8.5. Calculating Content


We are now going to develop a general concept for calculating content. We will do this by assigning adequate values V n+1 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcaaaa@3BB8@ to suitable subsets M of n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaa@3A19@ that, in the two-dimensional case coincide with the areas introduced in 8.4 and meet our image of a volume in the three-dimensional one.

These values will be recursively designed, as suggested by the interpretation of areas at the end of 8.4: The (n + 1)-dimensional content of a set M will result from integrating the n-dimensional contents of its sections M x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaaaaa@37E7@ .

Definition:  For a subset M[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419E@ of n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaa@3A19@ and any x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ the set

M x {( y 1 ,, y n ) n |(x, y 1 ,, y n )M} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaGGOaGaamyEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyEamaaBaaaleaacaWGUbaabeaakiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaad6gaaaGccaGG8bGaaiikaiaadIhacaGGSaGaamyEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyEamaaBaaaleaacaWGUbaabeaakiaacMcacqGHiiIZcaWGnbGaaiyFaaaa@53FA@
[8.5.1]

is called a section in M.

The following applet visualises a section in a sugar loaf at x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaaicdaaaa@38A9@ (display by JavaView

 i

JavaView is an interactive 3D geometry viewer. Display is controlled by the left-mouse, for example:

  • press "o" and drag to rotate (preset)

  • press "s" and drag to scale

  • press "t" and drag to translate

Go to www.javaview.de/jars/shortcuts.html for a complete list of options. The right-mouse launches an extensive context menu.

).

As a start we calculate sections in some manageable subsets of 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3845@ and of 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3846@ . All the parameters in this and the subsequent examples are strictly positive.

Example:  

  • All sections in a Square  Q [0,a] 2 [0,a]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIYaaaaOGaeyOGIWSaai4waiaaicdacaGGSaGaamyyaiaac2facqGHxdaTcqWIDesOaaa@465E@ are (constant) intervals as we have for any x[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadggacaGGDbaaaa@3C7D@ :

Q x ={y|(x,y)[0,a]×[0,a]}=[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaWG5bGaeyicI4SaeSyhHeQaaiiFaiaacIcacaWG4bGaaiilaiaadMhacaGGPaGaeyicI4Saai4waiaaicdacaGGSaGaamyyaiaac2facqGHxdaTcaGGBbGaaGimaiaacYcacaWGHbGaaiyxaiaac2hacqGH9aqpcaGGBbGaaGimaiaacYcacaWGHbGaaiyxaaaa@54C2@
[1]
  • The sections in an ellipse  E{(x,y) 2 | b 2 x 2 + a 2 y 2 a 2 b 2 }[a,a]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaaGOmaaaakiaacYhacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggadaahaaWcbeqaaiaaikdaaaGccaWG5bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyyamaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaaGccaGG9bGaeyOGIWSaai4waiabgkHiTiaadggacaGGSaGaamyyaiaac2facqGHxdaTcqWIDesOaaa@5B31@ are (variable) intervals as we calculate for each x[a,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaWGHbGaaiilaiaadggacaGGDbaaaa@3D96@ :

E x ={y| b 2 x 2 + a 2 y 2 a 2 b 2 } ={y| y 2 b 2 a 2 ( a 2 x 2 )}=[ b a a 2 x 2 , b a a 2 x 2 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadweadaWgaaWcbaGaamiEaaqabaaakeaacqGH9aqpcaGG7bGaamyEaiabgIGiolabl2riHkaacYhacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggadaahaaWcbeqaaiaaikdaaaGccaWG5bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyyamaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaaGccaGG9baabaaabaGaeyypa0Jaai4EaiaadMhacqGHiiIZcqWIDesOcaGG8bGaamyEamaaCaaaleqabaGaaGOmaaaakiabgsMiJoaalaaabaGaamOyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaaiikaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaaiykaiaac2hacqGH9aqpcaGGBbGaeyOeI0YaaSaaaeaacaWGIbaabaGaamyyaaaadaGcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGSaWaaSaaaeaacaWGIbaabaGaamyyaaaadaGcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGDbaaaaaa@74E7@
[2]

Note that when x 2 =a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadggaaaa@39C8@ the interval E x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWG4baabeaaaaa@37DF@ is a singleton: [0,0]={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaaGimaiaac2facqGH9aqpcaGG7bGaaGimaiaac2haaaa@3D90@ .

  • Sections in a perforated disc  L{(x,y) 2 | r 2 x 2 + y 2 R 2 }[R,R]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaaGOmaaaakiaacYhacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaWGsbWaaWbaaSqabeaacaaIYaaaaOGaaiyFaiabgkOimlaacUfacqGHsislcaWGsbGaaiilaiaadkfacaGGDbGaey41aqRaeSyhHekaaa@591D@ are a bit laborious to calculate. Let us just start with an x[R,R] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaWGsbGaaiilaiaadkfacaGGDbaaaa@3D78@ :

L x ={y| r 2 x 2 y 2 R 2 x 2 } ={y[ R 2 x 2 , R 2 x 2 ]| y 2 r 2 x 2 } ={ [ R 2 x 2 , R 2 x 2 ]  if  |x|r {y[ R 2 x 2 , R 2 x 2 ]||y| r 2 x 2   if  |x|<r} ={ [ R 2 x 2 , R 2 x 2 ]  if  |x|r [ R 2 x 2 , r 2 x 2 ][ r 2 x 2 , R 2 x 2 ]  if  |x|<r MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamitamaaBaaaleaacaWG4baabeaaaOqaaiabg2da9iaacUhacaWG5bGaeyicI4SaeSyhHeQaaiiFaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyEamaaCaaaleqabaGaaGOmaaaakiabgsMiJkaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaaiyFaaqaaaqaaiabg2da9iaacUhacaWG5bGaeyicI4Saai4waiabgkHiTmaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaacYcadaGcaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGDbGaaiiFaiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHLjYScaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaakiaac2haaeaaaeaacqGH9aqpdaGabaqaauaabaqaceaaaeaacaGGBbGaeyOeI0YaaOaaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaiilamaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaac2facaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaacYhacaWG4bGaaiiFaiabgwMiZkaadkhaaeaacaGG7bGaamyEaiabgIGiolaacUfacqGHsisldaGcaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGSaWaaOaaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaiyxaiaacYhacaGG8bGaamyEaiaacYhacqGHLjYSdaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaacYhacaWG4bGaaiiFaiabgYda8iaadkhacaGG9baaaaGaay5EaaaabaaabaGaeyypa0ZaaiqaaeaafaqaaeGabaaabaGaai4waiabgkHiTmaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaacYcadaGcaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGDbGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaGG8bGaamiEaiaacYhacqGHLjYScaWGYbaabaGaai4waiabgkHiTmaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaacYcacqGHsisldaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGDbWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4caGGBbWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaiilamaakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaac2facaqGMbGaaeyyaiaabYgacaqGSbGaae4CaiaacYhacaWG4bGaaiiFaiabgYda8iaadkhaaaaacaGL7baaaaaaaa@F7DA@
[3]

If r=R MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaadkfaaaa@38C0@ the sections in L are one- or two-element sets:

L x ={ {0}  if  |x|=R { R 2 x 2 , R 2 x 2 }  if  |x|<R MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacaWG4baabeaakiabg2da9maaceaabaqbaeaabiqaaaqaaiaacUhacaaIWaGaaiyFaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaaiiFaiaadIhacaGG8bGaeyypa0JaamOuaaqaaiaacUhacqGHsisldaGcaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccaGGSaWaaOaaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaiyFaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaaiiFaiaadIhacaGG8bGaeyipaWJaamOuaaaaaiaawUhaaaaa@5CD5@
  • Sections in a cube  W [0,a] 3 [0,a]× 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIZaaaaOGaeyOGIWSaai4waiaaicdacaGGSaGaamyyaiaac2facqGHxdaTcqWIDesOdaahaaWcbeqaaiaaikdaaaaaaa@474E@ are (constant) squares because we have for x[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadggacaGGDbaaaa@3C7D@ :

