8.6. Weglängen


Wir schließen den geometrischen Aspekt der Integralrechnung ab mit einem Abschnitt über Wege und deren Längen.

Definition:  Ist M k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@3B47@ und [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ ein geschlossenes Intervall in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@375C@ , so nennen wir jede Funktion der Form

w=( w 1 , w k ):[a,b]M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiabg2da9iaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaadEhadaWgaaWcbaGaam4AaaqabaGccaGGPaGaaiOoaiaacUfacaWGHbGaaiilaiaadkgacaGGDbGaeyOKH4Qaamytaaaa@46E2@
[8.6.1]

einen Weg (in M). w(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacIcacaWGHbGaaiykaaaa@3927@ ist der Anfangspunkt und w(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacIcacaWGIbGaaiykaaaa@3928@ der Endpunkt des Wegs. w heißt geschlossen, falls w(a)=w(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacIcacaWGHbGaaiykaiabg2da9iaadEhacaGGOaGaamOyaiaacMcaaaa@3D69@ . Den Bildbereich {w(t)|t[a,b]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadEhacaGGOaGaamiDaiaacMcacaGG8bGaamiDaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbGaaiyFaaaa@42F4@ nennen wir die zu w gehörige Kurve.

Sind alle Koordinatenfunktionen w 1 ,, w k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGRbaabeaaaaa@3C73@

  • stetig, so ist w ein stetiger Weg (auch: C 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGimaaaaaaa@379B@ -Weg).

  • differenzierbar, so sprechen wir von einem differenzierbaren Weg ( D 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaaGymaaaaaaa@379D@ -Weg) und nennen dann die Funktion

w ( w 1 ,, w k ):[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4DayaafaGaeyypa0JaaiikaiqadEhagaqbamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGabm4DayaafaWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@4971@
[8.6.2]

die Ableitung von w. w heißt regulär falls w (t)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4DayaafaGaaiikaiaadshacaGGPaGaeyiyIKRaaGimaaaa@3BC7@ für alle t[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CA6@ .

Analog führt man mehrfach differenzierbare Wege und höhere Ableitungen ein.

  • stetig differenzierbar, so nennen wir w einen glatten Weg ( C 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGymaaaaaaa@379C@ -Weg).

  • integrierbar, so ist w ein integrierbarer Weg und für r,s[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacYcacaWGZbGaeyicI4Saai4waiaadggacaGGSaGaamOyaiaac2faaaa@3E4C@ lesen wir den Vektor

r s w ( r s w 1 ,, r s w k ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaWG3baaleaacaWGYbaabaGaam4CaaqdcqGHRiI8aOGaeyypa0JaaiikamaapehabaGaam4DamaaBaaaleaacaaIXaaabeaaaeaacaWGYbaabaGaam4CaaqdcqGHRiI8aOGaaiilaiablAciljaacYcadaWdXbqaaiaadEhadaWgaaWcbaGaam4AaaqabaaabaGaamOCaaqaaiaadohaa0Gaey4kIipakiaacMcaaaa@4CD4@
[8.6.3]

als das Integral über w von r bis s.

Beachte:

  • Ist f:[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHcaa@3F2F@ eine "gewöhnliche" reellwertige Funktion, so ist ihr Graph die zum Weg

    w:t(t,f(t)),t[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaWG0bGaeSOPHeMaaiikaiaadshacaGGSaGaamOzaiaacIcacaWG0bGaaiykaiaacMcacaGGSaGaaGzbVlaadshacqGHiiIZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaaaa@498F@

    gehörige Kurve. Da X beliebig oft differenzierbar (also auch stetig und integrierbar) ist, hat w genau dieselben Qualtitäten wie f.

  • Oft stellt man sich unter einem Weg w die Bewegung eines Punktes auf seiner Bahnkurve vor. Das Intervall [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ ist dann der Zeitabschnitt in dem die Bewegung beobachtet wird. Die Schreibweise

    t( w 1 (t),, w k (t)),t[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiablAAiHjaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadshacaGGPaGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadshacaGGPaGaaiykaiaacYcacaaMf8UaamiDaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@4E24@

    (statt x( w 1 (x),, w k (x)),x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiablAAiHjaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhacaGGPaGaaiilaiablAciljaacYcacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadIhacaGGPaGaaiykaiaacYcacaaMf8UaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@4E34@ ) unterstützt diese Sichtweise. Ist w differenzierbar, so sehen wir in der Ableitung w (t) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4DayaafaGaaiikaiaadshacaGGPaaaaa@3943@ die Geschwindigkeit des Punkts zum Zeitpunkt t.

  • Zwischen einem Weg und seiner zugehörigen Kurve ist deutlich zu unterscheiden, denn verschiedene Wege können durchaus dieselbe Kurve besitzen. Man betrachte etwa die Wege

    w:t(t,0),t[0,1] v:t(1t,0),t[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadEhacaGG6aGaamiDaiablAAiHjaacIcacaWG0bGaaiilaiaaicdacaGGPaGaaiilaiaaywW7caWG0bGaeyicI4Saai4waiaaicdacaGGSaGaaGymaiaac2faaeaacaWG2bGaaiOoaiaadshacqWIMgsycaGGOaGaaGymaiabgkHiTiaadshacaGGSaGaaGimaiaacMcacaGGSaGaaGzbVlaadshacqGHiiIZcaGGBbGaaGimaiaacYcacaaIXaGaaiyxaaaaaaa@592F@

    Beide Wege haben als Kurve die Verbindungsstrecke von (0,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaicdacaGGSaGaaGimaiaacMcaaaa@3969@ und (1,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacaGGSaGaaGimaiaacMcaaaa@396A@ . Allerdings unterscheiden sie sich in ihrer Laufrichtung: w durchläuft diese Strecke von links nach rechts, v hingegen von rechts nach links.

    Auch beim mehrfachen Durchlaufen einer Kurve ändern sich die Wege, aber nicht die Kurve. Ersetzt man etwa im folgenden Beispiel das Intervall [0,2π] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGOmaiabec8aWjaac2faaaa@3B8F@ durch [0,2kπ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGOmaiaadUgacqaHapaCcaGGDbaaaa@3C7F@ , so wird die Ellipse k-mal durchlaufen. Ihre Gestalt ändert sich dabei natürlich nicht.

    Schließlich beachte man, dass auch beim Ausschneiden konstanter Abschnitte (also w (t)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4DayaafaGaaiikaiaadshacaGGPaGaeyypa0JaaGimaaaa@3B06@ für alle t[r,s][a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgIGiolaacUfacaWGYbGaaiilaiaadohacaGGDbGaeyOGIWSaai4waiaadggacaGGSaGaamOyaiaac2faaaa@4301@ ) die Kurve unverändert bleibt, der Weg selbst jedoch nicht.

     

Beispiel:  

  • Für a,b>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyOpa4JaaGimaaaa@3A2B@ ist die Ellipse

    t(acost,bsint),t[0,2π] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiablAAiHjaacIcacaWGHbGaeyyXICTaci4yaiaac+gacaGGZbGaamiDaiaacYcacaWGIbGaeyyXICTaci4CaiaacMgacaGGUbGaamiDaiaacMcacaGGSaGaaGzbVlaadshacqGHiiIZcaGGBbGaaGimaiaacYcacaaIYaGaeqiWdaNaaiyxaaaa@5303@

    ein geschlossener C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -Weg in 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3845@ . Die Skizze zeigt die zugehörige Kurve für a=2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaaikdaaaa@3894@ und b=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2da9iaaigdaaaa@3894@ .

     

  • Der C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -Weg

    t( t 2 1, t 3 t),t[ 2 , 2 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiablAAiHjaacIcacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaiaacYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamiDaiaacMcacaGGSaGaaGzbVlaadshacqGHiiIZcaGGBbGaeyOeI0YaaOaaaeaacaaIYaaaleqaaOGaaiilamaakaaabaGaaGOmaaWcbeaakiaac2faaaa@4BE8@

    ist nicht geschlossen. Da 1(0,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiablAAiHjaacIcacaaIWaGaaiilaiaaicdacaGGPaaaaa@3BDD@ und 1(0,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGymaiablAAiHjaacIcacaaIWaGaaiilaiaaicdacaGGPaaaaa@3CCA@ durchläuft die Kurve den Punkt (0,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaicdacaGGSaGaaGimaiaacMcaaaa@3969@ zweimal.

     

  • Lissajous-Kurven gehören zu C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -Wegen der Form

    t(asin(nt+c),bsint),t[0,2π] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiablAAiHjaacIcacaWGHbGaeyyXICTaci4CaiaacMgacaGGUbGaaiikaiaad6gacaWG0bGaey4kaSIaam4yaiaacMcacaGGSaGaamOyaiabgwSixlGacohacaGGPbGaaiOBaiaadshacaGGPaGaaiilaiaaywW7caWG0bGaeyicI4Saai4waiaaicdacaGGSaGaaGOmaiabec8aWjaac2faaaa@571E@

    Die Skizze zeigt die Lissajous-Kurve zu a=b=c=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaadkgacqGH9aqpcaWGJbGaeyypa0JaaGymaaaa@3C6E@ und n=3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaiodaaaa@38A2@ . Nicht alle Lissajou-Kurven sind geschlossen.

     

  • Die Spirale

     i

    Linke Maustaste: RotierenRechte Maustaste: Kontextmenü

    Spirale
    t(tcost,tsint,t),t[0,20] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiablAAiHjaacIcacaWG0bGaeyyXICTaci4yaiaac+gacaGGZbGaamiDaiaacYcacaWG0bGaeyyXICTaci4CaiaacMgacaGGUbGaamiDaiaacYcacaWG0bGaaiykaiaacYcacaaMf8UaamiDaiabgIGiolaacUfacaaIWaGaaiilaiaaikdacaaIWaGaaiyxaaaa@53CE@

    Display by JavaView

    und die geschlossene Kurve von Viviani

     i

    Linke Maustaste: RotierenRechte Maustaste: Kontextmenü

    Kurve von Viviani
    t(1+cost,sint,2sin( t 2 )),t[0,4π] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiablAAiHjaacIcacaaIXaGaey4kaSIaci4yaiaac+gacaGGZbGaamiDaiaacYcaciGGZbGaaiyAaiaac6gacaWG0bGaaiilaiaaikdacqGHflY1ciGGZbGaaiyAaiaac6gacaGGOaWaaSaaaeaacaWG0baabaGaaGOmaaaacaGGPaGaaiykaiaacYcacaaMf8UaamiDaiabgIGiolaacUfacaaIWaGaaiilaiaaisdacqaHapaCcaGGDbaaaa@57ED@

    Display by JavaView

    sind Beispiele für C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@3852@ -Kurven im 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3846@ .

  • Im Famous Curves Index findet man eine Vielzahl weiterer Kurven.

Für differenzierbare Wege gelten elementare Ableitungsregeln sowie eine Version des Mittelwertsatzes.

