6aaWbaaSqabeaacaWGUbaaaOGaaiiFaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcqWIMaYscqGHRaWkcaWG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeyizImQaamOCamaaCaaaleqabaGaaGOmaaaakiaac2haaaa@4D21@ hat das Volumen

V n ( S n )={ 1 k! π k r n   falls  n=2k 2 n k! n! π k r n   falls  n=2k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGtbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaamaalaaabaGaaGymaaqaaiaadUgacaGGHaaaaiabec8aWnaaCaaaleqabaGaam4AaaaakiaadkhadaahaaWcbeqaaiaad6gaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGH9aqpcaaIYaGaam4AaaqaamaalaaabaGaaGOmamaaCaaaleqabaGaamOBaaaakiaadUgacaGGHaaabaGaamOBaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbaaaOGaamOCamaaCaaaleqabaGaamOBaaaakiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaikdacaWGRbGaey4kaSIaaGymaaaaaiaawUhaaaaa@612C@
[8.5.7]

1.   Beweis per Induktion:

  • n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ :   W 1 =[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaaIXaaabeaakiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbaaaa@3CCF@ ist ein abgeschlossenes Intervall mit V 1 ( W 1 )=a= a 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGxbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaadggacqGH9aqpcaWGHbWaaWbaaSqabeaacaaIXaaaaaaa@3F9E@ .

  • n   n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaysW7cqGHshI3caaMc8UaamOBaiabgUcaRiaaigdaaaa@3EE4@ :  Sei jetzt W n+1 = [0,a] n+1 =[0,a]× [0,a] n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaGGBbGaaGimaiaacYcacaWGHbGaaiyxamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGH9aqpcaGGBbGaaGimaiaacYcacaWGHbGaaiyxaiabgEna0kaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaWGUbaaaaaa@4DC8@ ein (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaa@39D5@ -dimensionaler Würfel. Für x[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadggacaGGDbaaaa@3C7D@ ist der Schnitt W n+1,x = [0,a] n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWGUbGaey4kaSIaaGymaiaacYcacaWG4baabeaakiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaWGUbaaaaaa@4171@ ein n-dimensionaler Würfel, besitzt also nach Induktionsvoraussetzung ein Volumen. Und da V n ( W n+1,X )= a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGxbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaGaaiilaiaadIfaaeqaaOGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaad6gaaaaaaa@4184@ als konstante Funktion auch integrierbar ist, besitzt W n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3984@ ebenfalls ein Volumen, und zwar

    V n+1 ( W n+1 )= a n 0 a 1 = a n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4vamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGPaGaeyypa0JaamyyamaaCaaaleqabaGaamOBaaaakmaapehabaGaaGymaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiabg2da9iaadggadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaa@4B15@

2.   Beweis per Induktion:

  • n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ :   S 1 ={x| x 2 r 2 }=[r,r] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaakiabg2da9iaacUhacaWG4bGaeyicI4SaeSyhHeQaaiiFaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaWGYbWaaWbaaSqabeaacaaIYaaaaOGaaiyFaiabg2da9iaacUfacqGHsislcaWGYbGaaiilaiaadkhacaGGDbaaaa@4B8C@ ist ein geschlossenes Intervall mit

    V 1 ( S 1 )=2r= 2 1 0! 1! π 0 r 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGtbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaaikdacaWGYbGaeyypa0ZaaSaaaeaacaaIYaWaaWbaaSqabeaacaaIXaaaaOGaeyyXICTaaGimaiaacgcaaeaacaaIXaGaaiyiaaaacqaHapaCdaahaaWcbeqaaiaaicdaaaGccaWGYbWaaWbaaSqabeaacaaIXaaaaaaa@49ED@

    Man beachte, dass hier n=20+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaikdacqGHflY1caaIWaGaey4kaSIaaGymaaaa@3D42@ ist.

  • n      n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaysW7cqGHshI3caaMe8UaamOBaiabgUcaRiaaigdaaaa@3EE6@ :  Sei jetzt S n+1 ={(x,y) n+1 | x 2 + y 1 2 ++ y n 2 r 2 }[r,r]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaGG7bGaaiikaiaadIhacaGGSaGaamyEaiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiiFaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG5bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaeSOjGSKaey4kaSIaamyEamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgsMiJkaadkhadaahaaWcbeqaaiaaikdaaaGccaGG9bGaeyOGIWSaai4waiabgkHiTiaadkhacaGGSaGaamOCaiaac2facqGHxdaTcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@6224@ eine ( n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@387C@ )-dimensionale Kugel. Für x[r,r] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaWGYbGaaiilaiaadkhacaGGDbaaaa@3DB8@ ist S n+1,x ={y n | y 1 2 ++ y n 2 r 2 x 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGUbGaey4kaSIaaGymaiaacYcacaWG4baabeaakiabg2da9iaacUhacaWG5bGaeyicI4SaeSyhHe6aaWbaaSqabeaacaWGUbaaaOGaaiiFaiaadMhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcqWIMaYscqGHRaWkcaWG5bWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeyizImQaamOCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaGccaGG9baaaa@534B@ eine n-dimensionale Kugel, hat also nach Induktionsvoraussetzung ein Volumen. Dabei ist