W x ={(y,z) 2 |(x,y,z) [0,a] 3 }= [0,a] 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaGGOaGaamyEaiaacYcacaWG6bGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaaGOmaaaakiaacYhacaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGPaGaeyicI4Saai4waiaaicdacaGGSaGaamyyaiaac2fadaahaaWcbeqaaiaaiodaaaGccaGG9bGaeyypa0Jaai4waiaaicdacaGGSaGaamyyaiaac2fadaahaaWcbeqaaiaaikdaaaaaaa@5628@
[4]
  • Sections in a sphere

    S{(x,y,z) 3 | x 2 + y 2 + z 2 r 2 }[r,r]× 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGPaGaeyicI4SaeSyhHe6aaWbaaSqabeaacaaIZaaaaOGaaiiFaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOEamaaCaaaleqabaGaaGOmaaaakiabgsMiJkaadkhadaahaaWcbeqaaiaaikdaaaGccaGG9bGaeyOGIWSaai4waiabgkHiTiaadkhacaGGSaGaamOCaiaac2facqGHxdaTcqWIDesOdaahaaWcbeqaaiaaikdaaaaaaa@5B52@

    are circles (with varying radii) as we have for every x[r,r] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaWGYbGaaiilaiaadkhacaGGDbaaaa@3DB8@ :

S x ={(y,z) 2 | x 2 + y 2 + z 2 r 2 } ={(y,z) 2 | y 2 + z 2 r 2 x 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaiaadofadaWgaaWcbaGaamiEaaqabaaakeaacqGH9aqpcaGG7bGaaiikaiaadMhacaGGSaGaamOEaiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaaikdaaaGccaGG8bGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG6bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaamOCamaaCaaaleqabaGaaGOmaaaakiaac2haaeaaaeaacqGH9aqpcaGG7bGaaiikaiaadMhacaGGSaGaamOEaiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaaikdaaaGccaGG8bGaamyEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaakiaac2haaaaaaa@6663@
[5]

If x 2 = r 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadkhadaahaaWcbeqaaiaaikdaaaaaaa@3AC2@ the section S x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWG4baabeaaaaa@37ED@ is a circle with radius 0, i.e. a point.

Now we define by recursion which sets are suitable for measuring content and how to calculate it. The remarks at the end of the previous section serve as a guideline.

Definition:  

  • A subset M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlabl2riHcaa@3A2A@ has a one-dimensional content if M=[ l 1 , r 1 ][ l k , r k ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUfacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkhadaWgaaWcbaGaaGymaaqabaGccaGGDbWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4cqWIMaYscqWFnkc4caGGBbGaamiBamaaBaaaleaacaWGRbaabeaakiaacYcacaWGYbWaaSbaaSqaaiaadUgaaeqaaOGaaiyxaaaa@5987@ is a disjoint union

     i

    The union AB MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgQIiilaadkeaaaa@3919@ of two sets A and B is called disjoint if AB= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgMIihlaadkeacqGH9aqpcqGHfiIXaaa@3B96@ . In that case the symbol MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOkIGmaaa@378C@ is often replaced by MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4aaa@479B@ .

    Display problems should be solved by downloading the font Lucida Bright Math Symbol.

    of finitely many closed intervals, l i r i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBaaaleaacaWGPbaabeaakiabgsMiJkaadkhadaWgaaWcbaGaamyAaaqabaaaaa@3BC7@ . In that case we call the number

V 1 (M) i=1 k r i l i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGnbGaaiykaiabg2da9maaqahabaGaamOCamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadYgadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdaaaa@45D2@
[8.5.2]

the one-dimensional content of M. In addition we set: V 1 ()0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacqGHfiIXcaGGPaGaeyypa0JaaGimaaaa@3C4A@ .

  • A subset M[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419E@ , a<b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgYda8iaadkgaaaa@38BD@ , has an ( n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@387C@ )-dimensional content if every section M x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaaaaa@37E7@ , x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ , has an n-dimensional content V n ( M x ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaaaa@3B4E@ such that the funtion V n ( M X ):[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHcaa@4386@ is integrable on [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ . In this case the number

V n+1 (M) a b V n ( M X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcacqGH9aqpdaWdXbqaaiaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamytamaaBaaaleaacaWGybaabeaakiaacMcaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdaaaa@4636@
[8.5.3]

is called the ( n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@387C@ )-dimensional content of M. If M[a,a]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadggacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419D@ we additionally set: V n+1 (M)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcacqGH9aqpcaaIWaaaaa@3D78@ .

Consider:

  • Sometimes, especially in three-dimensional situations, the term volume is used instead of content.
     

  • A simple inductive argument shows that contents are positive:  V n (M)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbGaaiykaiabgwMiZkaaicdaaaa@3C9B@ .
     

  • Due to the different add ons the content of any finite set is zero:

    V n ()= V n ({ x 1 ,, x k })=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacqGHfiIXcaGGPaGaeyypa0JaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaGG7bGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamiEamaaBaaaleaacaWGRbaabeaakiaac2hacaGGPaGaeyypa0JaaGimaaaa@4978@

     
  • [8.5.2] includes the common special case k=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaaigdaaaa@389D@ . M then is a simple interval, M=[l,r] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUfacaWGSbGaaiilaiaadkhacaGGDbaaaa@3C1C@ , lr MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabgsMiJkaadkhaaaa@3989@ , and the content V 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaaaaa@37AE@ shortens to V 1 (M)=rl MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGnbGaaiykaiabg2da9iaadkhacqGHsislcaWGSbaaaa@3DBE@ .
     

  • [8.5.3] infact introduces the Cavalieri Principle:

    If any two sets M,N[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaacYcacaWGobGaeyOGIWSaai4waiaadggacaGGSaGaamOyaiaac2facqGHxdaTcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@4321@ have a content such that all of their sections have the same content then they coincide in their own content as well:

        V n ( M x )= V n ( N x )  for all  x[a,b] V n+1 (M)= V n+1 (N) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamOtamaaBaaaleaacaWG4baabeaakiaacMcacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaadIhacqGHiiIZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaaywW7cqGHshI3caaMf8UaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcacqGH9aqpcaWGwbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacIcacaWGobGaaiykaaaa@6237@
    [8.5.4]

     
  • [8.5.2] carries forward the area concept of 8.4 as the areas calculated there now reappear as two-dimensional contents: For any positive function f C 0 ([a,b]) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaai4waiaadggacaGGSaGaamOyaiaac2facaGGPaaaaa@3FAA@ the set

    M{(x,y) 2 |axb      0yf(x)}[a,b]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaaGOmaaaakiaacYhacaWGHbGaeyizImQaamiEaiabgsMiJkaadkgacaaMe8Uaey4jIKTaaGjbVlaaicdacqGHKjYOcaWG5bGaeyizImQaamOzaiaacIcacaWG4bGaaiykaiaac2hacqGHckcZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgEna0kabl2riHcaa@5FCE@

    has a two-dimensional content V 2 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGnbGaaiykaaaa@39E4@ that is exactly the area of the region generated by f and the x-axis on [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ .

    Proof:  For x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ we have: M x ={y|0yf(x)}=[0,f(x)] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaWG5bGaeyicI4SaeSyhHeQaaiiFaiaaicdacqGHKjYOcaWG5bGaeyizImQaamOzaiaacIcacaWG4bGaaiykaiaac2hacqGH9aqpcaGGBbGaaGimaiaacYcacaWGMbGaaiikaiaadIhacaGGPaGaaiyxaaaa@4FBD@ , so that V 1 ( M x )=f(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaadAgacaGGOaGaamiEaiaacMcaaaa@3F5D@ . Therefor the content of M is calculated to

    V 2 (M)= a b V 1 ( M X ) = a b f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGnbGaaiykaiabg2da9maapehabaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiabg2da9maapehabaGaamOzaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaaa@4A5B@

     

In a first example we recalculate the content of some well known two-dimensional objects.