Bemerkung:  

  1. Sind v,w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaaiOoaiaacUfacaWGHbGaaiilaiaadkgacaGGDbGaeyOKH4QaeSyhHe6aaWbaaSqabeaacaWGRbaaaaaa@4208@ zwei differenzierbare Wege, so ist jede Linearkombination αv+βw:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaamODaiabgUcaRiabek7aIjaadEhacaGG6aGaai4waiaadggacaGGSaGaamOyaiaac2facqGHsgIRcqWIDesOdaahaaWcbeqaaiaadUgaaaaaaa@457A@ ebenfalls ein differenzierbarer Weg mit

(αv+βw ) =α v +β w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeg7aHjaadAhacqGHRaWkcqaHYoGycaWG3bGabiykayaafaGaeyypa0JaeqySdeMabmODayaafaGaey4kaSIaeqOSdiMabm4Dayaafaaaaa@44A1@
[8.6.4]
  1. Ist w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@405D@ ein differenzierbarer Weg, so gibt es zu je zwei verschiedenen Punkten r,s[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacYcacaWGZbGaeyicI4Saai4waiaadggacaGGSaGaamOyaiaac2faaaa@3E4C@ Zahlen t ˜ 1 ,, t ˜ k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaiaWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcaceWG0bGbaGaadaWgaaWcbaGaam4Aaaqabaaaaa@3C8B@   zwischen

     i

    also  t ˜ i ]r,s[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaiaWaaSbaaSqaaiaadMgaaeqaaOGaeyicI4SaaiyxaiaadkhacaGGSaGaam4CaiaacUfaaaa@3DFB@ , falls r<s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgYda8iaadohaaaa@38DF@

    und  t ˜ i ]s,r[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaiaWaaSbaaSqaaiaadMgaaeqaaOGaeyicI4SaaiyxaiaadohacaGGSaGaamOCaiaacUfaaaa@3DFB@ , falls s<r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgYda8iaadkhaaaa@38DF@ .

    r und s, so dass

w(s)=w(r)+(sr)( w 1 ( t ˜ 1 ),, w k ( t ˜ k )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacIcacaWGZbGaaiykaiabg2da9iaadEhacaGGOaGaamOCaiaacMcacqGHRaWkcaGGOaGaam4CaiabgkHiTiaadkhacaGGPaGaeyyXICTaaiikaiqadEhagaqbamaaBaaaleaacaaIXaaabeaakiaacIcaceWG0bGbaGaadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiilaiablAciljaacYcaceWG3bGbauaadaWgaaWcbaGaam4AaaqabaGccaGGOaGabmiDayaaiaWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaacMcaaaa@53C7@
[8.6.5]
  1. Ist w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@405D@ ein differenzierbarer Weg, so ist w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaafaaaaa@36F4@ integrierbar und

r s w =w(s)w(r) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaceWG3bGbauaaaSqaaiaadkhaaeaacaWGZbaaniabgUIiYdGccqGH9aqpcaWG3bGaaiikaiaadohacaGGPaGaeyOeI0Iaam4DaiaacIcacaWGYbGaaiykaaaa@43E2@
[8.6.6]

für alle r,s[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacYcacaWGZbGaeyicI4Saai4waiaadggacaGGSaGaamOyaiaac2faaaa@3E4C@ .

Beweis:  

1.   Alle Koordinatenfunktionen α v i +β w i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaamODamaaBaaaleaacaWGPbaabeaakiabgUcaRiabek7aIjaadEhadaWgaaWcbaGaamyAaaqabaaaaa@3E43@ sind nach Summen- und Faktorregel differenzierbar mit

(α v i +β w i ) =α v i '+β w i ' MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeg7aHjaadAhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHYoGycaWG3bWaaSbaaSqaaiaadMgaaeqaaOGabiykayaafaGaeyypa0JaeqySdeMaamODamaaBaaaleaacaWGPbaabeaakiaacEcacqGHRaWkcqaHYoGycaWG3bWaaSbaaSqaaiaadMgaaeqaaOGaai4jaaaa@4A6F@

2.   Wir betrachten wieder eine beliebige Koordinatenfunktion w i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaWGPbaabeaaaaa@3802@ und finden über den Mittelwertsatz [7.9.5] ein t ˜ i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaiaWaaSbaaSqaaiaadMgaaeqaaaaa@380E@ zwischen r und s, so dass

w i (s)= w i (r)+(sr) w i '( t ˜ i )= w i (r)+(sr) w i ( t ˜ i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaWGPbaabeaakiaacIcacaWGZbGaaiykaiabg2da9iaadEhadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamOCaiaacMcacqGHRaWkcaGGOaGaam4CaiabgkHiTiaadkhacaGGPaGaeyyXICTaam4DamaaBaaaleaacaWGPbaabeaakiaacEcacaGGOaGabmiDayaaiaWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaadEhadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamOCaiaacMcacqGHRaWkcaGGOaGaam4CaiabgkHiTiaadkhacaGGPaGaeyyXICTabm4DayaafaWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiqadshagaacamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@600C@

3.   Jede Koordinatenfunktion w i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaWGPbaabeaaaaa@3802@ ist trivialerweise eine Stammfunktion zu w i '= w i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaWGPbaabeaakiaacEcacqGH9aqpceWG3bGbauaadaWgaaWcbaGaamyAaaqabaaaaa@3BDF@ .

Integrale über integrierbare Wege erfüllen dieselben Rechenregeln und haben die gleichen Eigenschaften wie gewöhnliche Integrale auch.

Bemerkung:  Sind v,w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacYcacaWG3bGaaiOoaiaacUfacaWGHbGaaiilaiaadkgacaGGDbGaeyOKH4QaeSyhHe6aaWbaaSqabeaacaWGRbaaaaaa@4208@ zwei integrierbare Wege, so gilt für r,s,t[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacYcacaWGZbGaaiilaiaadshacqGHiiIZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaaaa@3FF5@ :

  1. r r w = 0 , r s w = s r w , r s w = r t w + t s w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaWG3baaleaacaWGYbaabaGaamOCaaqdcqGHRiI8aOGaeyypa0JaaGimaiaacYcacaaMf8+aa8qCaeaacaWG3baaleaacaWGYbaabaGaam4CaaqdcqGHRiI8aOGaeyypa0JaeyOeI0Yaa8qCaeaacaWG3baaleaacaWGZbaabaGaamOCaaqdcqGHRiI8aOGaaiilaiaaywW7daWdXbqaaiaadEhaaSqaaiaadkhaaeaacaWGZbaaniabgUIiYdGccqGH9aqpdaWdXbqaaiaadEhaaSqaaiaadkhaaeaacaWG0baaniabgUIiYdGccqGHRaWkdaWdXbqaaiaadEhaaSqaaiaadshaaeaacaWGZbaaniabgUIiYdaaaa@602F@

[8.6.7]
  1. r s αv+βw =α r s v +β r s w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacqaHXoqycaWG2bGaey4kaSIaeqOSdiMaam4DaaWcbaGaamOCaaqaaiaadohaa0Gaey4kIipakiabg2da9iabeg7aHnaapehabaGaamODaaWcbaGaamOCaaqaaiaadohaa0Gaey4kIipakiabgUcaRiabek7aInaapehabaGaam4DaaWcbaGaamOCaaqaaiaadohaa0Gaey4kIipaaaa@5040@

[8.6.8]
  1. Sind r und s verschieden, so gibt es Zahlen t ˜ 1 ,, t ˜ k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiDayaaiaWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcaceWG0bGbaGaadaWgaaWcbaGaam4Aaaqabaaaaa@3C8B@ zwischen r und s so dass

r s w =(sr)( w 1 ( t ˜ 1 ),, w k ( t ˜ k )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaWG3baaleaacaWGYbaabaGaam4CaaqdcqGHRiI8aOGaeyypa0JaaiikaiaadohacqGHsislcaWGYbGaaiykaiabgwSixlaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiqadshagaacamaaBaaaleaacaaIXaaabeaakiaacMcacaGGSaGaeSOjGSKaaiilaiaadEhadaWgaaWcbaGaam4AaaqabaGccaGGOaGabmiDayaaiaWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaacMcaaaa@5192@
[8.6.9]

Beweis:  In allen Fällen ist die Gleichheit koordinatenweise zu begründen. Dies gelingt in

1.    mit [8.2.2] - [8.2.4].

2.    mit [8.2.5]/[8.2.7].

3.    mit [8.2.8].

Für stetige Wege läßt sich auch die Abschätzung [8.2.11] übertragen. Die Formulierung wie auch der Beweis benutzen dabei das Skalarprodukt

 i

Mit dem Skalarprodukt

x·y i=1 k x i y i ,x,y k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabl+y6NjaadMhacqGH9aqpdaaeWbqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGHflY1caWG5bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aOGaaGPaVlaacYcacaaMf8UaamiEaiaacYcacaWG5bGaeyicI4SaeSyhHe6aaWbaaSqabeaacaWGRbaaaaaa@5245@

ist insbesondere die Länge  |x|= x·x = i=1 k x i 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacaGG8bGaeyypa0ZaaOaaaeaacaWG4bGaeS4JPFMaamiEaaWcbeaakiabg2da9maakaaabaWaaabCaeaacaWG4bWaa0baaSqaaiaadMgaaeaacaaIYaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aaWcbeaakiaaykW7aaa@49DE@ eines Vektors x k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@3AFA@ gegeben. Im Beweis benutzen wir die leicht einzusehende Identität

|x | 2 =x·x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacaGG8bWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamiEaiabl+y6NjaadIhaaaa@3F4C@ ,

sowie die Cauchy-Schwarzsche Ungleichung

|x·y||x||y| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacqWIpM+zcaWG5bGaaiiFaiabgsMiJkaacYhacaWG4bGaaiiFaiabgwSixlaacYhacaWG5bGaaiiFaaaa@4651@

Ihren Nachweis, sowie weitere Eigenschaften des Skalarprodukts, wie etwa die Dreiecksungleichung

|x+y||x|+|y| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadIhacqGHRaWkcaWG5bGaaiiFaiabgsMiJkaacYhacaWG4bGaaiiFaiabgUcaRiaacYhacaWG5bGaaiiFaaaa@435B@

findet man im Abschnitt 9.13.

des k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGRbaaaaaa@3879@ .

Bemerkung:  Für jeden stetigen Weg w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@405D@ ist

| a b w | a b |w| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFamaapehabaGaam4DaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiaacYhacqGHKjYOdaWdXbqaaiaacYhacaWG3bGaaiiFaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaaa@460F@
[8.6.10]

Beweis:  Man beachte zunächst, dass die stetigen Wege w und |w| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadEhacaGG8baaaa@38E8@ auch integrierbar sind. Mit der Abkürzung

c a b w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9maapehabaGaam4DaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaaa@3D0C@ ,  also  c i = a b w i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaWGPbaabeaakiabg2da9maapehabaGaam4DamaaBaaaleaacaWGPbaabeaaaeaacaWGHbaabaGaamOyaaqdcqGHRiI8aaaa@3F3F@

wird die folgende Rechnung übersichtlicher. Ist |c|=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadogacaGG8bGaeyypa0JaaGimaaaa@3A94@ , ist nichts zu zeigen, denn die rechte Seite von [8.6.10] ist stets positiv. Sei also |c|0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadogacaGG8bGaeyiyIKRaaGimaaaa@3B55@ . Mit der Cauchy-Schwarzschen Ungleichung und der Monotonie des Integrals [8.2.10] erhalten wir jetzt die folgende Abschätzung

|c|| a b w |=|c | 2 =c·c= i=1 k c i a b w i = a b i=1 k c i w i = a b c·w a b |c·w| a b |c||w| =|c| a b |w| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaacYhacaWGJbGaaiiFaiabgwSixlaacYhadaWdXbqaaiaadEhaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdGccaGG8bGaeyypa0JaaiiFaiaadogacaGG8bWaaWbaaSqabeaacaaIYaaaaOGaeyypa0Jaam4yaiabl+y6NjaadogacqGH9aqpdaaeWbqaaiaadogadaWgaaWcbaGaamyAaaqabaGccqGHflY1daWdXbqaaiaadEhadaWgaaWcbaGaamyAaaqabaaabaGaamyyaaqaaiaadkgaa0Gaey4kIipaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aaGcbaGaeyypa0Zaa8qCaeaadaaeWbqaaiaadogadaWgaaWcbaGaamyAaaqabaGccqGHflY1caWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaOqaaaqaaiabg2da9maapehabaGaam4yaiabl+y6NjaadEhaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdGccqGHKjYOdaWdXbqaaiaacYhacaWGJbGaeS4JPFMaam4DaiaacYhaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdGccqGHKjYOdaWdXbqaaiaacYhacaWGJbGaaiiFaiabgwSixlaacYhacaWG3bGaaiiFaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiabg2da9iaacYhacaWGJbGaaiiFamaapehabaGaaiiFaiaadEhacaGG8baaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aaaaaaa@9EC6@

Wir wollen nun die Länge eines stetigen Weges w ermitteln. Bei der Flächenmessung haben wie die anstehende Fläche durch elementare Flächen (Vereinigung von Rechteckstreifen) mit bekanntem Maß approximiert. Hier nun werden wir analog w durch elementare Wege, nämlich die Vereinigung von Strecken approximieren.