    V n ( S n+1,X )= r 2 X 2 n { 1 k! π k   falls  n=2k 2 n k! n! π k   falls  n=2k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGtbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaGaaiilaiaadIfaaeqaaOGaaiykaiabg2da9maakaaabaGaamOCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIfadaahaaWcbeqaaiaaikdaaaaabeaakmaaCaaaleqabaGaamOBaaaakiabgwSixpaaceaabaqbaeaabiqaaaqaamaalaaabaGaaGymaaqaaiaadUgacaGGHaaaaiabec8aWnaaCaaaleqabaGaam4AaaaakiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaikdacaWGRbaabaWaaSaaaeaacaaIYaWaaWbaaSqabeaacaWGUbaaaOGaam4AaiaacgcaaeaacaWGUbGaaiyiaaaacqaHapaCdaahaaWcbeqaaiaadUgaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGH9aqpcaaIYaGaam4AaiabgUcaRiaaigdaaaaacaGL7baaaaa@683F@

    eine stetige, also auch integrierbare Funktion. S n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3980@ besitzt daher ein Volumen.

    Mit Hilfe der Substitution g=rsin,    g =rcos MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadkhacqGHflY1ciGGZbGaaiyAaiaac6gacaGGSaGaaGjbVlqadEgagaqbaiabg2da9iaadkhacqGHflY1ciGGJbGaai4Baiaacohaaaa@4846@ (siehe [8.3.5]) berechnen wir zunächst das Integral

    r r r 2 X 2 n = rsin( π 2 ) rsin( π 2 ) r 2 X 2 n = π 2 π 2 r 2 r 2 sin 2 n rcos = r n+1 π 2 π 2 1 sin 2 = cos 2 n cos = r n+1 π 2 π 2 cos n+1 = [8.3.4] r n+1 { (n+1)! ( 2 k k! ) 2 π  falls  n+1=2k ( 2 k k! ) 2 (n+1)! 2  falls  n+1=2k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaWaa8qCaeaadaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaaqabaGcdaahaaWcbeqaaiaad6gaaaaabaGaeyOeI0IaamOCaaqaaiaadkhaa0Gaey4kIipakiabg2da9maapehabaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaaaeqaaOWaaWbaaSqabeaacaWGUbaaaaqaaiaadkhacqGHflY1ciGGZbGaaiyAaiaac6gacaGGOaGaeyOeI0YaaSWaaWqaaiabec8aWbqaaiaaikdaaaWccaGGPaaabaGaamOCaiabgwSixlGacohacaGGPbGaaiOBaiaacIcadaWcdaadbaGaeqiWdahabaGaaGOmaaaaliaacMcaa0Gaey4kIipaaOqaaiabg2da9maapehabaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamOCamaaCaaaleqabaGaaGOmaaaakiabgwSixlGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaaaeqaaOWaaWbaaSqabeaacaWGUbaaaOGaamOCaiabgwSixlGacogacaGGVbGaai4CaaWcbaGaeyOeI0YaaSWaaWqaaiabec8aWbqaaiaaikdaaaaaleaadaWcdaadbaGaeqiWdahabaGaaGOmaaaaa0Gaey4kIipaaOqaaaqaaiabg2da9iaadkhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOWaa8qCaeaadaGcaaqaamaayaaabaGaaGymaiabgkHiTiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaaaeaacqGH9aqpciGGJbGaai4BaiaacohadaahaaadbeqaaiaaikdaaaaakiaawIJ=aaWcbeaakmaaCaaaleqabaGaamOBaaaakiGacogacaGGVbGaai4CaaWcbaGaeyOeI0YaaSWaaWqaaiabec8aWbqaaiaaikdaaaaaleaadaWcdaadbaGaeqiWdahabaGaaGOmaaaaa0Gaey4kIipaaOqaaaqaaiabg2da9iaadkhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOWaa8qCaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaqaaiabgkHiTmaalmaameaacqaHapaCaeaacaaIYaaaaaWcbaWaaSWaaWqaaiabec8aWbqaaiaaikdaaaaaniabgUIiYdaakeaaaeaadaWfqaqaaiabg2da9aWcbaGaai4waiaaiIdacaGGUaGaaG4maiaac6cacaaI0aGaaiyxaaqabaGccaWGYbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwSixpaaceaabaqbaeaabiqaaaqaamaalaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaeaacaGGOaGaaGOmamaaCaaaleqabaGaam4AaaaakiaadUgacaGGHaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGHflY1cqaHapaCcaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGHRaWkcaaIXaGaeyypa0JaaGOmaiaadUgaaeaadaWcaaqaaiaacIcacaaIYaWaaWbaaSqabeaacaWGRbaaaOGaam4AaiaacgcacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaeyyXICTaaGOmaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabgUcaRiaaigdacqGH9aqpcaaIYaGaam4AaiabgUcaRiaaigdaaaaacaGL7baaaaaaaa@EACE@

    und errechnen damit das Volumen der ( n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@387C@ )-dimensionalen Kugel zu