Example:

Square

Ellipse

Circle

Perforated Disc

Line

Rectangle

Triangle

 
  • The content of a square Q= [0,a] 2 [0,a]× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIYaaaaOGaeyOGIWSaai4waiaaicdacaGGSaGaamyyaiaac2facqGHxdaTcqWIDesOaaa@465E@ with edge length a is

    V 2 (Q)= a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGrbGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaaaaa@3CBD@
    [6]

    Proof:  According to [1] all sections in Q have a constant content:

    V 1 ( Q x )= V 1 ([0,a])=a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGrbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaadAfadaWgaaWcbaGaaGymaaqabaGccaGGOaGaai4waiaaicdacaGGSaGaamyyaiaac2facaGGPaGaeyypa0Jaamyyaaaa@4541@

    Thus V 1 ( Q X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGrbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaaa@3AFA@ is integrable on [0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacaGGSaGaamyyaiaac2faaaa@39FC@ so that Q has a content, namely

    V 2 (Q)= 0 a V 1 ( Q X ) = 0 a a = a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGrbGaaiykaiabg2da9maapehabaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGrbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiabg2da9maapehabaGaamyyaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaaaaa@4CE3@

In the next example we calculate some of the classical three-dimensional volumia using our previous results [6] to [9].

Example:

Cube

Ellipsoid

Sphere

Cone

Pyramid

Torus

Cuboid

Cylinder

 
  • The content of a cube W= [0,a] 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIZaaaaaaa@3CC8@ of edge length a is

    V 3 (W)= a 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIZaaabeaakiaacIcacaWGxbGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaaiodaaaaaaa@3CC5@

    Proof:  Due to [6] the sections W x = [0,a] 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWG4baabeaakiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaaIYaaaaaaa@3DFA@ (see [4]) in W[0,a]× 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgkOimlaacUfacaaIWaGaaiilaiaadggacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@4144@ have the constant content V 2 ( W x )= a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGxbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaaaaa@3DF6@ . Thus W has a content, namely

    V 3 (W)= a 2 0 a 1 = a 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIZaaabeaakiaacIcacaWGxbGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaGcdaWdXbqaaiaaigdaaSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGccqGH9aqpcaWGHbWaaWbaaSqabeaacaaIZaaaaaaa@4472@

Some of the examples above (for instance the sphere and the cone) represent a general class of subsets of 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIZaaaaaaa@3846@ that have a content, the so-called solids of revolution. They are turn-shaped and are generated by a function rotating around the x-axis.

Notation and Proposition:  For any continuous function f:[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiabgkziUkabl2riHcaa@3F2F@ the set

R {(x,y,z) 3 |x[a,b]       y 2 + z 2 (f(x)) 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGPaGaeyicI4SaeSyhHe6aaWbaaSqabeaacaaIZaaaaOGaaiiFaiaadIhacqGHiiIZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaaysW7cqGHNis2caaMe8UaamyEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaGGOaGaamOzaiaacIcacaWG4bGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccaGG9baaaa@5BF1@
[8.5.5]

is called the solid of revolution generated (on [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ ) by the casing function f. R has the content

V 3 (R)=π a b f 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIZaaabeaakiaacIcacaWGsbGaaiykaiabg2da9iabec8aWnaapehabaGaamOzamaaCaaaleqabaGaaGOmaaaaaeaacaWGHbaabaGaamOyaaqdcqGHRiI8aaaa@42AC@

Proof:  We note that R[a,b]× 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@416C@ and that R x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWG4baabeaaaaa@37EC@ is a circle of radius |f(x)| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgacaGGOaGaamiEaiaacMcacaGG8baaaa@3B2D@ for each x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ . So we have: V 2 ( R X )=π f 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIYaaabeaakiaacIcacaWGsbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaiabg2da9iabec8aWjaadAgadaahaaWcbeqaaiaaikdaaaaaaa@3F93@ , which is infact the assertion.

As an example we calculate the content of the solid of revolution R (pulley) generated on [1,1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTiaaigdacaGGSaGaaGymaiaac2faaaa@3ABF@ by the casing function X 2 +1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaaaa@3959@ :

V 3 (R) =π 1 1 ( X 2 +1 ) 2 =π 1 1 X 4 +2 X 2 +1 =π( 1 5 X 5 + 2 3 X 3 +X ) | 1 1 = 56 15 π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaadAfadaWgaaWcbaGaaG4maaqabaGccaGGOaGaamOuaiaacMcaaeaacqGH9aqpcqaHapaCdaWdXbqaaiaacIcacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaaabaGaeyOeI0IaaGymaaqaaiaaigdaa0Gaey4kIipaaOqaaaqaaiabg2da9iabec8aWnaapehabaGaamiwamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacaWGybWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaWcbaGaeyOeI0IaaGymaaqaaiaaigdaa0Gaey4kIipaaOqaaaqaaiabg2da9iabec8aWjaacIcadaWcaaqaaiaaigdaaeaacaaI1aaaaiaadIfadaahaaWcbeqaaiaaiwdaaaGccqGHRaWkdaWcaaqaaiaaikdaaeaacaaIZaaaaiaadIfadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWGybGaaiykaiaacYhadaqhaaWcbaGaeyOeI0IaaGymaaqaaiaaigdaaaGccqGH9aqpdaWcaaqaaiaaiwdacaaI2aaabaGaaGymaiaaiwdaaaGaeqiWdahaaaaa@6C89@

 

Exercise:  The content of the ellipsoid

E{(x,y,z) 3 |x[a,a]       y 2 + z 2 b 2 a 2 ( a 2 x 2 )} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9iaacUhacaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGPaGaeyicI4SaeSyhHe6aaWbaaSqabeaacaaIZaaaaOGaaiiFaiaadIhacqGHiiIZcaGGBbGaeyOeI0IaamyyaiaacYcacaWGHbGaaiyxaiaaysW7cqGHNis2caaMe8UaamyEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOdaWcaaqaaiaadkgadaahaaWcbeqaaiaaikdaaaaakeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaaakiabgwSixlaacIcacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaakiaacMcacaGG9baaaa@635F@

 i

The ellipsoid in this exercise is characterised by two identical semi axes, namely b which is the semi axis in y and z direction as well. This is due to the fact that E is generated as rotational solid by the upper semi ellipse {(x,y) 2 | x 2 a 2 + y 2 b 2 =1} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaacIcacaWG4bGaaiilaiaadMhacaGGPaGaeyicI4SaeSyhHe6aaWbaaSqabeaacaaIYaaaaOGaaiiFamaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWG5bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOyamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaaIXaGaaiyFaaaa@4B2E@ .


semi ellipse with a = 2 and b = 1.2

For the radius y=f(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadAgacaGGOaGaamiEaiaacMcaaaa@3B31@ that is required to calculate the sections E x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWG4baabeaaaaa@37DF@ we look at the following consideration:

x 2 a 2 + y 2 b 2 =1 b 2 x 2 + a 2 y 2 = a 2 b 2 y 2 = a 2 b 2 b 2 x 2 a 2 y= b a a 2 x 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaamaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWG5bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOyamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaaIXaaabaGaeyi1HSTaamOyamaaCaaaleqabaGaaGOmaaaakiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamyEamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadggadaahaaWcbeqaaiaaikdaaaGccaWGIbWaaWbaaSqabeaacaaIYaaaaaGcbaaabaGaeyi1HSTaamyEamaaCaaaleqabaGaaGOmaaaakiabg2da9maalaaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGIbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaaGcbaaabaGaeyi1HSTaamyEaiabg2da9maalaaabaGaamOyaaqaaiaadggaaaWaaOaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaaaaaaa@6A7F@

calculates to  V 3 (E)= 4 3 a b 2 π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIZaaabeaakiaacIcacaWGfbGaaiykaiabg2da9maalaaabaGaaGinaaqaaiaaiodaaaGaamyyaiaadkgadaahaaWcbeqaaiaaikdaaaGccqaHapaCaaa@40EB@ .