Zunächst treffen wir einige technische Vorbereitungen: Unter einer Zerlegung Z des Intervalls [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ verstehen wir eine endliche Sequenz ( t 0 ,, t n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadshadaWgaaWcbaGaaGimaaqabaGccaGGSaGaeSOjGSKaaiilaiaadshadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3DD2@ in [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ , n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaaigdaaaa@3960@ , so dass

a= t 0 < t 1 << t n1 < t n =b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaadshadaWgaaWcbaGaaGimaaqabaGccqGH8aapcaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaeyipaWJaeSOjGSKaeyipaWJaamiDamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGH8aapcaWG0bWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0JaamOyaaaa@48B6@

Die Zahl max{ t 1 t 0 ,, t n t n1 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacggacaGG4bGaai4EaiaadshadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG0bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGG9baaaa@48DB@ nennen wir die Feinheit von Z.

Ist w ein vorgegebener Weg, so zeichnet eine Zerlegung Z  n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@387C@ Punkte w( t 0 ),,w( t n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGaam4DaiaacIcacaWG0bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@4123@ in w aus, deren fortlaufende Verbindungstrecken sich zu einem Polygonzug  p Z MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaWGAbaabeaaaaa@37EC@ zusammensetzen:

p Z (t)=w( t i1 )+ t t i1 t i t i1 (w( t i )w( t i1 )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaWGAbaabeaakiaacIcacaWG0bGaaiykaiabg2da9iaadEhacaGGOaGaamiDamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaGGPaGaey4kaSYaaSaaaeaacaWG0bGaeyOeI0IaamiDamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaaaaOGaaiikaiaadEhacaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaacMcacqGHsislcaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykaiaacMcaaaa@5BA6@ ,  falls t[ t i1 , t i ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgIGiolaacUfacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacYcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiyxaaaa@40BB@
[8.6.11]

Alle Polygonzüge p Z MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBaaaleaacaWGAbaabeaaaaa@37EC@ sind Wege mit Anfangspunkt w(a)=w( t 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacIcacaWGHbGaaiykaiabg2da9iaadEhacaGGOaGaamiDamaaBaaaleaacaaIWaaabeaakiaacMcaaaa@3E6B@ und Endpunkt w(b)=w( t n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacIcacaWGIbGaaiykaiabg2da9iaadEhacaGGOaGaamiDamaaBaaaleaacaWGUbaabeaakiaacMcaaaa@3EA5@ . Sie approximieren einen stetigen Weg w im folgenden Sinn:

Bemerkung:  Ist w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@405D@ ein stetiger Weg, so gibt es zu jedem ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3955@ ein δ>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaeyOpa4JaaGimaaaa@3953@ , so dass für jede Zerlegung Z mit einer Feinheit kleiner δ gilt

|w(t) p Z (t)|<ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadEhacaGGOaGaamiDaiaacMcacqGHsislcaWGWbWaaSbaaSqaaiaadQfaaeqaaOGaaiikaiaadshacaGGPaGaaiiFaiabgYda8iabew7aLbaa@432E@   für alle t[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CA6@ .
[8.6.12]

Beweis:  Sei ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3955@ gegeben. Da jede der stetigen Koordinatenfunktion w j MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaWGQbaabeaaaaa@3803@ auf dem abgeschlossenen Intervall [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ auch gleichmäßig stetig ist (siehe [6.5.5]), gibt es zu ε 2 k >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaH1oqzaeaacaaIYaWaaOaaaeaacaWGRbaaleqaaaaakiabg6da+iaaicdaaaa@3B36@ ein δ j >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadQgaaeqaaOGaeyOpa4JaaGimaaaa@3A78@ , so dass

s,t[a,b]|st|< δ j | w j (s) w j (t) | 2 < ε 2 4k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacYcacaWG0bGaeyicI4Saai4waiaadggacaGGSaGaamOyaiaac2facaaMf8Uaey4jIKTaaGzbVlaacYhacaWGZbGaeyOeI0IaamiDaiaacYhacqGH8aapcqaH0oazdaWgaaWcbaGaamOAaaqabaGccaaMf8UaeyO0H4TaaGzbVlaacYhacaWG3bWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadohacaGGPaGaeyOeI0Iaam4DamaaBaaaleaacaWGQbaabeaakiaacIcacaWG0bGaaiykaiaacYhadaahaaWcbeqaaiaaikdaaaGccqGH8aapdaWcaaqaaiabew7aLnaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdacaWGRbaaaaaa@635E@

Mit δmin{ δ 1 ,, δ k } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaeyypa0JaciyBaiaacMgacaGGUbGaai4Eaiabes7aKnaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaeqiTdq2aaSbaaSqaaiaadUgaaeqaaOGaaiyFaaaa@454C@ hat man daher für s,t[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacYcacaWG0bGaeyicI4Saai4waiaadggacaGGSaGaamOyaiaac2faaaa@3E4E@ mit |st|<δ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadohacqGHsislcaWG0bGaaiiFaiabgYda8iabes7aKbaa@3D73@

|w(s)w(t)|= j=1 k | w j (s) w j (t) | 2 < k ε 2 4k = ε 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadEhacaGGOaGaam4CaiaacMcacqGHsislcaWG3bGaaiikaiaadshacaGGPaGaaiiFaiabg2da9maakaaabaWaaabCaeaacaGG8bGaam4DamaaBaaaleaacaWGQbaabeaakiaacIcacaWGZbGaaiykaiabgkHiTiaadEhadaWgaaWcbaGaamOAaaqabaGccaGGOaGaamiDaiaacMcacaGG8bWaaWbaaSqabeaacaaIYaaaaaqaaiaadQgacqGH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aaWcbeaakiabgYda8maakaaabaGaam4AamaalaaabaGaeqyTdu2aaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiaadUgaaaaaleqaaOGaeyypa0ZaaSaaaeaacqaH1oqzaeaacaaIYaaaaaaa@5D1B@ [1]

Sei jetzt Z=( t 0 ,, t n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG0bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@3FB7@ eine beliebige Zerlegung mit einer Feinheit kleiner als δ. Für ein t[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CA6@ , etwa t[ t i1 , t i ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgIGiolaacUfacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacYcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiyxaaaa@40BB@ , ist dann

|t t i1 |<δ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadshacqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacYhacqGH8aapcqaH0oazaaa@4040@  und  | t i t i1 |<δ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacYhacqGH8aapcqaH0oazaaa@4164@ .

Über die Darstellung [8.6.11] und die Abschätzung [1] erhalten wir mit der Dreiecksungleichung nun

|w(t) p Z (t)| |w(t)w( t i1 )|+|w( t i1 ) p Z (t)| =|w(t)w( t i1 )|+ | t t i1 t i t i1 | 1 |w( t i )w( t i1 )| < ε 2 + ε 2 =ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaacYhacaWG3bGaaiikaiaadshacaGGPaGaeyOeI0IaamiCamaaBaaaleaacaWGAbaabeaakiaacIcacaWG0bGaaiykaiaacYhaaeaacqGHKjYOcaGG8bGaam4DaiaacIcacaWG0bGaaiykaiabgkHiTiaadEhacaGGOaGaamiDamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaGGPaGaaiiFaiabgUcaRiaacYhacaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykaiabgkHiTiaadchadaWgaaWcbaGaamOwaaqabaGccaGGOaGaamiDaiaacMcacaGG8baabaaabaGaeyypa0JaaiiFaiaadEhacaGGOaGaamiDaiaacMcacqGHsislcaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykaiaacYhacqGHRaWkdaagaaqaaiaacYhadaWcaaqaaiaadshacqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaaaOqaaiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaaaaGccaGG8baaleaacqGHKjYOcaaIXaaakiaawIJ=aiabgwSixlaacYhacaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyOeI0Iaam4DaiaacIcacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcacaGG8baabaaabaGaeyipaWZaaSaaaeaacqaH1oqzaeaacaaIYaaaaiabgUcaRmaalaaabaGaeqyTdugabaGaaGOmaaaacqGH9aqpcqaH1oqzaaaaaa@9757@

Die Länge L( p Z ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWGWbWaaSbaaSqaaiaadQfaaeqaaOGaaiykaaaa@3A20@ eines solchen Polygonzugs ermitteln wir elementar, indem wir die Längen der Verbindungstrecken aufsummieren. Wir setzen also

L( p Z )= i=1 n |w( t i )w( t i1 )| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWGWbWaaSbaaSqaaiaadQfaaeqaaOGaaiykaiabg2da9maaqahabaGaaiiFaiaadEhacaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaacMcacqGHsislcaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykaiaacYhaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaa@4E83@
[8.6.13]

Da die Verbindungsstrecke der kürzeste Weg von w( t i1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacIcacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcaaaa@3C06@ nach w( t i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaaa@3A5E@ ist, erwarten wir, dass die Länge von w für jede Zerlegung Z oberhalb von L( p Z ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWGWbWaaSbaaSqaaiaadQfaaeqaaOGaaiykaaaa@3A20@ liegt. Wegen [8.6.12] ist daher das Supremum

 i

Es sei an das Vollständigkeitsaxiom erinnert:
Jede nicht-leere, beschränkte Teilmenge M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlabl2riHcaa@3A2A@ besitzt in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@375C@ eine kleinste obere Schranke, ihr Supremum (in Zeichen supM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacwhacaGGWbGaamytaaaa@39A4@ ).

Eine obere Schranke s von M ist genau dann gleich supM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacwhacaGGWbGaamytaaaa@39A4@ , wenn für jedes ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3955@ die Zahl sε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgkHiTiabew7aLbaa@3978@ keine obere Schranke von M ist.

der Menge {L( p Z )|Zist Zerlegung von[a,b]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadYeacaGGOaGaamiCamaaBaaaleaacaWGAbaabeaakiaacMcacaGG8bGaamOwaiaabMgacaqGZbGaaeiDaiaabccacaqGAbGaaeyzaiaabkhacaqGSbGaaeyzaiaabEgacaqG1bGaaeOBaiaabEgacaqGGaGaaeODaiaab+gacaqGUbGaai4waiaadggacaGGSaGaamOyaiaac2facaGG9baaaa@5185@ ein guter Kandidat für die zu definierende Weglänge.

Die nebenstehende Abbildung zeigt einen Auschnitt eines Kartesischen Blatts von René Descartes, nämlich den Weg  t( 12t 1+ t 3 , 12 t 2 1+ t 3 ),  t[0.4,10] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiablAAiHjaacIcadaWcaaqaaiaaigdacaaIYaGaamiDaaqaaiaaigdacqGHRaWkcaWG0bWaaWbaaSqabeaacaaIZaaaaaaakiaacYcadaWcaaqaaiaaigdacaaIYaGaamiDamaaCaaaleqabaGaaGOmaaaaaOqaaiaaigdacqGHRaWkcaWG0bWaaWbaaSqabeaacaaIZaaaaaaakiaacMcacaaMc8UaaiilaiaaywW7caWG0bGaeyicI4Saai4waiabgkHiTiaaicdacaGGUaGaaGinaiaacYcacaaIXaGaaGimaiaac2faaaa@54F0@ . Für ein dreidimensionales Beispiel kommen wir auf die Spirale

 i

Linke Maustaste: RotierenRechte Maustaste: Kontextmenü

Spirale
t(tcost,tsint,t),t[0,20] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiablAAiHjaacIcacaWG0bGaeyyXICTaci4yaiaac+gacaGGZbGaamiDaiaacYcacaWG0bGaeyyXICTaci4CaiaacMgacaGGUbGaamiDaiaacYcacaWG0bGaaiykaiaacYcacaaMf8UaamiDaiabgIGiolaacUfacaaIWaGaaiilaiaaikdacaaIWaGaaiyxaaaa@53CE@

Display by JavaView

aus dem Eingangsbeispiel zurück.