    V n+1 ( S n+1 ) = r r r 2 X 2 n { 1 k! π k   falls  n=2k 2 n k! n! π k   falls  n=2k+1 = r n+1 { ( 2 k k! ) 2 (n+1)! 2 1 k! π k   falls  n=2k      n+1=2k+1 (n+1)! ( 2 k+1 (k+1)! ) 2 π 2 n k! n! π k   falls  n=2k+1      n+1=2(k+1) ={ 2 2k+1 (k!) 2 (n+1)!k! π k r n+1   falls  n+1=2k+1 (n+1) 2 n 2 2k+1 2(k+1)(k+1)! π k+1 r n+1   falls  n+1=2(k+1) ={ 2 n+1 k! (n+1)! π k r n+1   falls  n+1=2k+1 1 (k+1)! π k+1 r n+1   falls  n+1=2(k+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4uamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGPaaabaGaeyypa0Zaa8qCaeaadaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaaqabaGcdaahaaWcbeqaaiaad6gaaaaabaGaeyOeI0IaamOCaaqaaiaadkhaa0Gaey4kIipakiabgwSixpaaceaabaqbaeaabiqaaaqaamaalaaabaGaaGymaaqaaiaadUgacaGGHaaaaiabec8aWnaaCaaaleqabaGaam4AaaaakiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaikdacaWGRbaabaWaaSaaaeaacaaIYaWaaWbaaSqabeaacaWGUbaaaOGaam4AaiaacgcaaeaacaWGUbGaaiyiaaaacqaHapaCdaahaaWcbeqaaiaadUgaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGH9aqpcaaIYaGaam4AaiabgUcaRiaaigdaaaaacaGL7baaaeaaaeaacqGH9aqpcaWGYbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwSixpaaceaabaqbaeaabiqaaaqaamaalaaabaGaaiikaiaaikdadaahaaWcbeqaaiaadUgaaaGccaWGRbGaaiyiaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaaacqGHflY1caaIYaGaeyyXIC9aaSaaaeaacaaIXaaabaGaam4AaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbaaaOGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaeyypa0JaaGOmaiaadUgacaaMe8Uaeyi1HSTaaGjbVlaad6gacqGHRaWkcaaIXaGaeyypa0JaaGOmaiaadUgacqGHRaWkcaaIXaaabaWaaSaaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaqaaiaacIcacaaIYaWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiaacIcacaWGRbGaey4kaSIaaGymaiaacMcacaGGHaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGHflY1cqaHapaCcqGHflY1daWcaaqaaiaaikdadaahaaWcbeqaaiaad6gaaaGccaWGRbGaaiyiaaqaaiaad6gacaGGHaaaaiabec8aWnaaCaaaleqabaGaam4AaaaakiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaikdacaWGRbGaey4kaSIaaGymaiaaysW7cqGHuhY2caaMe8UaamOBaiabgUcaRiaaigdacqGH9aqpcaaIYaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaaaaaiaawUhaaaqaaaqaaiabg2da9maaceaabaqbaeaabiqaaaqaamaalaaabaGaaGOmamaaCaaaleqabaGaaGOmaiaadUgacqGHRaWkcaaIXaaaaOGaaiikaiaadUgacaGGHaGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacaGGHaGaam4AaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbaaaOGaamOCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGHRaWkcaaIXaGaeyypa0JaaGOmaiaadUgacqGHRaWkcaaIXaaabaWaaSaaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaeyyXICTaaGOmamaaCaaaleqabaGaamOBaaaaaOqaaiaaikdadaahaaWcbeqaaiaaikdacaWGRbGaey4kaSIaaGymaaaakiabgwSixlaaikdacaGGOaGaam4AaiabgUcaRiaaigdacaGGPaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiaadkhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaey4kaSIaaGymaiabg2da9iaaikdacaGGOaGaam4AaiabgUcaRiaaigdacaGGPaaaaaGaay5EaaaabaaabaGaeyypa0ZaaiqaaeaafaqaaeGabaaabaWaaSaaaeaacaaIYaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaadUgacaGGHaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbaaaOGaamOCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGHRaWkcaaIXaGaeyypa0JaaGOmaiaadUgacqGHRaWkcaaIXaaabaWaaSaaaeaacaaIXaaabaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiaadkhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaey4kaSIaaGymaiabg2da9iaaikdacaGGOaGaam4AaiabgUcaRiaaigdacaGGPaaaaaGaay5Eaaaaaaaa@5C44@