Proof: ?

If we turn to n-dimensional content, employment of the induction principle is unavoidable. As a first example we calculate the content of an n-dimensional cube and an n-dimensional sphere respectively.

Proposition:  

  1. The content of the n-dimensional cube W n = [0,a] n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWGUbaabeaakiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaWGUbaaaaaa@3E27@ is

V n ( W n )= a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGxbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaad6gaaaaaaa@3E5A@
[8.5.6]
  1. The content of the n-dimensional sphere S n ={x n | x 1 2 ++ x n 2 r 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGUbaabeaakiabg2da9iaacUhacaWG4bGaeyicI4SaeSyhHe6aaWbaaSqabeaacaWGUbaaaOGaaiiFaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcqWIMaYscqGHRaWkcaWG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeyizImQaamOCamaaCaaaleqabaGaaGOmaaaakiaac2haaaa@4D21@ is

V n ( S n )={ 1 k! π k r n   if  n=2k 2 n k! n! π k r n   if  n=2k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGtbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9maaceaabaqbaeaabiqaaaqaamaalaaabaGaaGymaaqaaiaadUgacaGGHaaaaiabec8aWnaaCaaaleqabaGaam4AaaaakiaadkhadaahaaWcbeqaaiaad6gaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGH9aqpcaaIYaGaam4AaaqaamaalaaabaGaaGOmamaaCaaaleqabaGaamOBaaaakiaadUgacaGGHaaabaGaamOBaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbaaaOGaamOCamaaCaaaleqabaGaamOBaaaakiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaikdacaWGRbGaey4kaSIaaGymaaaaaiaawUhaaaaa@612C@
[8.5.7]

1.   Proof by induction:

  • n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ :   W 1 =[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaaIXaaabeaakiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbaaaa@3CCF@ is a closed interval such that V 1 ( W 1 )=a= a 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGxbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaadggacqGH9aqpcaWGHbWaaWbaaSqabeaacaaIXaaaaaaa@3F9E@ .

  • n   n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaysW7cqGHshI3caaMc8UaamOBaiabgUcaRiaaigdaaaa@3EE4@ :  Now let W n+1 = [0,a] n+1 =[0,a]× [0,a] n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaGGBbGaaGimaiaacYcacaWGHbGaaiyxamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGH9aqpcaGGBbGaaGimaiaacYcacaWGHbGaaiyxaiabgEna0kaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaWGUbaaaaaa@4DC8@ be an (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaa@39D5@ -dimensional cube. For any x[0,a] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadggacaGGDbaaaa@3C7D@ we see that the section W n+1,x = [0,a] n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWGUbGaey4kaSIaaGymaiaacYcacaWG4baabeaakiabg2da9iaacUfacaaIWaGaaiilaiaadggacaGGDbWaaWbaaSqabeaacaWGUbaaaaaa@4171@ is an n-dimensional cube, thus having a content due to the induction hypothesis. The constant function V n ( W n+1,X )= a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGxbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaGaaiilaiaadIfaaeqaaOGaaiykaiabg2da9iaadggadaahaaWcbeqaaiaad6gaaaaaaa@4184@ is integrable, so that W n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3984@ has a content as well, namely

    V n+1 ( W n+1 )= a n 0 a 1 = a n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4vamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGPaGaeyypa0JaamyyamaaCaaaleqabaGaamOBaaaakmaapehabaGaaGymaaWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiabg2da9iaadggadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaa@4B15@

2.   Proof by induction:

  • n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ :   S 1 ={x| x 2 r 2 }=[r,r] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaakiabg2da9iaacUhacaWG4bGaeyicI4SaeSyhHeQaaiiFaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaWGYbWaaWbaaSqabeaacaaIYaaaaOGaaiyFaiabg2da9iaacUfacqGHsislcaWGYbGaaiilaiaadkhacaGGDbaaaa@4B8C@ is a closed interval such that

    V 1 ( S 1 )=2r= 2 1 0! 1! π 0 r 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGtbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaaikdacaWGYbGaeyypa0ZaaSaaaeaacaaIYaWaaWbaaSqabeaacaaIXaaaaOGaeyyXICTaaGimaiaacgcaaeaacaaIXaGaaiyiaaaacqaHapaCdaahaaWcbeqaaiaaicdaaaGccaWGYbWaaWbaaSqabeaacaaIXaaaaaaa@49ED@

    Note that n=20+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaikdacqGHflY1caaIWaGaey4kaSIaaGymaaaa@3D42@ in this case.

  • n      n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaysW7cqGHshI3caaMe8UaamOBaiabgUcaRiaaigdaaaa@3EE6@ :  Next let S n+1 ={(x,y) n+1 | x 2 + y 1 2 ++ y n 2 r 2 }[r,r]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaGG7bGaaiikaiaadIhacaGGSaGaamyEaiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiiFaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG5bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaeSOjGSKaey4kaSIaamyEamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgsMiJkaadkhadaahaaWcbeqaaiaaikdaaaGccaGG9bGaeyOGIWSaai4waiabgkHiTiaadkhacaGGSaGaamOCaiaac2facqGHxdaTcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@6224@ be an ( n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@387C@ )-dimensional sphere. The section S n+1,x ={y n | y 1 2 ++ y n 2 r 2 x 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGUbGaey4kaSIaaGymaiaacYcacaWG4baabeaakiabg2da9iaacUhacaWG5bGaeyicI4SaeSyhHe6aaWbaaSqabeaacaWGUbaaaOGaaiiFaiaadMhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcqWIMaYscqGHRaWkcaWG5bWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeyizImQaamOCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaGccaGG9baaaa@534B@ is an n-dimensional sphere for all x[r,r] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacqGHsislcaWGYbGaaiilaiaadkhacaGGDbaaaa@3DB8@ , thus has a content according to the induction hypothesis. The function

    V n ( S n+1,X )= r 2 X 2 n { 1 k! π k   if  n=2k 2 n k! n! π k   if  n=2k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGtbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaGaaiilaiaadIfaaeqaaOGaaiykaiabg2da9maakaaabaGaamOCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIfadaahaaWcbeqaaiaaikdaaaaabeaakmaaCaaaleqabaGaamOBaaaakiabgwSixpaaceaabaqbaeaabiqaaaqaamaalaaabaGaaGymaaqaaiaadUgacaGGHaaaaiabec8aWnaaCaaaleqabaGaam4AaaaakiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaikdacaWGRbaabaWaaSaaaeaacaaIYaWaaWbaaSqabeaacaWGUbaaaOGaam4AaiaacgcaaeaacaWGUbGaaiyiaaaacqaHapaCdaahaaWcbeqaaiaadUgaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGH9aqpcaaIYaGaam4AaiabgUcaRiaaigdaaaaacaGL7baaaaa@683F@

    is continuous, and that means integrable as well, so that S n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3980@ has a content.