Definition:  Ein stetiger Weg w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@405D@ heißt rektifizierbar oder von endlicher Länge, falls die Menge {L( p Z )|Z  ist Zerlegung von  [a,b]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadYeacaGGOaGaamiCamaaBaaaleaacaWGAbaabeaakiaacMcacaGG8bGaamOwaiaabMgacaqGZbGaaeiDaiaabccacaqGAbGaaeyzaiaabkhacaqGSbGaaeyzaiaabEgacaqG1bGaaeOBaiaabEgacaqGGaGaaeODaiaab+gacaqGUbGaai4waiaadggacaGGSaGaamOyaiaac2facaGG9baaaa@5185@ beschränkt ist. In diesem Fall nennen wir die Zahl

L(w)sup{L( p Z )|Zist Zerlegung von[a,b]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaaiykaiabg2da9iGacohacaGG1bGaaiiCaiaacUhacaWGmbGaaiikaiaadchadaWgaaWcbaGaamOwaaqabaGccaGGPaGaaiiFaiaadQfacaqGPbGaae4CaiaabshacaqGGaGaaeOwaiaabwgacaqGYbGaaeiBaiaabwgacaqGNbGaaeyDaiaab6gacaqGNbGaaeiiaiaabAhacaqGVbGaaeOBaiaacUfacaWGHbGaaiilaiaadkgacaGGDbGaaiyFaaaa@5897@
[8.6.14]

die Länge von w.

Interessanterweise sind glatte Wege stets rektifizierbar, wobei sich alle Längen L( p Z ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWGWbWaaSbaaSqaaiaadQfaaeqaaOGaaiykaaaa@3A20@ durch das Integral über die Länge der Ableitung w MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaafaaaaa@36F4@ abschätzen lassen. Allerdings gibt es auch nicht glatte Wege, die eine endliche Länge besitzen, wie etwa das Beispiel  w:t(t,|t|),   t[1,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaWG0bGaeSOPHeMaaiikaiaadshacaGGSaGaaiiFaiaadshacaGG8bGaaiykaiaacYcacaaMe8UaaGjbVlaadshacqGHiiIZcaGGBbGaeyOeI0IaaGymaiaacYcacqGHsislcaaIXaGaaiyxaaaa@4C5A@

 i

Ist Z=( t 0 ,, t n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG0bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@3FB7@ eine Zerlegung von [1,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTiaaigdacaGGSaGaaGymaiaac2faaaa@3ABF@ , so gibt es ein k, so dass t k 0< t k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBaaaleaacaWGRbaabeaakiabgsMiJkaaicdacqGH8aapcaWG0bWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaaaaa@3F30@ . Man weiß daher:

(| t i || t i1 |) 2 ={ ( t i t i1 ) 2 ,  falls  i>k+1 ( t i + t i1 ) 2 ,  falls  ik MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacYhacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiiFaiabgkHiTiaacYhacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacYhacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaiqaaeaafaqaaeGabaaabaGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaGccaqGSaGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGPbGaeyOpa4Jaam4AaiabgUcaRiaaigdaaeaacaGGOaGaeyOeI0IaamiDamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiaabYcacaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaadMgacqGHKjYOcaWGRbaaaaGaay5Eaaaaaa@6B01@

also (| t i || t i1 |) 2 = ( t i t i1 ) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacYhacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiiFaiabgkHiTiaacYhacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacYhacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@4D1E@ , und damit

|w( t i )w( t i1 )|= ( t i t i1 ) 2 + (| t i || t i1 |) 2 = 2 ( t i t i1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadEhacaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaacMcacqGHsislcaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykaiaacYhacqGH9aqpdaGcaaqaaiaacIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiikaiaacYhacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiiFaiabgkHiTiaacYhacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacYhacaGGPaWaaWbaaSqabeaacaaIYaaaaaqabaGccqGH9aqpdaGcaaqaaiaaikdaaSqabaGccaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykaaaa@65A2@

für alle ik+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgcMi5kaadUgacqGHRaWkcaaIXaaaaa@3B2E@ . Mit

|w( t k+1 )w(0)|= t k+1 2 +| t k+1 | 2 = 2 | t k+1 |= 2 t k+1 |w(0)w( t k )|= t k 2 +| t k | 2 = 2 | t k |= 2 t k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaacYhacaWG3bGaaiikaiaadshadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaaiykaiabgkHiTiaadEhacaGGOaGaaGimaiaacMcacaGG8bGaeyypa0ZaaOaaaeaacaWG0bWaa0baaSqaaiaadUgacqGHRaWkcaaIXaaabaGaaGOmaaaakiabgUcaRiaacYhacaWG0bWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiaacYhadaahaaWcbeqaaiaaikdaaaaabeaakiabg2da9maakaaabaGaaGOmaaWcbeaakiaacYhacaWG0bWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiaacYhacqGH9aqpdaGcaaqaaiaaikdaaSqabaGccaaMc8UaamiDamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaaakeaacaGG8bGaam4DaiaacIcacaaIWaGaaiykaiabgkHiTiaadEhacaGGOaGaamiDamaaBaaaleaacaWGRbaabeaakiaacMcacaGG8bGaeyypa0ZaaOaaaeaacaWG0bWaa0baaSqaaiaadUgaaeaacaaIYaaaaOGaey4kaSIaaiiFaiaadshadaWgaaWcbaGaam4AaaqabaGccaGG8bWaaWbaaSqabeaacaaIYaaaaaqabaGccqGH9aqpdaGcaaqaaiaaikdaaSqabaGccaGG8bGaamiDamaaBaaaleaacaWGRbaabeaakiaacYhacqGH9aqpcqGHsisldaGcaaqaaiaaikdaaSqabaGccaaMc8UaamiDamaaBaaaleaacaWGRbaabeaaaaaaaa@7EC6@

können wir L( p Z ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWGWbWaaSbaaSqaaiaadQfaaeqaaOGaaiykaaaa@3A20@ nun folgendermaßen abschätzen:

L( p Z ) = i=1 n |w( t i )w( t i1 )| i=1 k |w( t i )w( t i1 )| +|w( t k+1 )w(0)|+|w(0)w( t k )| + i=k+2 n |w( t i )w( t i1 )| = 2 ( i=1 k t i t i1 + t k+1 t k + i=k+2 n t i t i1 ) = 2 ( t n t 0 )=2 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyGaaaaabaGaamitaiaacIcacaWGWbWaaSbaaSqaaiaadQfaaeqaaOGaaiykaaqaaiabg2da9maaqahabaGaaiiFaiaadEhacaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaacMcacqGHsislcaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykaiaacYhaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGcbaaabaGaeyizIm6aaabCaeaacaGG8bGaam4DaiaacIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabgkHiTiaadEhacaGGOaGaamiDamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaGGPaGaaiiFaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdaakeaaaeaacqGHRaWkcaGG8bGaam4DaiaacIcacaWG0bWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiaacMcacqGHsislcaWG3bGaaiikaiaaicdacaGGPaGaaiiFaiabgUcaRiaacYhacaWG3bGaaiikaiaaicdacaGGPaGaeyOeI0Iaam4DaiaacIcacaWG0bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaacYhaaeaaaeaacqGHRaWkdaaeWbqaaiaacYhacaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyOeI0Iaam4DaiaacIcacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcacaGG8baaleaacaWGPbGaeyypa0Jaam4AaiabgUcaRiaaikdaaeaacaWGUbaaniabggHiLdaakeaaaeaacqGH9aqpdaGcaaqaaiaaikdaaSqabaGccaGGOaWaaabCaeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdGccqGHRaWkcaWG0bWaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakiabgkHiTiaadshadaWgaaWcbaGaam4AaaqabaGccqGHRaWkdaaeWbqaaiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaaaeaacaWGPbGaeyypa0Jaam4AaiabgUcaRiaaikdaaeaacaWGUbaaniabggHiLdGccaGGPaaabaaabaGaeyypa0ZaaOaaaeaacaaIYaaaleqaaOGaaiikaiaadshadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiabg2da9iaaikdadaGcaaqaaiaaikdaaSqabaaaaaaa@C3DB@
  zeigt.

Bemerkung:  Ist w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@405D@ ein glatter Weg, so gilt für jede Zerlegung Z von [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ :

L( p Z ) a b | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWGWbWaaSbaaSqaaiaadQfaaeqaaOGaaiykaiabgsMiJoaapehabaGaaiiFaiqadEhagaqbaiaacYhaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdaaaa@4313@
[8.6.15]

w ist damit rektifizierbar.

Beweis:  Mit der Darstellung [8.6.6], der Abschätzung [8.6.10] und der Zerlegungseigenschaft [8.6.7] erhalten wir für eine beliebige Zerlegung Z=( t 0 ,, t n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG0bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@3FB7@ :

L( p Z )= i=1 n |w( t i )w( t i1 )| = i=1 n | t i1 t i w | i=1 n t i1 t i | w | = a b | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWGWbWaaSbaaSqaaiaadQfaaeqaaOGaaiykaiabg2da9maaqahabaGaaiiFaiaadEhacaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaacMcacqGHsislcaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykaiaacYhaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaeyypa0ZaaabCaeaacaGG8bWaa8qCaeaaceWG3bGbauaaaSqaaiaadshadaWgaaadbaGaamyAaiabgkHiTiaaigdaaeqaaaWcbaGaamiDamaaBaaameaacaWGPbaabeaaa0Gaey4kIipakiaacYhaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaeyizIm6aaabCaeaadaWdXbqaaiaacYhaceWG3bGbauaaaSqaaiaadshadaWgaaadbaGaamyAaiabgkHiTiaaigdaaeqaaaWcbaGaamiDamaaBaaameaacaWGPbaabeaaa0Gaey4kIipakiaacYhaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaeyypa0Zaa8qCaeaacaGG8bGabm4DayaafaaaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOGaaiiFaaaa@7C1E@ .

[8.6.15] läßt sich deutlich verschärfen: Das Integral über | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadEhagaqbaiaacYhaaaa@38F4@ ist nicht nur irgendeine obere Schranke der Menge {L( p Z )|Zist Zerlegung von[a,b]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadYeacaGGOaGaamiCamaaBaaaleaacaWGAbaabeaakiaacMcacaGG8bGaamOwaiaabMgacaqGZbGaaeiDaiaabccacaqGAbGaaeyzaiaabkhacaqGSbGaaeyzaiaabEgacaqG1bGaaeOBaiaabEgacaqGGaGaaeODaiaab+gacaqGUbGaai4waiaadggacaGGSaGaamOyaiaac2facaGG9baaaa@5185@ , sondern ihre kleinste und damit ihr Supremum.