 

Weitere Untersuchungen führen wir an allgemeinen Zylindern, bzw. allgemeinen Kegeln durch. Für eine nicht-leere Teilmenge G n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyybIySaeyiyIKRaam4raiabgkOimlabl2riHoaaCaaaleqabaGaamOBaaaaaaa@3E84@ des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@387C@ nennen wir die Menge

  1.   Z[0,h]×G MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacUfacaaIWaGaaiilaiaadIgacaGGDbGaey41aqRaam4raaaa@3ECB@

[8.5.8]

einen (allgemeinen) Zylinder mit Grundfläche G und Höhe h.

  1.   C{(x, x h y 1 , x h y n ) n+1 |x[0,h]      yG} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabg2da9iaacUhacaGGOaGaamiEaiaacYcadaWcaaqaaiaadIhaaeaacaWGObaaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGS0aaSaaaeaacaWG4baabaGaamiAaaaacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGG8bGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadIgacaGGDbGaaGjbVlabgEIizlaaysW7caWG5bGaeyicI4Saam4raiaac2haaaa@5C05@

[8.5.9]

einen (allgemeinen) Kegel (Conus) mit Grundfläche G und Höhe h.

Beachte:

  • Abgesehen vom Fall n=2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaikdaaaa@38A1@ sind Grundflächen natürlich keine Flächen im gewöhnlichen Sinn.

  • Eine (allgemeine) Pyramide ist ein Kegel, dessen Grundfläche ein Polytop ist.


     

Aufgabe:  Besitzt G ein Volumen, so hat der Zylinder Z=[0,h]×G MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacUfacaaIWaGaaiilaiaadIgacaGGDbGaey41aqRaam4raaaa@3ECB@ das Volumen

V n+1 (Z)= V n (G)h MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamOwaiaacMcacqGH9aqpcaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadEeacaGGPaGaeyyXICTaamiAaaaa@442B@
[8.5.10]

So hat z.B. der Zylinder Z=[0,2]×{(x,y,z) 3 | x 2 + y 2 + z 2 9} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacUfacaaIWaGaaiilaiaaikdacaGGDbGaey41aqRaai4EaiaacIcacaWG4bGaaiilaiaadMhacaGGSaGaamOEaiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaaiodaaaGccaGG8bGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG6bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGyoaiaac2haaaa@5478@ , dessen Grundfläche eine Kugel vom Radius 3 ist, ein Volumen von V 4 (Z)= 4 3 3 3 π2=72π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaI0aaabeaakiaacIcacaWGAbGaaiykaiabg2da9maalaaabaGaaGinaaqaaiaaiodaaaGaeyyXICTaaG4mamaaCaaaleqabaGaaG4maaaakiabec8aWjabgwSixlaaikdacqGH9aqpcaaI3aGaaGOmaiabec8aWbaa@4982@ .

Beweis: ?

[8.5.10] bestätigt offenbar die alte Formel "Grundfläche mal Höhe" für das Volumen eines Zylinders. Um ein analoges Ergebnis für den Kegel zu erhalten, benötigen wir einige technische Vorbereitungen: Für zwei Vektoren d=( d 0 ,, d n1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2da9iaacIcacaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWGKbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaacMcaaaa@4149@ und c=( c 0 ,, c n1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaacIcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWGJbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaacMcaaaa@4146@ mit c i >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaWGPbaabeaakiabg6da+iaaicdaaaa@39BA@ setzen wir für eine beliebige Teilmenge M n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlabl2riHoaaCaaaleqabaGaamOBaaaaaaa@3B4A@

cM+d{( c 0 x+ d 0 , c 1 y 1 + d 1 ,, c n1 y n1 + d n1 )|(x, y 1 ,, y n1 )M} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbGaeyypa0Jaai4EaiaacIcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamiEaiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIXaaabeaakiabgwSixlaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGJbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgwSixlaadMhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey4kaSIaamizamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGPaGaaiiFaiaacIcacaWG4bGaaiilaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadMhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaiykaiabgIGiolaad2eacaGG9baaaa@6EB4@

Dabei schreiben wir abkürzend cM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eaaaa@37A6@ und M+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgUcaRiaadsgaaaa@3889@ , falls d=(0,,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2da9iaacIcacaaIWaGaaiilaiablAciljaacYcacaaIWaGaaiykaaaa@3D2A@ bzw. c=(1,,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaacIcacaaIXaGaaiilaiablAciljaacYcacaaIXaGaaiykaaaa@3D2B@ . cM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eaaaa@37A6@ ist die mit den Streckungsvektor c gestreckte, M+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgUcaRiaadsgaaaa@3889@ die um den Verschiebungsvektor d verschobene Menge M.