    The integral (substituting g=rsin,    g =rcos MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadkhacqGHflY1ciGGZbGaaiyAaiaac6gacaGGSaGaaGjbVlqadEgagaqbaiabg2da9iaadkhacqGHflY1ciGGJbGaai4Baiaacohaaaa@4846@ , see [8.3.5])

    r r r 2 X 2 n = rsin( π 2 ) rsin( π 2 ) r 2 X 2 n = π 2 π 2 r 2 r 2 sin 2 n rcos = r n+1 π 2 π 2 1 sin 2 = cos 2 n cos = r n+1 π 2 π 2 cos n+1 = [8.3.4] r n+1 { (n+1)! ( 2 k k! ) 2 π  if  n+1=2k ( 2 k k! ) 2 (n+1)! 2  if  n+1=2k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaWaa8qCaeaadaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaaqabaGcdaahaaWcbeqaaiaad6gaaaaabaGaeyOeI0IaamOCaaqaaiaadkhaa0Gaey4kIipakiabg2da9maapehabaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiwamaaCaaaleqabaGaaGOmaaaaaeqaaOWaaWbaaSqabeaacaWGUbaaaaqaaiaadkhacqGHflY1ciGGZbGaaiyAaiaac6gacaGGOaGaeyOeI0YaaSWaaWqaaiabec8aWbqaaiaaikdaaaWccaGGPaaabaGaamOCaiabgwSixlGacohacaGGPbGaaiOBaiaacIcadaWcdaadbaGaeqiWdahabaGaaGOmaaaaliaacMcaa0Gaey4kIipaaOqaaiabg2da9maapehabaWaaOaaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamOCamaaCaaaleqabaGaaGOmaaaakiabgwSixlGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaaaeqaaOWaaWbaaSqabeaacaWGUbaaaOGaamOCaiabgwSixlGacogacaGGVbGaai4CaaWcbaGaeyOeI0YaaSWaaWqaaiabec8aWbqaaiaaikdaaaaaleaadaWcdaadbaGaeqiWdahabaGaaGOmaaaaa0Gaey4kIipaaOqaaaqaaiabg2da9iaadkhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOWaa8qCaeaadaGcaaqaamaayaaabaGaaGymaiabgkHiTiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaaaeaacqGH9aqpciGGJbGaai4BaiaacohadaahaaadbeqaaiaaikdaaaaakiaawIJ=aaWcbeaakmaaCaaaleqabaGaamOBaaaakiGacogacaGGVbGaai4CaaWcbaGaeyOeI0YaaSWaaWqaaiabec8aWbqaaiaaikdaaaaaleaadaWcdaadbaGaeqiWdahabaGaaGOmaaaaa0Gaey4kIipaaOqaaaqaaiabg2da9iaadkhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOWaa8qCaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaqaaiabgkHiTmaalmaameaacqaHapaCaeaacaaIYaaaaaWcbaWaaSWaaWqaaiabec8aWbqaaiaaikdaaaaaniabgUIiYdaakeaaaeaadaWfqaqaaiabg2da9aWcbaGaai4waiaaiIdacaGGUaGaaG4maiaac6cacaaI0aGaaiyxaaqabaGccaWGYbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwSixpaaceaabaqbaeaabiqaaaqaamaalaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaeaacaGGOaGaaGOmamaaCaaaleqabaGaam4AaaaakiaadUgacaGGHaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGHflY1cqaHapaCcaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGHRaWkcaaIXaGaeyypa0JaaGOmaiaadUgaaeaadaWcaaqaaiaacIcacaaIYaWaaWbaaSqabeaacaWGRbaaaOGaam4AaiaacgcacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaeyyXICTaaGOmaiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabgUcaRiaaigdacqGH9aqpcaaIYaGaam4AaiabgUcaRiaaigdaaaaacaGL7baaaaaaaa@EACE@

    now allows to calculate the ( n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@387C@ )-dimensionale sphere's content:

    V n+1 ( S n+1 ) = r r r 2 X 2 n { 1 k! π k   if  n=2k 2 n k! n! π k   if  n=2k+1 = r n+1 { ( 2 k k! ) 2 (n+1)! 2 1 k! π k   if  n=2k      n+1=2k+1 (n+1)! ( 2 k+1 (k+1)! ) 2 π 2 n k! n! π k   if  n=2k+1      n+1=2(k+1) ={ 2 2k+1 (k!) 2 (n+1)!k! π k r n+1   if  n+1=2k+1 (n+1) 2 n 2 2k+1 2(k+1)(k+1)! π k+1 r n+1   if  n+1=2(k+1) ={ 2 n+1 k! (n+1)! π k r n+1   if  n+1=2k+1 1 (k+1)! π k+1 r n+1   if  n+1=2(k+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4uamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGPaaabaGaeyypa0Zaa8qCaeaadaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGybWaaWbaaSqabeaacaaIYaaaaaqabaGcdaahaaWcbeqaaiaad6gaaaaabaGaeyOeI0IaamOCaaqaaiaadkhaa0Gaey4kIipakiabgwSixpaaceaabaqbaeaabiqaaaqaamaalaaabaGaaGymaaqaaiaadUgacaGGHaaaaiabec8aWnaaCaaaleqabaGaam4AaaaakiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaikdacaWGRbaabaWaaSaaaeaacaaIYaWaaWbaaSqabeaacaWGUbaaaOGaam4AaiaacgcaaeaacaWGUbGaaiyiaaaacqaHapaCdaahaaWcbeqaaiaadUgaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGH9aqpcaaIYaGaam4AaiabgUcaRiaaigdaaaaacaGL7baaaeaaaeaacqGH9aqpcaWGYbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwSixpaaceaabaqbaeaabiqaaaqaamaalaaabaGaaiikaiaaikdadaahaaWcbeqaaiaadUgaaaGccaWGRbGaaiyiaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaaacqGHflY1caaIYaGaeyyXIC9aaSaaaeaacaaIXaaabaGaam4AaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbaaaOGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaeyypa0JaaGOmaiaadUgacaaMe8Uaeyi1HSTaaGjbVlaad6gacqGHRaWkcaaIXaGaeyypa0JaaGOmaiaadUgacqGHRaWkcaaIXaaabaWaaSaaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaqaaiaacIcacaaIYaWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiaacIcacaWGRbGaey4kaSIaaGymaiaacMcacaGGHaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGHflY1cqaHapaCcqGHflY1daWcaaqaaiaaikdadaahaaWcbeqaaiaad6gaaaGccaWGRbGaaiyiaaqaaiaad6gacaGGHaaaaiabec8aWnaaCaaaleqabaGaam4AaaaakiaabAgacaqGHbGaaeiBaiaabYgacaqGZbGaamOBaiabg2da9iaaikdacaWGRbGaey4kaSIaaGymaiaaysW7cqGHuhY2caaMe8UaamOBaiabgUcaRiaaigdacqGH9aqpcaaIYaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaaaaaiaawUhaaaqaaaqaaiabg2da9maaceaabaqbaeaabiqaaaqaamaalaaabaGaaGOmamaaCaaaleqabaGaaGOmaiaadUgacqGHRaWkcaaIXaaaaOGaaiikaiaadUgacaGGHaGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacaGGHaGaam4AaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbaaaOGaamOCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGHRaWkcaaIXaGaeyypa0JaaGOmaiaadUgacqGHRaWkcaaIXaaabaWaaSaaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaeyyXICTaaGOmamaaCaaaleqabaGaamOBaaaaaOqaaiaaikdadaahaaWcbeqaaiaaikdacaWGRbGaey4kaSIaaGymaaaakiabgwSixlaaikdacaGGOaGaam4AaiabgUcaRiaaigdacaGGPaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiaadkhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaey4kaSIaaGymaiabg2da9iaaikdacaGGOaGaam4AaiabgUcaRiaaigdacaGGPaaaaaGaay5EaaaabaaabaGaeyypa0ZaaiqaaeaafaqaaeGabaaabaWaaSaaaeaacaaIYaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaadUgacaGGHaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbaaaOGaamOCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaqGMbGaaeyyaiaabYgacaqGSbGaae4Caiaad6gacqGHRaWkcaaIXaGaeyypa0JaaGOmaiaadUgacqGHRaWkcaaIXaaabaWaaSaaaeaacaaIXaaabaGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaeqiWda3aaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiaadkhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaeOzaiaabggacaqGSbGaaeiBaiaabohacaWGUbGaey4kaSIaaGymaiabg2da9iaaikdacaGGOaGaam4AaiabgUcaRiaaigdacaGGPaaaaaGaay5Eaaaaaaaa@5C44@

 

We follow up our subject and consider now generalised cones and cylinders. For an arbitrary non-empty subset G n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyybIySaeyiyIKRaam4raiabgkOimlabl2riHoaaCaaaleqabaGaamOBaaaaaaa@3E84@ of n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@387C@ we call the set

  1.   Z[0,h]×G MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacUfacaaIWaGaaiilaiaadIgacaGGDbGaey41aqRaam4raaaa@3ECB@

[8.5.8]

a (generalised) cylinder with base G and height h.