Bemerkung:  Für jeden glatten Weg w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@405D@ gilt:

L(w)= a b | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaaiykaiabg2da9maapehabaGaaiiFaiqadEhagaqbaiaacYhaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdaaaa@4156@
[8.6.16]

Beweis:  Nach [8.6.15] ist a b | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaGG8bGabm4DayaafaGaaiiFaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaaa@3D2A@ eine obere Schranke von {L( p Z )|Z  ist Zerlegung von  [a,b]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadYeacaGGOaGaamiCamaaBaaaleaacaWGAbaabeaakiaacMcacaGG8bGaamOwaiaabMgacaqGZbGaaeiDaiaabccacaqGAbGaaeyzaiaabkhacaqGSbGaaeyzaiaabEgacaqG1bGaaeOBaiaabEgacaqGGaGaaeODaiaab+gacaqGUbGaai4waiaadggacaGGSaGaamOyaiaac2facaGG9baaaa@5185@ . Es reicht daher, zu jedem ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3955@ eine Zerlegung Z zu finden, so dass

a b | w | εL( p Z ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaGG8bGabm4DayaafaGaaiiFaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiabgkHiTiabew7aLjabgsMiJkaadYeacaGGOaGaamiCamaaBaaaleaacaWGAbaabeaakiaacMcaaaa@45B1@ .

Da die Koordinatenfunktionen w j MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4DayaafaWaaSbaaSqaaiaadQgaaeqaaaaa@380F@ stetig differenzierbar sind, sind die Funktionen ( w j ) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiqadEhagaqbamaaBaaaleaacaWGQbaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@3A5B@ stetig, auf dem geschlossenen Intervall [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ also auch gleichmäßig stetig. Zu ε ¯ ε 2 k (ba) 2 >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaebacqGH9aqpdaWcaaqaaiabew7aLnaaCaaaleqabaGaaGOmaaaaaOqaaiaadUgacaGGOaGaamOyaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaaIYaaaaaaakiabg6da+iaaicdaaaa@4313@   gibt es daher ein δ j >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadQgaaeqaaOGaeyOpa4JaaGimaaaa@3A78@ so dass für alle s,t[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacYcacaWG0bGaeyicI4Saai4waiaadggacaGGSaGaamOyaiaac2faaaa@3E4E@ gilt

|ts|< δ j ( w j (t)) 2 ( w j (s)) 2 | ( w j (t)) 2 ( w j (s)) 2 |< ε ¯ ( w j (t)) 2 < ( w j (s)) 2 + ε ¯ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaacYhacaWG0bGaeyOeI0Iaam4CaiaacYhacqGH8aapcqaH0oazdaWgaaWcbaGaamOAaaqabaaakeaacaaMf8UaeyO0H4TaaGzbVlaacIcaceWG3bGbauaadaWgaaWcbaGaamOAaaqabaGccaGGOaGaamiDaiaacMcacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaiikaiqadEhagaqbamaaBaaaleaacaWGQbaabeaakiaacIcacaWGZbGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaGG8bGaaiikaiqadEhagaqbamaaBaaaleaacaWGQbaabeaakiaacIcacaWG0bGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaGGOaGabm4DayaafaWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadohacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaakiaacYhacqGH8aapcuaH1oqzgaqeaaqaaaqaaiaaywW7cqGHshI3caaMf8UaaiikaiqadEhagaqbamaaBaaaleaacaWGQbaabeaakiaacIcacaWG0bGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGH8aapcaGGOaGabm4DayaafaWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiaadohacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiqbew7aLzaaraaaaaaa@7E4F@ [2]

Man wähle jetzt eine Zerlegung Z=( t 0 ,, t n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWG0bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@3FB7@ , deren Feinheit kleiner als δmin{ δ 1 ,, δ k } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaeyypa0JaciyBaiaacMgacaGGUbGaai4Eaiabes7aKnaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaeqiTdq2aaSbaaSqaaiaadUgaaeqaaOGaaiyFaaaa@454C@ ist. Dann gibt es nach [8.2.8] bzw. [8.6.5] Zahlen

  • y ˜ i ] t i1 , t i [ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaiaWaaSbaaSqaaiaadMgaaeqaaOGaeyicI4SaaiyxaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiilaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGBbaaaa@41F3@  so dass  a b | w | = i=1 n t i1 t i | w | = i=1 n ( t i t i1 )| w ( y ˜ i )| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaGG8bGabm4DayaafaGaaiiFaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiabg2da9maaqahabaWaa8qCaeaacaGG8bGabm4DayaafaGaaiiFaaWcbaGaamiDamaaBaaameaacaWGPbGaeyOeI0IaaGymaaqabaaaleaacaWG0bWaaSbaaWqaaiaadMgaaeqaaaqdcqGHRiI8aaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccqGH9aqpdaaeWbqaaiaacIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaGGPaGaeyyXICTaaiiFaiqadEhagaqbaiaacIcaceWG5bGbaGaadaWgaaWcbaGaamyAaaqabaGccaGGPaGaaiiFaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@6762@ [3]

  • x ˜ 1,i ,, x ˜ k,i ] t i1 , t i [ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaWaaSbaaSqaaiaaigdacaGGSaGaamyAaaqabaGccaGGSaGaeSOjGSKaaiilaiqadIhagaacamaaBaaaleaacaWGRbGaaiilaiaadMgaaeqaaOGaeyicI4SaaiyxaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiilaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGBbaaaa@49AF@  so dass 

    L( p Z )= i=1 n |w( t i )w( t i1 )| = i=1 n ( t i t i1 )| w 1 ( x ˜ 1,i ),, w k ( x ˜ k,i )| = i=1 n ( t i t i1 ) j=1 k ( w j ( x ˜ j,i )) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadYeacaGGOaGaamiCamaaBaaaleaacaWGAbaabeaakiaacMcacqGH9aqpdaaeWbqaaiaacYhacaWG3bGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyOeI0Iaam4DaiaacIcacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcacaGG8baaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOqaaiabg2da9maaqahabaGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcacqGHflY1caGG8bGabm4DayaafaWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiqadIhagaacamaaBaaaleaacaaIXaGaaiilaiaadMgaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGabm4DayaafaWaaSbaaSqaaiaadUgaaeqaaOGaaiikaiqadIhagaacamaaBaaaleaacaWGRbGaaiilaiaadMgaaeqaaOGaaiykaiaacYhaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGcbaaabaGaeyypa0ZaaabCaeaacaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaiykamaakaaabaWaaabCaeaacaGGOaGabm4DayaafaWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiqadIhagaacamaaBaaaleaacaWGQbGaaiilaiaadMgaaeqaaOGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaaabaGaamOAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdaaleqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaaaaa@9158@ [4]

Da  y ˜ i , x ˜ 1,i ,, x ˜ k,i ] t i1 , t i [ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaiaWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiqadIhagaacamaaBaaaleaacaaIXaGaaiilaiaadMgaaeqaaOGaaiilaiablAciljaacYcaceWG4bGbaGaadaWgaaWcbaGaam4AaiaacYcacaWGPbaabeaakiabgIGiolaac2facaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacYcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaai4waaaa@4C90@ hat man für alle i

| y ˜ i x ˜ j,i |<δ δ j MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadMhagaacamaaBaaaleaacaWGPbaabeaakiabgkHiTiqadIhagaacamaaBaaaleaacaWGQbGaaiilaiaadMgaaeqaaOGaaiiFaiabgYda8iabes7aKjabgsMiJkabes7aKnaaBaaaleaacaWGQbaabeaaaaa@45F7@ .

Mit [2] weiß man daher ( w j ( y ˜ i )) 2 < ( w j ( x ˜ j,i )) 2 + ε ¯ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiqadEhagaqbamaaBaaaleaacaWGQbaabeaakiaacIcaceWG5bGbaGaadaWgaaWcbaGaamyAaaqabaGccaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgYda8iaacIcaceWG3bGbauaadaWgaaWcbaGaamOAaaqabaGccaGGOaGabmiEayaaiaWaaSbaaSqaaiaadQgacaGGSaGaamyAaaqabaGccaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiqbew7aLzaaraaaaa@4B35@ , so dass wir gemäß [3] und [4] das Integral über | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadEhagaqbaiaacYhaaaa@38F1@ folgendermaßen abschätzen können (beachte dabei: x+y x + y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaWG4bGaey4kaSIaamyEaaWcbeaakiabgsMiJoaakaaabaGaamiEaaWcbeaakiabgUcaRmaakaaabaGaamyEaaWcbeaaaaa@3DC0@ für positive x, y):

a b | w | = i=1 n ( t i t i1 ) j=1 k ( w j ( y ˜ i )) 2 < i=1 n ( t i t i1 ) j=1 k ( ( w j ( x ˜ j,i )) 2 + ε ¯ ) i=1 n ( t i t i1 ) j=1 k ( w j ( x ˜ j,i )) 2 + i=1 n ( t i t i1 ) k ε ¯ =L( p Z )+(ba) k ε ¯ =L( p Z )+ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaWaa8qCaeaacaGG8bGabm4DayaafaGaaiiFaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiabg2da9maaqahabaGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcadaGcaaqaamaaqahabaGaaiikaiqadEhagaqbamaaBaaaleaacaWGQbaabeaakiaacIcaceWG5bGbaGaadaWgaaWcbaGaamyAaaqabaGccaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaaaeaacaWGQbGaeyypa0JaaGymaaqaaiaadUgaa0GaeyyeIuoaaSqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaakeaacqGH8aapdaaeWbqaaiaacIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaGGPaWaaOaaaeaadaaeWbqaaiaacIcacaGGOaGabm4DayaafaWaaSbaaSqaaiaadQgaaeqaaOGaaiikaiqadIhagaacamaaBaaaleaacaWGQbGaaiilaiaadMgaaeqaaOGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcuaH1oqzgaqeaiaacMcaaSqaaiaadQgacqGH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aaWcbeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOqaaaqaaiabgsMiJoaaqahabaGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcadaGcaaqaamaaqahabaGaaiikaiqadEhagaqbamaaBaaaleaacaWGQbaabeaakiaacIcaceWG4bGbaGaadaWgaaWcbaGaamOAaiaacYcacaWGPbaabeaakiaacMcacaGGPaWaaWbaaSqabeaacaaIYaaaaaqaaiaadQgacqGH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aaWcbeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRmaaqahabaGaaiikaiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaacMcadaGcaaqaaiaadUgacuaH1oqzgaqeaaWcbeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOqaaaqaaiabg2da9iaadYeacaGGOaGaamiCamaaBaaaleaacaWGAbaabeaakiaacMcacqGHRaWkcaGGOaGaamOyaiabgkHiTiaadggacaGGPaWaaOaaaeaacaWGRbGafqyTduMbaebaaSqabaaakeaaaeaacqGH9aqpcaWGmbGaaiikaiaadchadaWgaaWcbaGaamOwaaqabaGccaGGPaGaey4kaSIaeqyTdugaaaaa@C2B2@

Damit ist die Abschätzung a b | w | εL( p Z ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaGG8bGabm4DayaafaGaaiiFaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiabgkHiTiabew7aLjabgsMiJkaadYeacaGGOaGaamiCamaaBaaaleaacaWGAbaabeaakiaacMcaaaa@45B1@ gesichert. a b | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaGG8bGabm4DayaafaGaaiiFaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaaa@3D2A@ ist also die kleinste obere Schranke von {L( p Z )|Z  ist Zerlegung von  [a,b]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadYeacaGGOaGaamiCamaaBaaaleaacaWGAbaabeaakiaacMcacaGG8bGaamOwaiaabMgacaqGZbGaaeiDaiaabccacaqGAbGaaeyzaiaabkhacaqGSbGaaeyzaiaabEgacaqG1bGaaeOBaiaabEgacaqGGaGaaeODaiaab+gacaqGUbGaai4waiaadggacaGGSaGaamOyaiaac2facaGG9baaaa@5185@ , ihr Supremum also.

Beschreibt ein Weg die Bewegung eines Punktes, so läßt sich nach [8.6.16] der dabei zurück gelegte Weg offenbar durch das Integral über den Betrag | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadEhagaqbaiaacYhaaaa@38F1@ seiner Geschwindigkeit berechnen.