Die folgende Bemerkung führt nicht nur zu unserem Ziel, sondern auch zu weiteren, wichtigen Ergebnissen.

Bemerkung:  Eine Teilmenge M n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlabl2riHoaaCaaaleqabaGaamOBaaaaaaa@3B4A@ besitzt genau dann ein Volumen wenn cM+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbaaaa@3971@ ein Volumen besitzt. In diesem Fall gilt

V n (cM+d)= c 0 c n1 V n (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGJbGaamytaiabgUcaRiaadsgacaGGPaGaeyypa0Jaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlablAciljabgwSixlaadogadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeyyXICTaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbGaaiykaaaa@4F94@
[8.5.11]

Beweis:  Es reicht, nur die Richtung " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3849@ " nachzuweisen, denn mit der Gleichheit

( 1 c 0 ,, 1 c n1 )(cM+d)+( d 0 c 0 ,, d n1 c n1 )=M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaleaaleaacaaIXaaabaGaam4yamaaBaaameaacaaIWaaabeaaaaGccaGGSaGaeSOjGSKaaiilamaaleaaleaacaaIXaaabaGaam4yamaaBaaameaacaWGUbGaeyOeI0IaaGymaaqabaaaaOGaaiykaiaacIcacaWGJbGaamytaiabgUcaRiaadsgacaGGPaGaey4kaSIaaiikamaaleaaleaacqGHsislcaWGKbWaaSbaaWqaaiaaicdaaeqaaaWcbaGaam4yamaaBaaameaacaaIWaaabeaaaaGccaGGSaGaeSOjGSKaaiilamaaleaaleaacqGHsislcaWGKbWaaSbaaWqaaiaad6gacqGHsislcaaIXaaabeaaaSqaaiaadogadaWgaaadbaGaamOBaiabgkHiTiaaigdaaeqaaaaakiaacMcacqGH9aqpcaWGnbaaaa@59B7@

folgt damit auch die Umkehrung. Wir führen den Beweis nun per Induktion.

  • n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ :  Falls M= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iabgwGigdaa@393D@ , ist auch cM+d= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbGaeyypa0JaeyybIymaaa@3BF0@ und beide Mengen haben das Volumen 0. Sei also M=[ l 1 , r 1 ][ l k , r k ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUfacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkhadaWgaaWcbaGaaGymaaqabaGccaGGDbWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4cqWIMaYscqWFnkc4caGGBbGaamiBamaaBaaaleaacaWGRbaabeaakiaacYcacaWGYbWaaSbaaSqaaiaadUgaaeqaaOGaaiyxaaaa@5987@ . Dann ist

    cM+d=[ c 0 l 1 + d 0 , c 0 r 1 + d 0 ][ c 0 l k + d 0 , c 0 r k + d 0 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbGaeyypa0Jaai4waiaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGSbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamizamaaBaaaleaacaaIWaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamOCamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGDbWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4cqWIMaYscqWFnkc4caGGBbGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadYgadaWgaaWcbaGaam4AaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGYbWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamizamaaBaaaleaacaaIWaaabeaakiaac2faaaa@77AE@

    wieder eine disjunkte Vereinigung von Intervallen, besitzt also ein Volumen, und

    V 1 (cM+d)= i=1 k c 0 r i + d 0 ( c 0 l i + d 0 ) = c 0 i=1 k r i l i = c 0 V 1 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGJbGaamytaiabgUcaRiaadsgacaGGPaGaeyypa0ZaaabCaeaacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamOCamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccqGHsislcaGGOaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadYgadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdGccqGH9aqpcaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXIC9aaabCaeaacaWGYbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamiBamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaadUgaa0GaeyyeIuoakiabg2da9iaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGwbWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaad2eacaGGPaaaaa@70F1@
     
  • n      n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaysW7cqGHshI3caaMe8UaamOBaiabgUcaRiaaigdaaaa@3EE6@ :  Sei jetzt M[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419E@ , also cM+d[ c 0 a+ d 0 , c 0 b+ d 0 ]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbGaeyOGIWSaai4waiaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGHbGaey4kaSIaamizamaaBaaaleaacaaIWaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamOyaiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@520B@ .