  1.   C{(x, x h y 1 , x h y n ) n+1 |x[0,h]      yG} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabg2da9iaacUhacaGGOaGaamiEaiaacYcadaWcaaqaaiaadIhaaeaacaWGObaaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGS0aaSaaaeaacaWG4baabaGaamiAaaaacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGG8bGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadIgacaGGDbGaaGjbVlabgEIizlaaysW7caWG5bGaeyicI4Saam4raiaac2haaaa@5C05@

[8.5.9]

a (generalised) cone with base G and height h.

Consider:

  • Only if n=2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaikdaaaa@38A1@ the base is an area in the usual sense, of course.

  • A (generalised) pyramide is a cone whose base is a polytope.


     

Exercise:  If G has a content then the cylinder Z=[0,h]×G MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacUfacaaIWaGaaiilaiaadIgacaGGDbGaey41aqRaam4raaaa@3ECB@ has a content as well. It calculates to

V n+1 (Z)= V n (G)h MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamOwaiaacMcacqGH9aqpcaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadEeacaGGPaGaeyyXICTaamiAaaaa@442B@
[8.5.10]

As an example the cylinder Z=[0,2]×{(x,y,z) 3 | x 2 + y 2 + z 2 9} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiabg2da9iaacUfacaaIWaGaaiilaiaaikdacaGGDbGaey41aqRaai4EaiaacIcacaWG4bGaaiilaiaadMhacaGGSaGaamOEaiaacMcacqGHiiIZcqWIDesOdaahaaWcbeqaaiaaiodaaaGccaGG8bGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG6bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGyoaiaac2haaaa@5478@ , whose base is a sphere of radius 3 has the content  V 4 (Z)= 4 3 3 3 π2=72π MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaI0aaabeaakiaacIcacaWGAbGaaiykaiabg2da9maalaaabaGaaGinaaqaaiaaiodaaaGaeyyXICTaaG4mamaaCaaaleqabaGaaG4maaaakiabec8aWjabgwSixlaaikdacqGH9aqpcaaI3aGaaGOmaiabec8aWbaa@4982@ .

Proof: ?

Obviously [8.5.10] confirms the well-known formula "base times hight" for the content of a cylinder. In order to get a similar result for a cone we need some technical preparations: For any two vectors d=( d 0 ,, d n1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2da9iaacIcacaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWGKbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaacMcaaaa@4149@ and c=( c 0 ,, c n1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaacIcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiablAciljaacYcacaWGJbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaacMcaaaa@4146@ , c i >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaWGPbaabeaakiabg6da+iaaicdaaaa@39BA@ , and an arbitrary subset M n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlabl2riHoaaCaaaleqabaGaamOBaaaaaaa@3B4A@ we set

cM+d{( c 0 x+ d 0 , c 1 y 1 + d 1 ,, c n1 y n1 + d n1 )|(x, y 1 ,, y n1 )M} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbGaeyypa0Jaai4EaiaacIcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamiEaiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIXaaabeaakiabgwSixlaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGJbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgwSixlaadMhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey4kaSIaamizamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGPaGaaiiFaiaacIcacaWG4bGaaiilaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadMhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaiykaiabgIGiolaad2eacaGG9baaaa@6EB4@

If d=(0,,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2da9iaacIcacaaIWaGaaiilaiablAciljaacYcacaaIWaGaaiykaaaa@3D2A@ or c=(1,,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaacIcacaaIXaGaaiilaiablAciljaacYcacaaIXaGaaiykaaaa@3D2B@ we write cM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eaaaa@37A6@ and M+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgUcaRiaadsgaaaa@3889@ respectively. cM MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eaaaa@37A6@ is generated from M by dilation with the dilation vector c whereas M+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgUcaRiaadsgaaaa@3889@ is generated by translation with the translation vector d.

The following proposition will not only provide the desired formula for cones but will yield further important results as well.

Proposition:  A subset M n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlabl2riHoaaCaaaleqabaGaamOBaaaaaaa@3B4A@ has a content if and only if cM+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbaaaa@3971@ has a content. In this case we have:

V n (cM+d)= c 0 c n1 V n (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGJbGaamytaiabgUcaRiaadsgacaGGPaGaeyypa0Jaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlablAciljabgwSixlaadogadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeyyXICTaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbGaaiykaaaa@4F94@
[8.5.11]

Proof:  It is sufficient to prove only the " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3849@ " direction because it includes the reverse direction already due to the identity

( 1 c 0 ,, 1 c n1 )(cM+d)+( d 0 c 0 ,, d n1 c n1 )=M MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaleaaleaacaaIXaaabaGaam4yamaaBaaameaacaaIWaaabeaaaaGccaGGSaGaeSOjGSKaaiilamaaleaaleaacaaIXaaabaGaam4yamaaBaaameaacaWGUbGaeyOeI0IaaGymaaqabaaaaOGaaiykaiaacIcacaWGJbGaamytaiabgUcaRiaadsgacaGGPaGaey4kaSIaaiikamaaleaaleaacqGHsislcaWGKbWaaSbaaWqaaiaaicdaaeqaaaWcbaGaam4yamaaBaaameaacaaIWaaabeaaaaGccaGGSaGaeSOjGSKaaiilamaaleaaleaacqGHsislcaWGKbWaaSbaaWqaaiaad6gacqGHsislcaaIXaaabeaaaSqaaiaadogadaWgaaadbaGaamOBaiabgkHiTiaaigdaaeqaaaaakiaacMcacqGH9aqpcaWGnbaaaa@59B7@

We proceed now by induction.

  • n=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaigdaaaa@38A0@ :  If M= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iabgwGigdaa@393D@ then cM+d= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbGaeyypa0JaeyybIymaaa@3BF0@ as well and both sets have the same content 0.
    For M=[ l 1 , r 1 ][ l k , r k ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2da9iaacUfacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkhadaWgaaWcbaGaaGymaaqabaGccaGGDbWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4cqWIMaYscqWFnkc4caGGBbGaamiBamaaBaaaleaacaWGRbaabeaakiaacYcacaWGYbWaaSbaaSqaaiaadUgaaeqaaOGaaiyxaaaa@5987@ we have

    cM+d=[ c 0 l 1 + d 0 , c 0 r 1 + d 0 ][ c 0 l k + d 0 , c 0 r k + d 0 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbGaeyypa0Jaai4waiaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGSbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamizamaaBaaaleaacaaIWaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamOCamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGDbWemv3yPrwynfgDOnvETj2BSbqegWuDJLgzHbIqYL2zOrhinfgDObYu51MyVXgaiuaacqWFnkc4cqWIMaYscqWFnkc4caGGBbGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadYgadaWgaaWcbaGaam4AaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGYbWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamizamaaBaaaleaacaaIWaaabeaakiaac2faaaa@77AE@

    which is again a disjoint union of closed intervals, having thus a content, namely:

    V 1 (cM+d)= i=1 k c 0 r i + d 0 ( c 0 l i + d 0 ) = c 0 i=1 k r i l i = c 0 V 1 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaakiaacIcacaWGJbGaamytaiabgUcaRiaadsgacaGGPaGaeyypa0ZaaabCaeaacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamOCamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccqGHsislcaGGOaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadYgadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdGccqGH9aqpcaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXIC9aaabCaeaacaWGYbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamiBamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaadUgaa0GaeyyeIuoakiabg2da9iaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGwbWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaad2eacaGGPaaaaa@70F1@
     
  • n      n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaysW7cqGHshI3caaMe8UaamOBaiabgUcaRiaaigdaaaa@3EE6@ :  Now consider M[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419E@ , i.e. cM+d[ c 0 a+ d 0 , c 0 b+ d 0 ]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbGaeyOGIWSaai4waiaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGHbGaey4kaSIaamizamaaBaaaleaacaaIWaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamOyaiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@520B@ .