Obwohl [8.6.16] die (meist schwierige) Ermittlung eines Supremums durch die Berechnung eines Integrals ersetzt, läßt sich eine Weglänge selten leicht bestimmen. Der Integrand nämlich ist immer die Länge eines Vektors, also die Wurzel aus einer Summe positiver Funktionen. Die folgenden Beispiele machen dies deutlich.

Beispiel:  

  • Der glatte Weg

    w:ta+t(ba)=( a 1 +t( b 1 a 1 ),, a k +t( b k a k )),t[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaWG0bGaeSOPHeMaamyyaiabgUcaRiaadshacaGGOaGaamOyaiabgkHiTiaadggacaGGPaGaeyypa0JaaiikaiaadggadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG0bGaaiikaiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGaamyyamaaBaaaleaacaWGRbaabeaakiabgUcaRiaadshacaGGOaGaamOyamaaBaaaleaacaWGRbaabeaakiabgkHiTiaadggadaWgaaWcbaGaam4AaaqabaGccaGGPaGaaiykaiaacYcacaaMf8UaamiDaiabgIGiolaacUfacaaIWaGaaiilaiaaigdacaGGDbaaaa@629A@

    bildet die Verbindungsstrecke der Punkte a=( a 1 , a k ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaacIcacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaadggadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaa@3EE6@ und b=( b 1 , b k ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2da9iaacIcacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaadkgadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaa@3EE9@ des k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGRbaaaaaa@3879@ . Mit der konstanten Ableitung w =( b 1 a 1 ,, b k a k )=ba MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4DayaafaGaeyypa0JaaiikaiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGIbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaWGRbaabeaakiaacMcacqGH9aqpcaWGIbGaeyOeI0Iaamyyaaaa@4937@ berechnen wir ihre Länge zu

    L(w) = 0 1 |ba| =|ba| 0 1 1 =|ba| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaadYeacaGGOaGaam4DaiaacMcaaeaacqGH9aqpdaWdXbqaaiaacYhacaWGIbGaeyOeI0IaamyyaiaacYhaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaakeaaaeaacqGH9aqpcaGG8bGaamOyaiabgkHiTiaadggacaGG8bWaa8qCaeaacaaIXaaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aaGcbaaabaGaeyypa0JaaiiFaiaadkgacqGHsislcaWGHbGaaiiFaaaaaaa@52EF@

    Die Länge stimmt also, wie erwartet, mit dem Abstand der Punkte a und b überein.


     
  • Wir berechnen für ein beliebiges a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3894@ die Länge der durch

    w:t(tcost,tsint,t),t[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaWG0bGaeSOPHeMaaiikaiaadshacqGHflY1ciGGJbGaai4BaiaacohacaWG0bGaaiilaiaadshacqGHflY1ciGGZbGaaiyAaiaac6gacaWG0bGaaiilaiaadshacaGGPaGaaiilaiaaywW7caWG0bGaeyicI4Saai4waiaaicdacaGGSaGaamyyaiaac2faaaa@54F8@

    gegebenen Spirale aus dem Eingangsbeispiel:

    Mit w =(cosXsin,sin+Xcos,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4DayaafaGaeyypa0JaaiikaiGacogacaGGVbGaai4CaiabgkHiTiaadIfacqGHflY1ciGGZbGaaiyAaiaac6gacaGGSaGaci4CaiaacMgacaGGUbGaey4kaSIaamiwaiabgwSixlGacogacaGGVbGaai4CaiaacYcacaaIXaGaaiykaaaa@4EE1@ , also (mit dem Satz von Pythagoras: sin 2 + cos 2 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGymaaaa@4020@ )

    | w | = (cosXsin) 2 + (sin+Xcos) 2 + 1 2 = cos 2 2Xcossin+ X 2 sin 2 + sin 2 +2Xsincos+ X 2 cos 2 +1 = X 2 +2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaacYhaceWG3bGbauaacaGG8baabaGaeyypa0ZaaOaaaeaacaGGOaGaci4yaiaac+gacaGGZbGaeyOeI0IaamiwaiabgwSixlGacohacaGGPbGaaiOBaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaGaci4CaiaacMgacaGGUbGaey4kaSIaamiwaiabgwSixlGacogacaGGVbGaai4CaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaWaaWbaaSqabeaacaaIYaaaaaqabaaakeaaaeaacqGH9aqpdaGcaaqaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWGybGaeyyXICTaci4yaiaac+gacaGGZbGaeyyXICTaci4CaiaacMgacaGGUbGaey4kaSIaamiwamaaCaaaleqabaGaaGOmaaaakiabgwSixlGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabgUcaRiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWGybGaeyyXICTaci4CaiaacMgacaGGUbGaeyyXICTaci4yaiaac+gacaGGZbGaey4kaSIaamiwamaaCaaaleqabaGaaGOmaaaakiabgwSixlGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaaSqabaaakeaaaeaacqGH9aqpdaGcaaqaaiaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaaleqaaaaaaaa@906B@

    Zur Berechnung des Integrals L(w)= 0 a X 2 +2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaaiykaiabg2da9maapehabaWaaOaaaeaacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaaWcbeaaaeaacaaIWaaabaGaamyyaaqdcqGHRiI8aaaa@419F@ benötigen wir die hyperbolischen Funktionen sinh und cosh

     i

    Der hyperbolische Sinus (sinus hyperbolicus) und der hyperbolische Kosinus (cosinus hyperbolicus) werden über die Exponentialfunktion exp (siehe [5.9.18]) definiert. Für x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39DD@ setzen wir
     

    sinhx exp(x)exp(x) 2 coshx exp(x)+exp(x) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiGacohacaGGPbGaaiOBaiaacIgacaWG4bGaeyypa0ZaaSaaaeaaciGGLbGaaiiEaiaacchacaGGOaGaamiEaiaacMcacqGHsislciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0IaamiEaiaacMcaaeaacaaIYaaaaaqaaiGacogacaGGVbGaai4CaiaacIgacaWG4bGaeyypa0ZaaSaaaeaaciGGLbGaaiiEaiaacchacaGGOaGaamiEaiaacMcacqGHRaWkciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0IaamiEaiaacMcaaeaacaaIYaaaaaaaaaa@5B86@ [0]
     
    Beide Funktionen sind beliebig oft differenzierbar und mit exp =exp MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacIhacaGGWbGaai4jaiabg2da9iGacwgacaGG4bGaaiiCaaaa@3D53@ (siehe [7.5.8]) bestätigt man sofort die Ableitungen
     
    sinh =cosh MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiiAaiaacEcacqGH9aqpciGGJbGaai4BaiaacohacaGGObaaaa@3F20@  und  cosh =sinh MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiAaiaacEcacqGH9aqpciGGZbGaaiyAaiaac6gacaGGObaaaa@3F20@ .
     
    Auch die folgenden Eigenschaften ergeben sich direkt aus der Definition [0]:
    • cosh+sinh=exp MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiAaiabgUcaRiGacohacaGGPbGaaiOBaiaacIgacqGH9aqpciGGLbGaaiiEaiaacchaaaa@4232@

    • cosh 2 sinh 2 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiAamaaCaaaleqabaGaaGOmaaaakiabgkHiTiGacohacaGGPbGaaiOBaiaacIgadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaIXaaaaa@4203@

    • cosh(x+y)=coshxcoshy+sinhxsinhy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiAaiaacIcacaWG4bGaey4kaSIaamyEaiaacMcacqGH9aqpciGGJbGaai4BaiaacohacaGGObGaamiEaiabgwSixlGacogacaGGVbGaai4CaiaacIgacaWG5bGaey4kaSIaci4CaiaacMgacaGGUbGaaiiAaiaadIhacqGHflY1ciGGZbGaaiyAaiaac6gacaGGObGaamyEaaaa@5759@

    • sinh(x+y)=sinhxcoshy+coshxsinhy MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiiAaiaacIcacaWG4bGaey4kaSIaamyEaiaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacaGGObGaamiEaiabgwSixlGacogacaGGVbGaai4CaiaacIgacaWG5bGaey4kaSIaci4yaiaac+gacaGGZbGaaiiAaiaadIhacqGHflY1ciGGZbGaaiyAaiaac6gacaGGObGaamyEaaaa@575E@

    • cosh(x)=coshx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiAaiaacIcacqGHsislcaWG4bGaaiykaiabg2da9iGacogacaGGVbGaai4CaiaacIgacaWG4baaaa@42B0@

    • sinh(x)=sinhx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiiAaiaacIcacqGHsislcaWG4bGaaiykaiabg2da9iabgkHiTiGacohacaGGPbGaaiOBaiaacIgacaWG4baaaa@43A7@

    sinh ist sowohl injektiv (gemäß [7.9.6], denn sinh (x)=coshx>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacMgacaGGUbGaaiiAaiaacEcacaGGOaGaamiEaiaacMcacqGH9aqpciGGJbGaai4BaiaacohacaGGObGaamiEaiabg6da+iaaicdaaaa@4435@ für alle x), wie auch surjektiv (eine Folgerung aus dem Zwischenwertsatz [6.6.2], denn sinh ist stetig und lim x± sinh(x)=± MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHXcqScqGHEisPaeqaaOGaci4CaiaacMgacaGGUbGaaiiAaiaacIcacaWG4bGaaiykaiabg2da9iabgglaXkabg6HiLcaa@49C7@  ), insgesamt also bijektiv. Die Umkehrfunktion

    arcsinh sinh 1 : MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyyaiaackhacaGGJbGaai4CaiaacMgacaGGUbGaaiiAaiabg2da9iGacohacaGGPbGaaiOBaiaacIgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGG6aGaeSyhHeQaeyOKH4QaeSyhHekaaa@48A6@

    ist der arcussinus hyberbolicus. Auf dieselbe Weise begründet man auch die Existenz des arcuscosinus hyperbolicus, der Umkehrfunktion von cosh| 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiAaiaacYhacqWIDesOdaahaaWcbeqaaiabgwMiZkaaicdaaaaaaa@3EC8@ :
     

    arccosh (cosh| 0 ) 1 : 1 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbGaaiiAaiabg2da9iaacIcaciGGJbGaai4BaiaacohacaGGObGaaiiFaiabl2riHoaaCaaaleqabaGaeyyzImRaaGimaaaakiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGG6aGaeSyhHe6aaWbaaSqabeaacqGHLjYScaaIXaaaaOGaeyOKH4QaeSyhHe6aaWbaaSqabeaacqGHLjYScaaIWaaaaaaa@5481@

    . Da 1 2 (sinhcosh+X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaci4CaiaacMgacaGGUbGaaiiAaiabgwSixlGacogacaGGVbGaai4CaiaacIgacqGHRaWkcaWGybGaaiykaaaa@4458@ eine Stammfunktion zu cosh 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiAamaaCaaaleqabaGaaGOmaaaaaaa@3A94@ ist

     i

    Wir benutzen den Hauptsatz [8.2.13] und berechnen mittels partieller Integration (siehe [8.3.1]) für ein beliebiges x das Integral

    0 x cosh 2 =sinhcosh | 0 x 0 x sinh 2 =sinh(x)cosh(x) 0 x cosh 2 + 0 x 1 2 0 x cosh 2 =sinh(x)cosh(x)+x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmWaaaqaaaqaamaapehabaGaci4yaiaac+gacaGGZbGaaiiAamaaCaaaleqabaGaaGOmaaaaaeaacaaIWaaabaGaamiEaaqdcqGHRiI8aaGcbaGaeyypa0Jaci4CaiaacMgacaGGUbGaaiiAaiabgwSixlGacogacaGGVbGaai4CaiaacIgacaGG8bWaa0baaSqaaiaaicdaaeaacaWG4baaaOGaeyOeI0Yaa8qCaeaaciGGZbGaaiyAaiaac6gacaGGObWaaWbaaSqabeaacaaIYaaaaaqaaiaaicdaaeaacaWG4baaniabgUIiYdaakeaaaeaaaeaacqGH9aqpciGGZbGaaiyAaiaac6gacaGGObGaaiikaiaadIhacaGGPaGaeyyXICTaci4yaiaac+gacaGGZbGaaiiAaiaacIcacaWG4bGaaiykaiabgkHiTmaapehabaGaci4yaiaac+gacaGGZbGaaiiAamaaCaaaleqabaGaaGOmaaaaaeaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaey4kaSYaa8qCaeaacaaIXaaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aaGcbaGaeyO0H4TaaGzbVdqaaiaaikdadaWdXbqaaiGacogacaGGVbGaai4CaiaacIgadaahaaWcbeqaaiaaikdaaaaabaGaaGimaaqaaiaadIhaa0Gaey4kIipaaOqaaiabg2da9iGacohacaGGPbGaaiOBaiaacIgacaGGOaGaamiEaiaacMcacqGHflY1ciGGJbGaai4BaiaacohacaGGObGaaiikaiaadIhacaGGPaGaey4kaSIaamiEaaaaaaa@9409@

    Also ist 1 2 (sinhcosh+X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaci4CaiaacMgacaGGUbGaaiiAaiabgwSixlGacogacaGGVbGaai4CaiaacIgacqGHRaWkcaWGybGaaiykaaaa@4458@ eine Stammfunktion zu cosh 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiAamaaCaaaleqabaGaaGOmaaaaaaa@3A94@ .