    Falls nun a=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaadkgaaaa@38BF@ , so ist auch c 0 a+ d 0 = c 0 b+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadggacqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Jaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadkgacqGHRaWkcaWGKbaaaa@4589@ und beide Mengen haben das Volumen 0. Sei daher a<b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgYda8iaadkgaaaa@38BD@ . Zunächst hat man

    (cM+d) x =( c 1 ,, c n ) M x d 0 c 0 +( d 1 ,, d n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogacaWGnbGaey4kaSIaamizaiaacMcadaWgaaWcbaGaamiEaaqabaGccqGH9aqpcaGGOaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4yamaaBaaaleaacaWGUbaabeaakiaacMcacaWGnbWaaSbaaSqaamaalaaabaGaamiEaiabgkHiTiaadsgadaWgaaadbaGaaGimaaqabaaaleaacaWGJbWaaSbaaWqaaiaaicdaaeqaaaaaaSqabaGccqGHRaWkcaGGOaGaamizamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamizamaaBaaaleaacaWGUbaabeaakiaacMcaaaa@5428@ [+]

    für alle x[ c 0 a+ d 0 , c 0 b+ d 0 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamyyaiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadkgacqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiyxaaaa@4A64@ , denn:

    ( y 1 ,, y n ) (cM+d) x (x, y 1 ,, y n )cM+d ( x d 0 c 0 , y 1 d 1 c 1 ,, y n d n c n )M ( y 1 d 1 c 1 ,, y n d n c n ) M x d 0 c 0 ( y 1 ,, y n )( c 1 ,, c n ) M x d 0 c 0 +( d 1 ,, d n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaaiikaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyicI4SaaiikaiaadogacaWGnbGaey4kaSIaamizaiaacMcadaWgaaWcbaGaamiEaaqabaaakeaacaaMf8Uaeyi1HSTaaGzbVlaacIcacaWG4bGaaiilaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyicI4Saam4yaiaad2eacqGHRaWkcaWGKbaabaaabaGaaGzbVlabgsDiBlaaywW7caGGOaWaaSaaaeaacaWG4bGaeyOeI0IaamizamaaBaaaleaacaaIWaaabeaaaOqaaiaadogadaWgaaWcbaGaaGimaaqabaaaaOGaaiilamaalaaabaGaamyEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadsgadaWgaaWcbaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaaaakiaacYcacqWIMaYscaGGSaWaaSaaaeaacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamizamaaBaaaleaacaWGUbaabeaaaOqaaiaadogadaWgaaWcbaGaamOBaaqabaaaaOGaaiykaiabgIGiolaad2eaaeaaaeaacaaMf8Uaeyi1HSTaaGzbVlaacIcadaWcaaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaaaaGccaGGSaGaeSOjGSKaaiilamaalaaabaGaamyEamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadsgadaWgaaWcbaGaamOBaaqabaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaaaakiaacMcacqGHiiIZcaWGnbWaaSbaaSqaamaalaaabaGaamiEaiabgkHiTiaadsgadaWgaaadbaGaaGimaaqabaaaleaacaWGJbWaaSbaaWqaaiaaicdaaeqaaaaaaSqabaaakeaaaeaacaaMf8Uaeyi1HSTaaGzbVlaacIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgIGiolaacIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGJbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiaad2eadaWgaaWcbaWaaSaaaeaacaWG4bGaeyOeI0IaamizamaaBaaameaacaaIWaaabeaaaSqaaiaadogadaWgaaadbaGaaGimaaqabaaaaaWcbeaakiabgUcaRiaacIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGKbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaaaaa@BF16@

    Besitzt M nun ein Volumen, so hat jeder Schnitt M x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaaaaa@37E7@ ein Volumen und V n ( M X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaaa@3B2E@ ist über [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ integrierbar. Nach Induktionsvoraussetzung hat dann

    ( c 1 ,, c n ) M x d 0 c 0 +( d 1 ,, d n ) = [+] (cM+d) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadogadaWgaaWcbaGaamOBaaqabaGccaGGPaGaamytamaaBaaaleaadaWcaaqaaiaadIhacqGHsislcaWGKbWaaSbaaWqaaiaaicdaaeqaaaWcbaGaam4yamaaBaaameaacaaIWaaabeaaaaaaleqaaOGaey4kaSIaaiikaiaadsgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadsgadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaCbeaeaacqGH9aqpaSqaaiaacUfacqGHRaWkcaGGDbaabeaakiaacIcacaWGJbGaamytaiabgUcaRiaadsgacaGGPaWaaSbaaSqaaiaadIhaaeqaaaaa@5703@

    für jedes x[ c 0 a+ d 0 , c 0 b+ d 0 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamyyaiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadkgacqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiyxaaaa@4A64@ das Volumen V n ( (cM+d) x )= c 1 c n V n ( M x d 0 c 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaGGOaGaam4yaiaad2eacqGHRaWkcaWGKbGaaiykamaaBaaaleaacaWG4baabeaakiaacMcacqGH9aqpcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaeSOjGSKaeyyXICTaam4yamaaBaaaleaacaWGUbaabeaakiabgwSixlaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamytamaaBaaaleaadaWcaaqaaiaadIhacqGHsislcaWGKbWaaSbaaWqaaiaaicdaaeqaaaWcbaGaam4yamaaBaaameaacaaIWaaabeaaaaaaleqaaOGaaiykaaaa@565E@ . Nach [8.3.5] (Substitutionsregel) ist V n ( (cM+d) X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaGGOaGaam4yaiaad2eacqGHRaWkcaWGKbGaaiykamaaBaaaleaacaWGybaabeaakiaacMcaaaa@3F3A@ integrierbar, cM+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbaaaa@3971@ besitzt also ein Volumen, nämlich