    If a=b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaadkgaaaa@38BF@ then c 0 a+ d 0 = c 0 b+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadggacqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Jaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadkgacqGHRaWkcaWGKbaaaa@4589@ and the content of either set is 0. Assume now a<b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgYda8iaadkgaaaa@38BD@ . At first we have

    (cM+d) x =( c 1 ,, c n ) M x d 0 c 0 +( d 1 ,, d n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogacaWGnbGaey4kaSIaamizaiaacMcadaWgaaWcbaGaamiEaaqabaGccqGH9aqpcaGGOaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4yamaaBaaaleaacaWGUbaabeaakiaacMcacaWGnbWaaSbaaSqaamaalaaabaGaamiEaiabgkHiTiaadsgadaWgaaadbaGaaGimaaqabaaaleaacaWGJbWaaSbaaWqaaiaaicdaaeqaaaaaaSqabaGccqGHRaWkcaGGOaGaamizamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamizamaaBaaaleaacaWGUbaabeaakiaacMcaaaa@5428@ [+]

    for all x[ c 0 a+ d 0 , c 0 b+ d 0 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamyyaiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadkgacqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiyxaaaa@4A64@ , because:

    ( y 1 ,, y n ) (cM+d) x (x, y 1 ,, y n )cM+d ( x d 0 c 0 , y 1 d 1 c 1 ,, y n d n c n )M ( y 1 d 1 c 1 ,, y n d n c n ) M x d 0 c 0 ( y 1 ,, y n )( c 1 ,, c n ) M x d 0 c 0 +( d 1 ,, d n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaaiikaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyicI4SaaiikaiaadogacaWGnbGaey4kaSIaamizaiaacMcadaWgaaWcbaGaamiEaaqabaaakeaacaaMf8Uaeyi1HSTaaGzbVlaacIcacaWG4bGaaiilaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyicI4Saam4yaiaad2eacqGHRaWkcaWGKbaabaaabaGaaGzbVlabgsDiBlaaywW7caGGOaWaaSaaaeaacaWG4bGaeyOeI0IaamizamaaBaaaleaacaaIWaaabeaaaOqaaiaadogadaWgaaWcbaGaaGimaaqabaaaaOGaaiilamaalaaabaGaamyEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadsgadaWgaaWcbaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaaaakiaacYcacqWIMaYscaGGSaWaaSaaaeaacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamizamaaBaaaleaacaWGUbaabeaaaOqaaiaadogadaWgaaWcbaGaamOBaaqabaaaaOGaaiykaiabgIGiolaad2eaaeaaaeaacaaMf8Uaeyi1HSTaaGzbVlaacIcadaWcaaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaaaaGccaGGSaGaeSOjGSKaaiilamaalaaabaGaamyEamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadsgadaWgaaWcbaGaamOBaaqabaaakeaacaWGJbWaaSbaaSqaaiaad6gaaeqaaaaakiaacMcacqGHiiIZcaWGnbWaaSbaaSqaamaalaaabaGaamiEaiabgkHiTiaadsgadaWgaaadbaGaaGimaaqabaaaleaacaWGJbWaaSbaaWqaaiaaicdaaeqaaaaaaSqabaaakeaaaeaacaaMf8Uaeyi1HSTaaGzbVlaacIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgIGiolaacIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGJbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiaad2eadaWgaaWcbaWaaSaaaeaacaWG4bGaeyOeI0IaamizamaaBaaameaacaaIWaaabeaaaSqaaiaadogadaWgaaadbaGaaGimaaqabaaaaaWcbeaakiabgUcaRiaacIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGKbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaaaaa@BF16@

    Now, if M has a content so does every section M x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaWG4baabeaaaaa@37E7@ and V n ( M X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaaa@3B2E@ is integrable on [a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacaGGSaGaamOyaiaac2faaaa@3A29@ . Due to the induction hypothesis

    ( c 1 ,, c n ) M x d 0 c 0 +( d 1 ,, d n ) = [+] (cM+d) x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadogadaWgaaWcbaGaamOBaaqabaGccaGGPaGaamytamaaBaaaleaadaWcaaqaaiaadIhacqGHsislcaWGKbWaaSbaaWqaaiaaicdaaeqaaaWcbaGaam4yamaaBaaameaacaaIWaaabeaaaaaaleqaaOGaey4kaSIaaiikaiaadsgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadsgadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaCbeaeaacqGH9aqpaSqaaiaacUfacqGHRaWkcaGGDbaabeaakiaacIcacaWGJbGaamytaiabgUcaRiaadsgacaGGPaWaaSbaaSqaaiaadIhaaeqaaaaa@5703@

    has the content V n ( (cM+d) x )= c 1 c n V n ( M x d 0 c 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaGGOaGaam4yaiaad2eacqGHRaWkcaWGKbGaaiykamaaBaaaleaacaWG4baabeaakiaacMcacqGH9aqpcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaeSOjGSKaeyyXICTaam4yamaaBaaaleaacaWGUbaabeaakiabgwSixlaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamytamaaBaaaleaadaWcaaqaaiaadIhacqGHsislcaWGKbWaaSbaaWqaaiaaicdaaeqaaaWcbaGaam4yamaaBaaameaacaaIWaaabeaaaaaaleqaaOGaaiykaaaa@565E@ for each x[ c 0 a+ d 0 , c 0 b+ d 0 ] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamyyaiabgUcaRiaadsgadaWgaaWcbaGaaGimaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadkgacqGHRaWkcaWGKbWaaSbaaSqaaiaaicdaaeqaaOGaaiyxaaaa@4A64@ . According to the substitution formula [8.3.5] the function V n ( (cM+d) X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaGGOaGaam4yaiaad2eacqGHRaWkcaWGKbGaaiykamaaBaaaleaacaWGybaabeaakiaacMcaaaa@3F3A@ integrable and the content of cM+d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad2eacqGHRaWkcaWGKbaaaa@3971@ is calculated like this:

    V n+1 (cM+d) = c 0 a+ d 0 c 0 b+ d 0 V n ( (cM+d) X ) = c 0 c 1 c n c 0 a+ d 0 c 0 b+ d 0 V n ( M X d 0 c 0 ) 1 c 0 = c 0 c 1 c n a b V n ( M X ) = c 0 c 1 c n V n+1 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4yaiaad2eacqGHRaWkcaWGKbGaaiykaaqaaiabg2da9maapehabaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaGGOaGaam4yaiaad2eacqGHRaWkcaWGKbGaaiykamaaBaaaleaacaWGybaabeaakiaacMcaaSqaaiaadogadaWgaaadbaGaaGimaaqabaWccqGHflY1caWGHbGaey4kaSIaamizamaaBaaameaacaaIWaaabeaaaSqaaiaadogadaWgaaadbaGaaGimaaqabaWccqGHflY1caWGIbGaey4kaSIaamizamaaBaaameaacaaIWaaabeaaa0Gaey4kIipaaOqaaaqaaiabg2da9iaadogadaWgaaWcbaGaaGimaaqabaGccqGHflY1caWGJbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaeSOjGSKaeyyXICTaam4yamaaBaaaleaacaWGUbaabeaakmaapehabaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaaSbaaSqaamaalaaabaGaamiwaiabgkHiTiaadsgadaWgaaadbaGaaGimaaqabaaaleaacaWGJbWaaSbaaWqaaiaaicdaaeqaaaaaaSqabaGccaGGPaGaeyyXIC9aaSaaaeaacaaIXaaabaGaam4yamaaBaaaleaacaaIWaaabeaaaaaabaGaam4yamaaBaaameaacaaIWaaabeaaliabgwSixlaadggacqGHRaWkcaWGKbWaaSbaaWqaaiaaicdaaeqaaaWcbaGaam4yamaaBaaameaacaaIWaaabeaaliabgwSixlaadkgacqGHRaWkcaWGKbWaaSbaaWqaaiaaicdaaeqaaaqdcqGHRiI8aaGcbaaabaGaeyypa0Jaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadogadaWgaaWcbaGaaGymaaqabaGccqGHflY1cqWIMaYscqGHflY1caWGJbWaaSbaaSqaaiaad6gaaeqaaOWaa8qCaeaacaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaad2eadaWgaaWcbaGaamiwaaqabaGccaGGPaaaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aaGcbaaabaGaeyypa0Jaam4yamaaBaaaleaacaaIWaaabeaakiabgwSixlaadogadaWgaaWcbaGaaGymaaqabaGccqGHflY1cqWIMaYscqGHflY1caWGJbWaaSbaaSqaaiaad6gaaeqaaOGaeyyXICTaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytaiaacMcaaaaaaa@B97E@

There are some interesting implications of [8.5.11]:

  1. Content is translation-proof, as for c=(1,,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaacIcacaaIXaGaaiilaiablAciljaacYcacaaIXaGaaiykaaaa@3D2B@ we have

    V n (M+d)= V n (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbGaey4kaSIaamizaiaacMcacqGH9aqpcaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaad2eacaGGPaaaaa@411B@
     
    [8.5.12]
  2. Content is dilation-compatible, as for d=(0,,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2da9iaacIcacaaIWaGaaiilaiablAciljaacYcacaaIWaGaaiykaaaa@3D2A@ we have

    V n (cM)= c 0 c n1 V n (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGJbGaamytaiaacMcacqGH9aqpcaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaeSOjGSKaam4yamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHflY1caWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaad2eacaGGPaaaaa@4B7F@
     
    [8.5.13]
  3. Content is shearing-proof: If M[a,b]× n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgkOimlaacUfacaWGHbGaaiilaiaadkgacaGGDbGaey41aqRaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@419E@ has a content then for any shear vector s=( s 1 ,, s n ) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2da9iaacIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWGZbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaamOBaaaaaaa@43E3@ the set

    M s {(x, s 1 ba (xa)+ y 1 ,, s n ba (xa)+ y n )|x[a,b]      y M x } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaCaaaleqabaGaam4Caaaakiabg2da9iaacUhacaGGOaGaamiEaiaacYcadaWcaaqaaiaadohadaWgaaWcbaGaaGymaaqabaaakeaacaWGIbGaeyOeI0IaamyyaaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaGaey4kaSIaamyEamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaWaaSaaaeaacaWGZbWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaiabgUcaRiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiiFaiaadIhacqGHiiIZcaGGBbGaamyyaiaacYcacaWGIbGaaiyxaiaaysW7cqGHNis2caaMe8UaamyEaiabgIGiolaad2eadaWgaaWcbaGaamiEaaqabaGccaGG9baaaa@6952@

    has a content of the same size:

    V n+1 ( M s )= V n+1 (M) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaamytamaaCaaaleqabaGaam4CaaaakiaacMcacqGH9aqpcaWGwbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacIcacaWGnbGaaiykaaaa@43B9@
    [8.5.14]

    Proof:  For x[a,b] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3CAA@ we see that M x s = M x +( s 1 ba (xa),, s n ba (xa)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaDaaaleaacaWG4baabaGaam4Caaaakiabg2da9iaad2eadaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaGGOaWaaSaaaeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaiaacYcacqWIMaYscaGGSaWaaSaaaeaacaWGZbWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOyaiabgkHiTiaadggaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykaiaacMcaaaa@52A2@ . According to [8.5.12]  M x s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaDaaaleaacaWG4baabaGaam4Caaaaaaa@38E0@ thus has the content V n ( M x s )= V n ( M x ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGnbWaa0baaSqaaiaadIhaaeaacaWGZbaaaOGaaiykaiabg2da9iaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamytamaaBaaaleaacaWG4baabeaakiaacMcaaaa@42AF@ , so that the Cavalieri Principle [8.5.4] yields the assertion.
     

Now that content is compatible with dilation we are able to compute the content of a cone.

Proposition:  The cone C={(x, x h y 1 , x h y n ) n+1 |x[0,h]      yG} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabg2da9iaacUhacaGGOaGaamiEaiaacYcadaWcaaqaaiaadIhaaeaacaWGObaaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGS0aaSaaaeaacaWG4baabaGaamiAaaaacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgIGiolabl2riHoaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaGG8bGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadIgacaGGDbGaaGjbVlabgEIizlaaysW7caWG5bGaeyicI4Saam4raiaac2haaaa@5C05@ has a content if its base G n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiabgkOimlabl2riHoaaCaaaleqabaGaamOBaaaaaaa@3B44@ has a content. In this case it calculates to:

V n+1 (C)= 1 n+1 V n (G)h MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4qaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadEeacaGGPaGaeyyXICTaamiAaaaa@476F@
[8.5.15]

Proof:  For any x[0,h] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaacUfacaaIWaGaaiilaiaadIgacaGGDbaaaa@3C84@ we have C x ={( x h y 1 ,, x h y n )|yG}=( x h ,, x h )G MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaaleaacaWG4baabeaakiabg2da9iaacUhacaGGOaWaaSaaaeaacaWG4baabaGaamiAaaaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcadaWcaaqaaiaadIhaaeaacaWGObaaaiaadMhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiiFaiaadMhacqGHiiIZcaWGhbGaaiyFaiabg2da9iaacIcadaWcaaqaaiaadIhaaeaacaWGObaaaiaacYcacqWIMaYscaGGSaWaaSaaaeaacaWG4baabaGaamiAaaaacaGGPaGaeyyXICTaam4raaaa@570B@ . Along with G the section C x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaaleaacaWG4baabeaaaaa@37DD@ has a content as well (see [8.5.13]), namely V n ( C x )= ( x h ) n V n (G) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGdbWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaacIcadaWcaaqaaiaadIhaaeaacaWGObaaaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGHflY1caWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadEeacaGGPaaaaa@473A@ . Being a multiple of X n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOBaaaaaaa@37E9@ the function V n ( C X ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGdbWaaSbaaSqaaiaadIfaaeqaaOGaaiykaaaa@3B24@ is integrable, i.e. C has the content

V n+1 (C)= 0 h V n ( C X ) = 1 h n V n (G) 0 h X n = 1 h n V n (G) h n+1 n+1 = 1 n+1 V n (G) h MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGOaGaam4qaiaacMcacqGH9aqpdaWdXbqaaiaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaam4qamaaBaaaleaacaWGybaabeaakiaacMcaaSqaaiaaicdaaeaacaWGObaaniabgUIiYdGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGObWaaWbaaSqabeaacaWGUbaaaaaakiabgwSixlaadAfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaam4raiaacMcadaWdXbqaaiaadIfadaahaaWcbeqaaiaad6gaaaaabaGaaGimaaqaaiaadIgaa0Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaadIgadaahaaWcbeqaaiaad6gaaaaaaOGaeyyXICTaamOvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGhbGaaiykaiabgwSixpaalaaabaGaamiAamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaacaWGUbGaey4kaSIaaGymaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadEeacaGGPaGaeyyXICTaamiAaaaa@7527@

Consider:

  • The content formula [8.5.15] of course comprises the previously calculated formulas for triangles, three-dimensional circular cones and pyramids.

  • The height of a cone might be perpendicular to the base, but does not need to. Its position has no impact on the content due to [8.5.14]. All three triangles below for instance have the same content of 1.5.


8.4. 8.6.