    , können wir mit der Substitution g= 2 sinh MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9maakaaabaGaaGOmaaWcbeaakiGacohacaGGPbGaaiOBaiaacIgaaaa@3C83@ (siehe [8.3.5]) folgendermaßen fortfahren:

    L(w) = arcsinh0 arcsinh a 2 2 sinh 2 +2 2 cosh =2 0 arcsinh a 2 sinh 2 +1 cosh =2 0 arcsinh a 2 cosh 2 cosh =2 0 arcsinh a 2 cosh 2 =sinhcosh+X | 0 arcsinh a 2 = a 2 cosh(arcsinh a 2 )+arcsinh a 2 = a 2 1+ a 2 2 +arcsinh a 2 = a 2 2+ a 2 +arcsinh a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabCGaaaaqbaGaamitaiaacIcacaWG3bGaaiykaaqaaiabg2da9maapehabaWaaOaaaeaacaaIYaGaci4CaiaacMgacaGGUbGaaiiAamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaSqabaGccqGHflY1daGcaaqaaiaaikdaaSqabaGcciGGJbGaai4BaiaacohacaGGObaaleaaciGGHbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gacaGGObGaaGimaaqaaiGacggacaGGYbGaai4yaiaacohacaGGPbGaaiOBaiaacIgadaWcdaadbaGaamyyaaqaamaakaaabaGaaGOmaaqabaaaaaqdcqGHRiI8aaGcbaaabaGaeyypa0JaaGOmamaapehabaWaaOaaaeaaciGGZbGaaiyAaiaac6gacaGGObWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaWcbeaakiabgwSixlGacogacaGGVbGaai4CaiaacIgaaSqaaiaaicdaaeaaciGGHbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gacaGGObWaaSWaaWqaaiaadggaaeaadaGcaaqaaiaaikdaaeqaaaaaa0Gaey4kIipaaOqaaaqaaiabg2da9iaaikdadaWdXbqaamaakaaabaGaci4yaiaac+gacaGGZbGaaiiAamaaCaaaleqabaGaaGOmaaaaaeqaaOGaeyyXICTaci4yaiaac+gacaGGZbGaaiiAaaWcbaGaaGimaaqaaiGacggacaGGYbGaai4yaiaacohacaGGPbGaaiOBaiaacIgadaWcdaadbaGaamyyaaqaamaakaaabaGaaGOmaaqabaaaaaqdcqGHRiI8aaGcbaaabaGaeyypa0JaaGOmamaapehabaGaci4yaiaac+gacaGGZbGaaiiAamaaCaaaleqabaGaaGOmaaaaaeaacaaIWaaabaGaciyyaiaackhacaGGJbGaai4CaiaacMgacaGGUbGaaiiAamaalmaameaacaWGHbaabaWaaOaaaeaacaaIYaaabeaaaaaaniabgUIiYdaakeaaaeaacqGH9aqpciGGZbGaaiyAaiaac6gacaGGObGaeyyXICTaci4yaiaac+gacaGGZbGaaiiAaiabgUcaRiaadIfacaGG8bWaa0baaSqaaiaaicdaaeaaciGGHbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gacaGGObWaaSWaaWqaaiaadggaaeaadaGcaaqaaiaaikdaaeqaaaaaaaaakeaaaeaacqGH9aqpdaWcaaqaaiaadggaaeaadaGcaaqaaiaaikdaaSqabaaaaOGaeyyXICTaci4yaiaac+gacaGGZbGaaiiAaiaacIcaciGGHbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gacaGGObWaaSaaaeaacaWGHbaabaWaaOaaaeaacaaIYaaaleqaaaaakiaacMcacqGHRaWkciGGHbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gacaGGObWaaSaaaeaacaWGHbaabaWaaOaaaeaacaaIYaaaleqaaaaaaOqaaaqaaiabg2da9maalaaabaGaamyyaaqaamaakaaabaGaaGOmaaWcbeaaaaGccqGHflY1daGcaaqaaiaaigdacqGHRaWkdaWcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaWcbeaakiabgUcaRiGacggacaGGYbGaai4yaiaacohacaGGPbGaaiOBaiaacIgadaWcaaqaaiaadggaaeaadaGcaaqaaiaaikdaaSqabaaaaOGaeyypa0ZaaSaaaeaacaWGHbaabaGaaGOmaaaadaGcaaqaaiaaikdacqGHRaWkcaWGHbWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHRaWkciGGHbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gacaGGObWaaSaaaeaacaWGHbaabaWaaOaaaeaacaaIYaaaleqaaaaaaaaaaa@F352@

     
  • Erstaunlicherweise gelingt es nicht, für die Kurvenlänge einer Ellipse

    w:t(acost,bsint),t[0,2π] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaWG0bGaeSOPHeMaaiikaiaadggacqGHflY1ciGGJbGaai4BaiaacohacaWG0bGaaiilaiaadkgacqGHflY1ciGGZbGaaiyAaiaac6gacaWG0bGaaiykaiaacYcacaaMf8UaamiDaiabgIGiolaacUfacaaIWaGaaiilaiaaikdacqaHapaCcaGGDbaaaa@54BD@

    einen geschlossenen Ausdruck anzugeben. Das Integral

    L(w)= 0 2π | w | = 0 2π |(asin,bcos)| = 0 2π a 2 sin 2 + b 2 cos 2 =a 0 2π 1 cos 2 + b 2 a 2 cos 2 =a 0 2π 1c cos 2  , wobei  c a 2 b 2 a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamitaiaacIcacaWG3bGaaiykaiabg2da9maapehabaGaaiiFaiqadEhagaqbaiaacYhaaSqaaiaaicdaaeaacaaIYaGaeqiWdahaniabgUIiYdaakeaacqGH9aqpdaWdXbqaaiaacYhacaGGOaGaeyOeI0IaamyyaiabgwSixlGacohacaGGPbGaaiOBaiaacYcacaWGIbGaeyyXICTaci4yaiaac+gacaGGZbGaaiykaiaacYhaaSqaaiaaicdaaeaacaaIYaGaeqiWdahaniabgUIiYdaakeaaaeaacqGH9aqpdaWdXbqaamaakaaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgwSixlGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHflY1ciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaaabeaaaeaacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aaGcbaaabaGaeyypa0JaamyyamaapehabaWaaOaaaeaacaaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGccqGHflY1ciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaaabeaaaeaacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aaGcbaaabaGaeyypa0JaamyyamaapehabaWaaOaaaeaacaaIXaGaeyOeI0Iaam4yaiabgwSixlGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaaaeqaaaqaaiaaicdaaeaacaaIYaGaeqiWdahaniabgUIiYdGccaqG3bGaae4BaiaabkgacaqGLbGaaeyAaiaadogacqGH9aqpdaWcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGIbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyyamaaCaaaleqabaGaaGOmaaaaaaaaaaaa@A6D9@

    ist ein sog. elliptisches Integral und läßt sich nur für die trivialen Fälle c=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaaigdaaaa@3895@ und c=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaaicdaaaa@3894@ ausrechnen. Im letzten Fall allerdings, wenn also a=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaadkgaaaa@38BF@ ist, stellt die Ellipse einen Kreis mit Radius ra=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadggacqGH9aqpcaWGIbaaaa@3ABC@ dar, dessen Umfang wir somit zu

    L(w)=r 0 2π 1 =2πr MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaaiykaiabg2da9iaadkhadaWdXbqaaiaaigdaaSqaaiaaicdaaeaacaaIYaGaeqiWdahaniabgUIiYdGccqGH9aqpcaaIYaGaeqiWdaNaamOCaaaa@45E6@

    berechnen können.
     

Aufgaben:

  • Für w:t( 3 2 t, t 3 ),   t[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaWG0bGaeSOPHeMaaiikamaaleaaleaacaaIZaaabaGaaGOmaaaakiaadshacaGGSaWaaOaaaeaacaWG0bWaaWbaaSqabeaacaaIZaaaaaqabaGccaGGPaGaaiilaiaaysW7caaMe8UaamiDaiabgIGiolaacUfacaaIWaGaaiilaiaaigdacaGGDbaaaa@4B22@   ist  | | w |= ? |( 3 2 , 3 2 X )| = 9 4 + 9 4 X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadEhagaqbaiaacYhacqGH9aqpcaGG8bGaaiikamaalaaabaGaaG4maaqaaiaaikdaaaGaaiilamaalaaabaGaaG4maaqaaiaaikdaaaWaaOaaaeaacaWGybaaleqaaOGaaiykaiaacYhacqGH9aqpdaGcaaqaamaaleaaleaacaaI5aaabaGaaGinaaaakiabgUcaRmaaleaaleaacaaI5aaabaGaaGinaaaakiaadIfaaSqabaaaaa@4845@   und damit
     

    | L(w)= ? 3 2 0 1 1+X = Substitution   mit    g=X1 3 2 1 2 X = X 3 | 1 2 = 8 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaaiykaiabg2da9maalaaabaGaaG4maaqaaiaaikdaaaWaa8qCaeaadaGcaaqaaiaaigdacqGHRaWkcaWGybaaleqaaaqaaiaaicdaaeaacaaIXaaaniabgUIiYdGcdaWfqaqaaiabg2da9aWceaqabeaacaWGtbGaamyDaiaadkgacaWGZbGaamiDaiaac6cacaaMe8UaamyBaiaadMgacaWG0baabaGaaGjbVlaadEgacqGH9aqpcaWGybGaeyOeI0IaaGymaaaabeaakmaalaaabaGaaG4maaqaaiaaikdaaaWaa8qCaeaadaGcaaqaaiaadIfaaSqabaaabaGaaGymaaqaaiaaikdaa0Gaey4kIipakiabg2da9maakaaabaGaamiwamaaCaaaleqabaGaaG4maaaaaeqaaOGaaiiFamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabg2da9maakaaabaGaaGioaaWcbeaakiabgkHiTiaaigdaaaa@62B3@