    V n+1 (cM+d) = c 0 a+ d 0 c 0 b+ d 0 V n ( (cM+d) X ) = c 0 c 1 c n c 0 a+ d 0 c 0 b+ d 0 V n ( M X d 0 c 0 ) 1 c 0 = c 0 c 1 c n a b V n ( M X ) = c 0 c 1 c n V n+1 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4yaiaad2eacqGHRaWkcaWGKbGaaiykaaqaaiabg2da9maapehabaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaGGOaGaam4yaiaad2eacqGHRaWkcaWGKbGaaiykamaaBaaaleaacaWGybaabeaakiaacMcaaSqaaiaadogadaWgaaadbaGaaGimaaqabaWccqGHflY1caWGHbGaey4kaSIaamizamaaBaaameaacaaIWaaabeaaaSqaaiaadogadaWgaaadbaGaaGimaaqabaWccqGHflY1caWGIbGaey4kaSIaamizamaaBaaameaacaaIWaaabeaaa0Gaey4kIipaaOqaaaqaaiabg2da9iaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGJbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaeSOjGSKaeyyXICTaam4yamaaBaaaleaacaWGUbaabeaakmaapehabaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaamaalaaabaGaamiwaiabgkHiTiaadsgadaWgaaadbaGaaGimaaqabaaaleaacaWGJbWaaSbaaWqaaiaaicdaaeqaaaaaaSqabaGccaGGPaGaeyyXIC9aaSaaaeaacaaIXaaabaGaam4yamaaBaaaleaacaaIWaaabeaaaaaabaGaam4yamaaBaaameaacaaIWaaabeaaliabgwSixlaadggacqGHRaWkcaWGKbWaaSbaaWqaaiaaicdaaeqaaaWcbaGaam4yamaaBaaameaacaaIWaaabeaaliabgwSixlaadkgacqGHRaWkcaWGKbWaaSbaaWqaaiaaicdaaeqaaaqdcqGHRiI8aaGcbaaabaGaeyypa0Jaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadogadaWgaaWcbaGaaGymaaqabaGccqGHflY1cqWIMaYscqGHflY1caWGJbWaaSbaaSqaaiaad6gaaeqaaOWaa8qCaeaacaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaad2eadaWgaaWcbaGaamiwaaqabaGccaGGPaaaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aaGcbaaabaGaeyypa0Jaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadogadaWgaaWcbaGaaGymaaqabaGccqGHflY1cqWIMaYscqGHflY1caWGJbWaaSbaaSqaaiaad6gaaeqaaOGaeyyXICTaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcaaaaaaa@B97E@

Wir notieren nun einige Folgerungen aus [8.5.11]:

  1. Volumina sind verschiebungstreu, denn mit c=(1,,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaacIcacaaIXaGaaiilaiablAciljaacYcacaaIXaGaaiykaaaa@3D2B@ ist

    V n (M+d)= V n (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbGaey4kaSIaamizaiaacMcacqGH9aqpcaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaad2eacaGGPaaaaa@411B@
     
    [8.5.12]
  2. Volumina sind streckungskompatibel, denn mit d=(0,,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2da9iaacIcacaaIWaGaaiilaiablAciljaacYcacaaIWaGaaiykaaaa@3D2A@ ist

    V n (cM)= c 0 c n1 V n (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGJbGaamytaiaacMcacqGH9aqpcaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaeSOjGSKaam4yamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHflY1caWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaad2eacaGGPaaaaa@4B7F@
     
    [8.5.13]
  3. Volumina sind scherungstreu: Besitzt M[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419E@ ein Volumen, so hat für jeden Scherungsvektor  s=( s 1 ,, s n ) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2da9iaacIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGZbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaamOBaaaaaaa@43E3@ die Menge

    M s {(x, s 1 ba (xa)+ y 1 ,, s n ba (xa)+ y n )|x[a,b]      y M x } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaCaaaleqabaGaam4Caaaakiabg2da9iaacUhacaGGOaGaamiEaiaacYcadaWcaaqaaiaadohadaWgaaWcbaGaaGymaaqabaaakeaacaWGIbGaeyOeI0IaamyyaaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaGaey4kaSIaamyEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaWaaSaaaeaacaWGZbWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaiabgUcaRiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiiFaiaadIhacqGHiiIZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaaysW7cqGHNis2caaMe8UaamyEaiabgIGiolaad2eadaWgaaWcbaGaamiEaaqabaGccaGG9baaaa@6952@

    ein Volumen derselben Größe:

    V n+1 ( M s )= V n+1 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytamaaCaaaleqabaGaam4CaaaakiaacMcacqGH9aqpcaWGwbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacIcacaWGnbGaaiykaaaa@43B9@
    [8.5.14]

    Beweis:  Für x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ ist offensichtlich M x s = M x +( s 1 ba (xa),, s n ba (xa)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaDaaaleaacaWG4baabaGaam4Caaaakiabg2da9iaad2eadaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaGGOaWaaSaaaeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaiaacYcacqWIMaYscaGGSaWaaSaaaeaacaWGZbWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaiaacMcaaaa@52A2@ . Nach [8.5.12] hat M x s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaDaaaleaacaWG4baabaGaam4Caaaaaaa@38E0@ daher das Volumen V n ( M x s )= V n ( M x ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaa0baaSqaaiaadIhaaeaacaWGZbaaaOGaaiykaiabg2da9iaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamytamaaBaaaleaacaWG4baabeaakiaacMcaaaa@42AF@ und mit [8.5.4] (Prinzip des Cavalieri) folgt dann die Behauptung.
     

Mit der nun vorliegenden Streckungskompatibilität kehren wir zu unserem Vorhaben zurück und berechnen das Volumen eines allgemeinen Kegels.

Bemerkung:  Der Kegel C={(x, x h y 1 , x h y n ) n+1 |x[0,h]      yG} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabg2da9iaacUhacaGGOaGaamiEaiaacYcadaWcaaqaaiaadIhaaeaacaWGObaaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGS0aaSaaaeaacaWG4baabaGaamiAaaaacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGG8bGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadIgacaGGDbGaaGjbVlabgEIizlaaysW7caWG5bGaeyicI4Saam4raiaac2haaaa@5C05@ hat ein Volumen, falls seine Grundfläche G n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiabgkOimlabl2riHoaaCaaaleqabaGaamOBaaaaaaa@3B44@ ein Volumen besitzt. In diesem Fall gilt:

V n+1 (C)= 1 n+1 V n (G)h MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4qaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadEeacaGGPaGaeyyXICTaamiAaaaa@476F@
[8.5.15]

Beweis:  Für x[0,h] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadIgacaGGDbaaaa@3C84@ ist C x ={( x h y 1 ,, x h y n )|yG}=( x h ,, x h )G MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaGGOaWaaSaaaeaacaWG4baabaGaamiAaaaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcadaWcaaqaaiaadIhaaeaacaWGObaaaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiiFaiaadMhacqGHiiIZcaWGhbGaaiyFaiabg2da9iaacIcadaWcaaqaaiaadIhaaeaacaWGObaaaiaacYcacqWIMaYscaGGSaWaaSaaaeaacaWG4baabaGaamiAaaaacaGGPaGaeyyXICTaam4raaaa@570B@ . Mit G besitzt daher nach [8.5.13] auch C x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaaleaacaWG4baabeaaaaa@37DD@ ein Volumen, nämlich V n ( C x )= ( x h ) n V n (G) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGdbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaacIcadaWcaaqaaiaadIhaaeaacaWGObaaaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGHflY1caWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadEeacaGGPaaaaa@473A@ . Als Vielfaches von X n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOBaaaaaaa@37E9@ ist V n ( C X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGdbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaaa@3B24@ integrierbar, also besitzt C das Volumen

V n+1 (C)= 0 h V n ( C X ) = 1 h n V n (G) 0 h X n = 1 h n V n (G) h n+1 n+1 = 1 n+1 V n (G) h MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4qaiaacMcacqGH9aqpdaWdXbqaaiaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaam4qamaaBaaaleaacaWGybaabeaakiaacMcaaSqaaiaaicdaaeaacaWGObaaniabgUIiYdGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGObWaaWbaaSqabeaacaWGUbaaaaaakiabgwSixlaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaam4raiaacMcadaWdXbqaaiaadIfadaahaaWcbeqaaiaad6gaaaaabaGaaGimaaqaaiaadIgaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaadIgadaahaaWcbeqaaiaad6gaaaaaaOGaeyyXICTaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGhbGaaiykaiabgwSixpaalaaabaGaamiAamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaacaWGUbGaey4kaSIaaGymaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadEeacaGGPaGaeyyXICTaamiAaaaa@7527@

Beachte:

  • Die Volumenformel [8.5.15] erfasst natürlich auch die bereits ermittelten Volumen von Dreiecken, dreidimensionalen Kreiskegeln und Pyramiden.

  • Die Höhe eines Kegels kann, aber muss nicht senkrecht auf der Grundfläche stehen. Für das Volumen ist dies ohne Bedeutung. So haben etwa alle skizzierten Dreiecke dasselbe Volumen 1,5.


8.4. 8.6.