     
  • Für das Parabelsegment  w:t(t, t 2 ),   t[0,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaWG0bGaeSOPHeMaaiikaiaadshacaGGSaGaamiDamaaCaaaleqabaGaaGOmaaaakiaacMcacaGGSaGaaGzbVlaadshacqGHiiIZcaGGBbGaaGimaiaacYcacaaIXaGaaiyxaaaa@47E6@   ist | | w |= ? |(1,2X)|= 1+4 X 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadEhagaqbaiaacYhacqGH9aqpcaGG8bGaaiikaiaaigdacaGGSaGaaGOmaiaadIfacaGGPaGaaiiFaiabg2da9maakaaabaGaaGymaiabgUcaRiaaisdacaWGybWaaWbaaSqabeaacaaIYaaaaaqabaaaaa@458E@ . Also ist
     

    | L(w)= ? 0 1 1+4 X 2 = Substitution mit g= 1 2 sinh 1 2 0 arcsinh(2) 1+ sinh 2 =cosh cosh = 1 2 0 arcsinh(2) cosh 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaaiykaiabg2da9maapehabaWaaOaaaeaacaaIXaGaey4kaSIaaGinaiaadIfadaahaaWcbeqaaiaaikdaaaaabeaaaeaacaaIWaaabaGaaGymaaqdcqGHRiI8aOWaaCbeaeaacqGH9aqpaSabaeqabaGaae4uaiaabwhacaqGIbGaae4CaiaabshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab2gacaqGPbGaaeiDaaqaaiaadEgacqGH9aqpdaWcdaadbaGaaGymaaqaaiaaikdaaaWcciGGZbGaaiyAaiaac6gacaGGObaaaeqaaOWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqaamaayaaabaWaaOaaaeaacaaIXaGaey4kaSIaci4CaiaacMgacaGGUbGaaiiAamaaCaaaleqabaGaaGOmaaaaaeqaaaqaaiabg2da9iGacogacaGGVbGaai4CaiaacIgaaOGaayjo+dGaeyyXICTaci4yaiaac+gacaGGZbGaaiiAaaWcbaGaaGimaaqaaiGacggacaGGYbGaai4yaiaacohacaGGPbGaaiOBaiaacIgacaGGOaGaaGOmaiaacMcaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaa8qCaeaaciGGJbGaai4BaiaacohacaGGObWaaWbaaSqabeaacaaIYaaaaaqaaiaaicdaaeaaciGGHbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gacaGGObGaaiikaiaaikdacaGGPaaaniabgUIiYdaaaa@8CD8@

    und da | ?  - wiezuvor gezeigt- 1 2 (sinhcosh+X) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaci4CaiaacMgacaGGUbGaaiiAaiabgwSixlGacogacaGGVbGaai4CaiaacIgacqGHRaWkcaWGybGaaiykaaaa@4458@ eine Stammfunktion zu cosh 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+gacaGGZbGaaiiAamaaCaaaleqabaGaaGOmaaaaaaa@3A94@ ist, folgt schließlich
     

    | L(w)= ? 1 4 (sinh 1+ sinh 2 +X) | 0 arcsinh(2) = 1 4 (2 5 +arcsinh(2)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaisdaaaGaaiikaiGacohacaGGPbGaaiOBaiaacIgacqGHflY1daGcaaqaaiaaigdacqGHRaWkciGGZbGaaiyAaiaac6gacaGGObWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHRaWkcaWGybGaaiykaiaacYhadaqhaaWcbaGaaGimaaqaaiGacggacaGGYbGaai4yaiaacohacaGGPbGaaiOBaiaacIgacaGGOaGaaGOmaiaacMcaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI0aaaaiaacIcacaaIYaGaeyyXIC9aaOaaaeaacaaI1aaaleqaaOGaey4kaSIaciyyaiaackhacaGGJbGaai4CaiaacMgacaGGUbGaaiiAaiaacIcacaaIYaGaaiykaiaacMcaaaa@6706@

Die Länge eines glatten Wegs w:tw(t),   t[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaWG0bGaeSOPHeMaam4DaiaacIcacaWG0bGaaiykaiaacYcacaaMe8UaamiDaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@469D@ läßt sich besonders leicht ausrechnen, wenn der Ableitungsvektor eine konstante Länge hat. Im Fall | w |=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadEhagaqbaiaacYhacqGH9aqpcaaIXaaaaa@3AB5@ ist sogar

L(w|[a,x])= a x 1 =xa MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaaiiFaiaacUfacaWGHbGaaiilaiaadIhacaGGDbGaaiykaiabg2da9maapehabaGaaGymaaWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipakiabg2da9iaadIhacqGHsislcaWGHbaaaa@4852@

für alle x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ . Der Wegabschnitt ist also genauso lang wie der zugehörige Intervallabschnitt. Wir sagen dann, w sei nach der Bogenlänge parametrisiert. Reguläre Wege können stets nach der Bogenlänge parametrisiert werden.

Bemerkung:  Ist w:[a,b] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@405D@ ein regulärer Weg, so gibt es eine differenzierbare Bijektion ϕ:[0,L(w)][a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOMaaiOoaiaacUfacaaIWaGaaiilaiaadYeacaGGOaGaam4DaiaacMcacaGGDbGaeyOKH4Qaai4waiaadggacaGGSaGaamOyaiaac2faaaa@44F0@ mit folgenden Eigenschaften:

  1. wϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiablIHiVjabew9aQbaa@39EE@   ist nach der Bogenlänge parametrisiert.

  2. wϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiablIHiVjabew9aQbaa@39EE@   und w erzeugen diesselbe Kurve.

  3. L(wϕ)=L(w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaeSigI8Maeqy1dOMaaiykaiabg2da9iaadYeacaGGOaGaam4DaiaacMcaaaa@4044@ .

[8.6.17]

Beweis:  Gemäß Hauptsatz [8.2.13] ist die Funktion s:[a,b][0,L(w)] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkaacUfacaaIWaGaaiilaiaadYeacaGGOaGaam4DaiaacMcacaGGDbaaaa@441C@ , gegeben durch

s(x) a x | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacIcacaWG4bGaaiykaiabg2da9maapehabaGaaiiFaiqadEhagaqbaiaacYhaaSqaaiaadggaaeaacaWG4baaniabgUIiYdaaaa@4194@ ,

eine Stammfunktion zu | w | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiqadEhagaqbaiaacYhaaaa@38F4@ . Da w regulär ist, weiß man: s(x)>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacIcacaWG4bGaaiykaiabg6da+iaaicdaaaa@3AFC@ für alle x]a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAC@ . Nach [7.9.6] ist s daher injektiv und ϕ s 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOMaeyypa0Jaam4CamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3B8B@ in jedem xs([a,b]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadohacaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaaaaa@3EFB@ differenzierbar mit (siehe [7.5.4])

ϕ (x)= 1 s (ϕ(x)) = 1 | w |(ϕ(x)) = 1 | w | ϕ(x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqy1dOMbauaacaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaaceWGZbGbauaacaGGOaGaeqy1dOMaaiikaiaadIhacaGGPaGaaiykaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaGG8bGabm4DayaafaGaaiiFaiaacIcacqaHvpGAcaGGOaGaamiEaiaacMcacaGGPaaaaiabg2da9maalaaabaGaaGymaaqaaiaacYhaceWG3bGbauaacaGG8baaaiablIHiVjabew9aQjaacIcacaWG4bGaaiykaiabgcMi5kaaicdaaaa@5974@

Schließlich garantiert der Zwischenwertsatz [6.6.2], dass s([a,b])=[0,L(w)] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacIcacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaacMcacqGH9aqpcaGGBbGaaGimaiaacYcacaWGmbGaaiikaiaadEhacaGGPaGaaiyxaaaa@43D0@ , denn s(a)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacIcacaWGHbGaaiykaiabg2da9iaaicdaaaa@3AE3@ und s(b)=L(w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacIcacaWGIbGaaiykaiabg2da9iaadYeacaGGOaGaam4DaiaacMcaaaa@3D50@ . Nach Kettenregel [7.7.8] ist daher wϕ:[0,L(w)] k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiablIHiVjabew9aQjaacQdacaGGBbGaaGimaiaacYcacaWGmbGaaiikaiaadEhacaGGPaGaaiyxaiabgkziUkabl2riHoaaCaaaleqabaGaam4Aaaaaaaa@4576@ ein regulärer Weg mit

(wϕ ) =(( w 1 ϕ) ϕ ,,( w k ϕ) ϕ ) =(( w 1 ϕ) 1 | w | ϕ,,( w k ϕ) 1 | w | ϕ) = w | w | ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaacIcacaWG3bGaeSigI8Maeqy1dOMabiykayaafaaabaGaeyypa0JaaiikaiaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaai4jaiablIHiVjabew9aQjaacMcacqGHflY1cuaHvpGAgaqbaiaacYcacqWIMaYscaGGSaGaaiikaiaadEhadaWgaaWcbaGaam4AaaqabaGccaGGNaGaeSigI8Maeqy1dOMaaiykaiabgwSixlqbew9aQzaafaGaaiykaaqaaaqaaiabg2da9iaacIcacaGGOaGaam4DamaaBaaaleaacaaIXaaabeaakiaacEcacqWIyiYBcqaHvpGAcaGGPaGaeyyXIC9aaSaaaeaacaaIXaaabaGaaiiFaiqadEhagaqbaiaacYhaaaGaeSigI8Maeqy1dOMaaiilaiablAciljaacYcacaGGOaGaam4DamaaBaaaleaacaWGRbaabeaakiaacEcacqWIyiYBcqaHvpGAcaGGPaGaeyyXIC9aaSaaaeaacaaIXaaabaGaaiiFaiqadEhagaqbaiaacYhaaaGaeSigI8Maeqy1dOMaaiykaaqaaaqaaiabg2da9maalaaabaGabm4DayaafaaabaGaaiiFaiqadEhagaqbaiaacYhaaaGaeSigI8Maeqy1dOgaaaaa@8423@

Jetzt zeigen wir:

1.    |(wϕ ) |=| w | w | ϕ|= | w | | w | ϕ=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaacIcacaWG3bGaeSigI8Maeqy1dOMabiykayaafaGaaiiFaiabg2da9iaacYhadaWcaaqaaiqadEhagaqbaaqaaiaacYhaceWG3bGbauaacaGG8baaaiablIHiVjabew9aQjaacYhacqGH9aqpdaWcaaqaaiaacYhaceWG3bGbauaacaGG8baabaGaaiiFaiqadEhagaqbaiaacYhaaaGaeSigI8Maeqy1dOMaeyypa0JaaGymaaaa@536C@

2.   Da ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@37B8@ bijektiv ist, hat man:

{wϕ(t)|t[0,L(w)]}={w(ϕ(t))|t[0,L(w)]}={w(t)|t[a,b]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadEhacqWIyiYBcqaHvpGAcaGGOaGaamiDaiaacMcacaGG8bGaamiDaiabgIGiolaacUfacaaIWaGaaiilaiaadYeacaGGOaGaam4DaiaacMcacaGGDbGaaiyFaiabg2da9iaacUhacaWG3bGaaiikaiabew9aQjaacIcacaWG0bGaaiykaiaacMcacaGG8bGaamiDaiabgIGiolaacUfacaaIWaGaaiilaiaadYeacaGGOaGaam4DaiaacMcacaGGDbGaaiyFaiabg2da9iaacUhacaWG3bGaaiikaiaadshacaGGPaGaaiiFaiaadshacqGHiiIZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaac2haaaa@6961@

3.    L(wϕ)= 0 L(w) 1 =L(w) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacIcacaWG3bGaeSigI8Maeqy1dOMaaiykaiabg2da9maapehabaGaaGymaaWcbaGaaGimaaqaaiaadYeacaGGOaGaam4DaiaacMcaa0Gaey4kIipakiabg2da9iaadYeacaGGOaGaam4DaiaacMcaaaa@4858@


8.5. 8.7.